import os
import json
import re
from tqdm import tqdm
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
from rouge_score import rouge_scorer
import torch
from transformers import AutoProcessor, AutoTokenizer
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info
MODEL_PATH = "Qwen/Qwen2.5-VL-72B-Instruct"
BSZ = 32
llm = LLM(
model=MODEL_PATH,
tensor_parallel_size=torch.cuda.device_count(),
max_model_len = 8192,
gpu_memory_utilization=0.8,
limit_mm_per_prompt={"image": 10, "video": 10},
)
sampling_params = SamplingParams(
temperature=1.0,
top_p=0.95,
max_tokens=512,
stop_token_ids=[],
)
processor = AutoProcessor.from_pretrained(MODEL_PATH)
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
tokenizer.padding_side = "left"
processor.tokenizer = tokenizer
for dataset_name in ['your_data_name']:
OUTPUT_PATH = f"./src/r1-v/Video-R1-data/{dataset_name}_COT_qwen72b.json"
PROMPT_PATH = f"./src/r1-v/Video-R1-data/{dataset_name}.json"
data = []
if PROMPT_PATH.endswith('.jsonl'):
with open(PROMPT_PATH, "r", encoding="utf-8") as f:
for line in f:
data.append(json.loads(line))
elif PROMPT_PATH.endswith('.json'):
with open(PROMPT_PATH, "r", encoding="utf-8") as f:
data = json.load(f)
else:
raise ValueError("Input file must be .json or .jsonl")
QUESTION_TEMPLATE = (
"{Question}\n"
"Please think about this question as if you were a human pondering deeply. "
"Engage in an internal dialogue using expressions such as 'let me think', 'wait', 'Hmm', 'oh, I see', 'let's break it down', etc, or other natural language thought expressions "
"It's encouraged to include self-reflection or verification in the reasoning process. "
"Provide your detailed reasoning between the and tags, and then give your final answer between the and tags."
)
TYPE_TEMPLATE = {
"multiple choice": " Please provide only the single option letter (e.g., A, B, C, D, etc.) within the tags.",
"numerical": " Please provide the numerical value (e.g., 42 or 3.14) within the tags.",
"OCR": " Please transcribe text from the image/video clearly and provide your text answer within the tags.",
"free-form": " Please provide your text answer within the tags.",
"regression": " Please provide the numerical value (e.g., 42 or 3.14) within the tags."
}
messages = []
for x in data:
if x["problem_type"] == 'multiple choice':
question = x['problem'] + "Options:\n"
for op in x["options"]:
question += op + "\n"
else:
question = x['problem']
msg = [{
"role": "user",
"content": [
{
"type": x['data_type'],
x['data_type']: os.getcwd() + "/src/r1-v/Video-R1-data" + x['path'][1:]
},
{
"type": "text",
"text": QUESTION_TEMPLATE.format(Question=question) + TYPE_TEMPLATE[x['problem_type']]
}
]
}]
messages.append(msg)
# For resume
final_output = []
start_idx = 0
if os.path.exists(OUTPUT_PATH):
try:
with open(OUTPUT_PATH, "r", encoding="utf-8") as f:
existing = json.load(f)
final_output = existing.get("results", [])
start_idx = len(final_output)
print(f"Resuming from sample index {start_idx}")
except Exception as e:
print(f"Error reading existing output file: {e}")
def extract_think(output_str):
pattern = r'\s*(.*?)\s*'
match = re.search(pattern, output_str, re.DOTALL)
if match:
return match.group(1).strip()
return ""
def extract_answer(text):
pattern = r'\s*(.*?)\s*'
match = re.search(pattern, text, re.DOTALL)
if match:
return match.group(1).strip()
return ""
def normalize_number(num_str):
try:
num_str = num_str.replace(',', '')
return float(num_str)
except Exception as e:
print(f"Error converting '{num_str}' to float: {e}")
return None
def wer(reference, hypothesis):
ref_words = reference.split()
hyp_words = hypothesis.split()
m = len(ref_words)
n = len(hyp_words)
d = [[0]*(n+1) for _ in range(m+1)]
for i in range(m+1):
d[i][0] = i
for j in range(n+1):
d[0][j] = j
for i in range(1, m+1):
for j in range(1, n+1):
if ref_words[i-1] == hyp_words[j-1]:
d[i][j] = d[i-1][j-1]
else:
