Upload infer.py
Browse files
infer.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import numpy as np
|
| 3 |
+
import cv2
|
| 4 |
+
import axengine as axe
|
| 5 |
+
|
| 6 |
+
def parse_args() -> argparse.Namespace:
|
| 7 |
+
parser = argparse.ArgumentParser()
|
| 8 |
+
parser.add_argument("--model", type=str, required=True, help="Path to the axmodel")
|
| 9 |
+
parser.add_argument("--img1", type=str, required=True, help="Path to the first image")
|
| 10 |
+
parser.add_argument("--img2", type=str, required=True, help="Path to the second image")
|
| 11 |
+
parser.add_argument("--output", type=str, default="matches.jpg", help="The output image directory")
|
| 12 |
+
parser.add_argument("--threshold", type=float, default=0.005, help="The keypoint threshold")
|
| 13 |
+
parser.add_argument("--max_points", type=int, default=100, help="The max num for keypoints")
|
| 14 |
+
return parser.parse_args()
|
| 15 |
+
|
| 16 |
+
def preprocess_image(path: str, h: int, w: int):
|
| 17 |
+
img = cv2.imread(path)
|
| 18 |
+
raw_h, raw_w = img.shape[:2]
|
| 19 |
+
|
| 20 |
+
if (raw_h, raw_w) != (h, w):
|
| 21 |
+
img = cv2.resize(img, (w, h))
|
| 22 |
+
scale_h = raw_h / h
|
| 23 |
+
scale_w = raw_w / w
|
| 24 |
+
else:
|
| 25 |
+
scale_h = 1.0
|
| 26 |
+
scale_w = 1.0
|
| 27 |
+
|
| 28 |
+
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 29 |
+
img_tensor = img_gray.astype(np.float32) / 255.0
|
| 30 |
+
img_tensor = img_tensor[None, None, :, :] # -> (1, 1, H, W)
|
| 31 |
+
|
| 32 |
+
return img_tensor, img, (scale_h, scale_w)
|
| 33 |
+
|
| 34 |
+
def get_keypoints(score_map, threshold):
|
| 35 |
+
row, col = np.where(score_map > threshold) # y, x
|
| 36 |
+
if len(row) == 0:
|
| 37 |
+
return np.zeros((0, 2), dtype=np.float32), np.zeros((0,), dtype=np.float32)
|
| 38 |
+
|
| 39 |
+
scores = score_map[row, col]
|
| 40 |
+
keypoints = np.stack([col, row], axis=1).astype(np.float32)
|
| 41 |
+
return keypoints, scores
|
| 42 |
+
|
| 43 |
+
def get_descriptors(kp, desc_map):
|
| 44 |
+
if len(kp) == 0:
|
| 45 |
+
return np.zeros((0, 256), dtype=np.float32)
|
| 46 |
+
|
| 47 |
+
c, h, w = desc_map.shape
|
| 48 |
+
x = kp[:, 0] / 8.0
|
| 49 |
+
y = kp[:, 1] / 8.0
|
| 50 |
+
|
| 51 |
+
x0 = np.floor(x).astype(np.int32)
|
| 52 |
+
x1 = x0 + 1
|
| 53 |
+
y0 = np.floor(y).astype(np.int32)
|
| 54 |
+
y1 = y0 + 1
|
| 55 |
+
|
| 56 |
+
x0 = np.clip(x0, 0, w - 1)
|
| 57 |
+
x1 = np.clip(x1, 0, w - 1)
|
| 58 |
+
y0 = np.clip(y0, 0, h - 1)
|
| 59 |
+
y1 = np.clip(y1, 0, h - 1)
|
| 60 |
+
|
| 61 |
+
wa = (x1 - x) * (y1 - y)
|
| 62 |
+
wb = (x1 - x) * (y - y0)
|
| 63 |
+
wc = (x - x0) * (y1 - y)
|
| 64 |
+
wd = (x - x0) * (y - y0)
|
| 65 |
+
|
| 66 |
+
wa = wa[None, :]
|
| 67 |
+
wb = wb[None, :]
|
| 68 |
+
wc = wc[None, :]
|
| 69 |
+
wd = wd[None, :]
|
| 70 |
+
|
| 71 |
+
Q_tl = desc_map[:, y0, x0]
|
| 72 |
+
Q_bl = desc_map[:, y1, x0]
|
| 73 |
+
Q_tr = desc_map[:, y0, x1]
|
| 74 |
+
Q_br = desc_map[:, y1, x1]
|
| 75 |
+
|
| 76 |
+
sampled = (Q_tl * wa + Q_bl * wb + Q_tr * wc + Q_br * wd)
|
| 77 |
+
descriptors = sampled.T
|
| 78 |
+
norm = np.linalg.norm(descriptors, axis=1, keepdims=True)
|
| 79 |
+
descriptors = descriptors / (norm + 1e-6)
|
| 80 |
+
|
| 81 |
+
return descriptors.astype(np.float32)
|
| 82 |
+
|
| 83 |
+
def infer(model: str, img1_path: str, img2_path: str, output: str, threshold: float, max_points: int):
|
| 84 |
+
session = axe.InferenceSession(model)
|
| 85 |
+
|
| 86 |
+
# superpoint only have one input
|
| 87 |
+
input_name = session.get_inputs()[0].name # get model input node name
|
| 88 |
+
input_shape = session.get_inputs()[0].shape # get model input shape (1, 1, H, W)
|
| 89 |
+
target_h, target_w = input_shape[2], input_shape[3]
|
| 90 |
+
print(f"Inference resolution: {target_w}x{target_h}")
|
| 91 |
+
|
| 92 |
+
# preprocess images
|
| 93 |
+
input_tensor1, img1, scale1 = preprocess_image(img1_path, target_h, target_w)
|
| 94 |
+
input_tensor2, img2, scale2 = preprocess_image(img2_path, target_h, target_w)
|
| 95 |
+
|
| 96 |
+
res1 = session.run(None, {input_name: input_tensor1})
|
| 97 |
+
res2 = session.run(None, {input_name: input_tensor2})
|
| 98 |
+
|
| 99 |
+
# [1,480,640], [1,256,60,80]
|
| 100 |
+
score_map1, desc1_map = res1[0], res1[1]
|
| 101 |
+
score_map2, desc2_map = res2[0], res2[1]
|
| 102 |
+
|
| 103 |
+
keypoints1, scores1 = get_keypoints(score_map1[0], threshold)
|
| 104 |
+
keypoints2, scores2 = get_keypoints(score_map2[0], threshold)
|
| 105 |
+
|
| 106 |
+
print(f"Found {len(keypoints1)} keypoints in image 1")
|
| 107 |
+
print(f"Found {len(keypoints2)} keypoints in image 2")
|
| 108 |
+
|
| 109 |
+
if len(keypoints1) > max_points:
|
| 110 |
+
idx = np.argsort(scores1)[::-1][:max_points]
|
| 111 |
+
keypoints1 = keypoints1[idx]
|
| 112 |
+
scores1 = scores1[idx]
|
| 113 |
+
if len(keypoints2) > max_points:
|
| 114 |
+
idx = np.argsort(scores2)[::-1][:max_points]
|
| 115 |
+
keypoints2 = keypoints2[idx]
|
| 116 |
+
scores2 = scores2[idx]
|
| 117 |
+
|
| 118 |
+
desc1 = get_descriptors(keypoints1, desc1_map[0])
|
| 119 |
+
desc2 = get_descriptors(keypoints2, desc2_map[0])
|
| 120 |
+
|
| 121 |
+
bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
|
| 122 |
+
matches = bf.match(desc1, desc2)
|
| 123 |
+
matches = sorted(matches, key=lambda x: x.distance)
|
| 124 |
+
|
| 125 |
+
points1 = [cv2.KeyPoint(x, y, 1) for x, y in keypoints1]
|
| 126 |
+
points2 = [cv2.KeyPoint(x, y, 1) for x, y in keypoints2]
|
| 127 |
+
|
| 128 |
+
match_img = cv2.drawMatches(
|
| 129 |
+
img1, points1,
|
| 130 |
+
img2, points2,
|
| 131 |
+
matches, None,
|
| 132 |
+
flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS,
|
| 133 |
+
matchColor=(0, 255, 0)
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
# if len(matches) > 4:
|
| 137 |
+
# pts1 = np.float32([keypoints1[m.queryIdx] for m in matches]).reshape(-1, 1, 2)
|
| 138 |
+
# pts2 = np.float32([keypoints2[m.trainIdx] for m in matches]).reshape(-1, 1, 2)
|
| 139 |
+
|
| 140 |
+
# H, mask = cv2.findHomography(pts1, pts2, cv2.RANSAC, 3.0)
|
| 141 |
+
|
| 142 |
+
# if mask is not None:
|
| 143 |
+
# matches_mask = mask.ravel().tolist()
|
| 144 |
+
# inlier_matches = [m for i, m in enumerate(matches) if matches_mask[i]]
|
| 145 |
+
# print(f"Inliers: {len(inlier_matches)} / {len(matches)}")
|
| 146 |
+
|
| 147 |
+
# inlier_img = cv2.drawMatches(
|
| 148 |
+
# img1, points1,
|
| 149 |
+
# img2, points2,
|
| 150 |
+
# inlier_matches, None,
|
| 151 |
+
# flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS,
|
| 152 |
+
# matchColor=(0, 255, 0)
|
| 153 |
+
# )
|
| 154 |
+
# cv2.imwrite("inliers_" + output, inlier_img)
|
| 155 |
+
|
| 156 |
+
cv2.imwrite(output, match_img)
|
| 157 |
+
print(f"Result saved to {output}")
|
| 158 |
+
|
| 159 |
+
def main():
|
| 160 |
+
args = parse_args()
|
| 161 |
+
infer(args.model, args.img1, args.img2, args.output, args.threshold, args.max_points)
|
| 162 |
+
|
| 163 |
+
if __name__ == '__main__':
|
| 164 |
+
main()
|