d[i][j] = 1 + min(d[i-1][j], d[i][j-1], d[i-1][j-1])
return d[m][n] / max(1, m)
def compute_bleu_score(reference, hypothesis):
try:
smoothing = SmoothingFunction().method1
ref_tokens = reference.split()
hyp_tokens = hypothesis.split()
score = sentence_bleu([ref_tokens], hyp_tokens, smoothing_function=smoothing)
return score
except Exception as e:
print(f"Error computing BLEU score: {e}")
return 0.0
def compute_rouge_score(reference, hypothesis, use_stemmer=True):
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=use_stemmer)
scores = scorer.score(reference, hypothesis)
average_fmeasure = (scores['rouge1'].fmeasure + scores['rouge2'].fmeasure + scores['rougeL'].fmeasure) / 3
return average_fmeasure
def reward_fn(sample, model_output, question_type):
try:
output_ans = extract_answer(model_output)
gt_ans = extract_answer(sample.get("solution", ""))
if question_type == "multiple choice":
return 1.0 if output_ans.strip() == gt_ans.strip() else 0.0
elif question_type == "numerical":
gt_has_decimal = ("." in gt_ans) or ("," in gt_ans)
out_has_decimal = ("." in output_ans) or ("," in output_ans)
if gt_has_decimal != out_has_decimal:
return 0.0
gt_number = normalize_number(gt_ans)
out_number = normalize_number(output_ans)
if gt_number is None or out_number is None:
return 0.0
return 1.0 if round(gt_number, 2) == round(out_number, 2) else 0.0
elif question_type == "OCR":
error_rate = wer(gt_ans, output_ans)
reward = 1 - error_rate
return max(0.0, min(1.0, reward))
elif question_type == "free-form":
score = compute_rouge_score(gt_ans, output_ans)
return max(0.0, min(1.0, score))
elif question_type == "regression":
gt_number = normalize_number(gt_ans)
out_number = normalize_number(output_ans)
if gt_number is None or out_number is None:
return 0.0
rel_diff = (abs(out_number - gt_number) + 1e-9) / (abs(gt_number) + 1e-9)
rel_diff = min(1.0, max(0.0, rel_diff))
return 1 - rel_diff
else:
return 0.0
except Exception as e:
print(f"Error in reward_fn for question_type '{question_type}': {e}")
return 0.0
for i in tqdm(range(start_idx, len(messages), BSZ), desc="Processing batches"):
batch_messages = messages[i:i + BSZ]
prompts = [processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True) for msg in batch_messages]
try:
image_inputs, video_inputs, video_kwargs = process_vision_info(batch_messages, return_video_kwargs=True)
image_idx = 0
video_idx = 0
llm_inputs = []
for idx, prompt in enumerate(prompts):
mm_type = batch_messages[idx][0]['content'][0]['type']
sample_mm_data = {}
sample_video_kw = {}
if mm_type == 'image':
sample_mm_data["image"] = image_inputs[image_idx]
image_idx += 1
elif mm_type == 'video':
sample_mm_data["video"] = video_inputs[video_idx]
for key, value in video_kwargs.items():
sample_video_kw[key] = value[video_idx]
video_idx += 1
llm_inputs.append({
"prompt": prompt,
"multi_modal_data": sample_mm_data,
"mm_processor_kwargs": sample_video_kw,
})
outputs = llm.generate(llm_inputs, sampling_params=sampling_params)
batch_output_text = [out.outputs[0].text for out in outputs]
except Exception as e:
print('error:', data[i]['path'])
batch_output_text = ['error'] * BSZ
for j, (sample, model_output) in enumerate(zip(data[i:i+BSZ], batch_output_text), start=i):
think_chain = extract_think(model_output)
final_ans = extract_answer(model_output)
sample["answer"] = final_ans
q_type = sample.get("problem_type", "")
sample["reward"] = reward_fn(sample, model_output, q_type)
sample['select'] = True if sample["reward"] > 0.6 else False
if think_chain:
sample["process"] = f"{think_chain}"
final_output.append(sample)
try:
with open(OUTPUT_PATH, "w", encoding="utf-8") as f:
json.dump({"results": final_output}, f, indent=2, ensure_ascii=False)
print(f"Processed batch {(i - start_idx)//BSZ + 1}, saved {len(final_output)} samples.")
except Exception as e:
print(f"Error writing to output file: {e}")
print(f"Results saved to {OUTPUT_PATH}")