import os import json import re from tqdm import tqdm from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction from rouge_score import rouge_scorer import torch from transformers import AutoProcessor, AutoTokenizer from vllm import LLM, SamplingParams from qwen_vl_utils import process_vision_info MODEL_PATH = "Qwen/Qwen2.5-VL-72B-Instruct" BSZ = 32 llm = LLM( model=MODEL_PATH, tensor_parallel_size=torch.cuda.device_count(), max_model_len = 8192, gpu_memory_utilization=0.8, limit_mm_per_prompt={"image": 10, "video": 10}, ) sampling_params = SamplingParams( temperature=1.0, top_p=0.95, max_tokens=512, stop_token_ids=[], ) processor = AutoProcessor.from_pretrained(MODEL_PATH) tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) tokenizer.padding_side = "left" processor.tokenizer = tokenizer for dataset_name in ['your_data_name']: OUTPUT_PATH = f"./src/r1-v/Video-R1-data/{dataset_name}_COT_qwen72b.json" PROMPT_PATH = f"./src/r1-v/Video-R1-data/{dataset_name}.json" data = [] if PROMPT_PATH.endswith('.jsonl'): with open(PROMPT_PATH, "r", encoding="utf-8") as f: for line in f: data.append(json.loads(line)) elif PROMPT_PATH.endswith('.json'): with open(PROMPT_PATH, "r", encoding="utf-8") as f: data = json.load(f) else: raise ValueError("Input file must be .json or .jsonl") QUESTION_TEMPLATE = ( "{Question}\n" "Please think about this question as if you were a human pondering deeply. " "Engage in an internal dialogue using expressions such as 'let me think', 'wait', 'Hmm', 'oh, I see', 'let's break it down', etc, or other natural language thought expressions " "It's encouraged to include self-reflection or verification in the reasoning process. " "Provide your detailed reasoning between the and tags, and then give your final answer between the and tags." ) TYPE_TEMPLATE = { "multiple choice": " Please provide only the single option letter (e.g., A, B, C, D, etc.) within the tags.", "numerical": " Please provide the numerical value (e.g., 42 or 3.14) within the tags.", "OCR": " Please transcribe text from the image/video clearly and provide your text answer within the tags.", "free-form": " Please provide your text answer within the tags.", "regression": " Please provide the numerical value (e.g., 42 or 3.14) within the tags." } messages = [] for x in data: if x["problem_type"] == 'multiple choice': question = x['problem'] + "Options:\n" for op in x["options"]: question += op + "\n" else: question = x['problem'] msg = [{ "role": "user", "content": [ { "type": x['data_type'], x['data_type']: os.getcwd() + "/src/r1-v/Video-R1-data" + x['path'][1:] }, { "type": "text", "text": QUESTION_TEMPLATE.format(Question=question) + TYPE_TEMPLATE[x['problem_type']] } ] }] messages.append(msg) # For resume final_output = [] start_idx = 0 if os.path.exists(OUTPUT_PATH): try: with open(OUTPUT_PATH, "r", encoding="utf-8") as f: existing = json.load(f) final_output = existing.get("results", []) start_idx = len(final_output) print(f"Resuming from sample index {start_idx}") except Exception as e: print(f"Error reading existing output file: {e}") def extract_think(output_str): pattern = r'\s*(.*?)\s*' match = re.search(pattern, output_str, re.DOTALL) if match: return match.group(1).strip() return "" def extract_answer(text): pattern = r'\s*(.*?)\s*' match = re.search(pattern, text, re.DOTALL) if match: return match.group(1).strip() return "" def normalize_number(num_str): try: num_str = num_str.replace(',', '') return float(num_str) except Exception as e: print(f"Error converting '{num_str}' to float: {e}") return None def wer(reference, hypothesis): ref_words = reference.split() hyp_words = hypothesis.split() m = len(ref_words) n = len(hyp_words) d = [[0]*(n+1) for _ in range(m+1)] for i in range(m+1): d[i][0] = i for j in range(n+1): d[0][j] = j for i in range(1, m+1): for j in range(1, n+1): if ref_words[i-1] == hyp_words[j-1]: d[i][j] = d[i-1][j-1] else: d[i][j] = 1 + min(d[i-1][j], d[i][j-1], d[i-1][j-1]) return d[m][n] / max(1, m) def compute_bleu_score(reference, hypothesis): try: smoothing = SmoothingFunction().method1 ref_tokens = reference.split() hyp_tokens = hypothesis.split() score = sentence_bleu([ref_tokens], hyp_tokens, smoothing_function=smoothing) return score except Exception as e: print(f"Error computing BLEU score: {e}") return 0.0 def compute_rouge_score(reference, hypothesis, use_stemmer=True): scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=use_stemmer) scores = scorer.score(reference, hypothesis) average_fmeasure = (scores['rouge1'].fmeasure + scores['rouge2'].fmeasure + scores['rougeL'].fmeasure) / 3 return average_fmeasure def reward_fn(sample, model_output, question_type): try: output_ans = extract_answer(model_output) gt_ans = extract_answer(sample.get("solution", "")) if question_type == "multiple choice": return 1.0 if output_ans.strip() == gt_ans.strip() else 0.0 elif question_type == "numerical": gt_has_decimal = ("." in gt_ans) or ("," in gt_ans) out_has_decimal = ("." in output_ans) or ("," in output_ans) if gt_has_decimal != out_has_decimal: return 0.0 gt_number = normalize_number(gt_ans) out_number = normalize_number(output_ans) if gt_number is None or out_number is None: return 0.0 return 1.0 if round(gt_number, 2) == round(out_number, 2) else 0.0 elif question_type == "OCR": error_rate = wer(gt_ans, output_ans) reward = 1 - error_rate return max(0.0, min(1.0, reward)) elif question_type == "free-form": score = compute_rouge_score(gt_ans, output_ans) return max(0.0, min(1.0, score)) elif question_type == "regression": gt_number = normalize_number(gt_ans) out_number = normalize_number(output_ans) if gt_number is None or out_number is None: return 0.0 rel_diff = (abs(out_number - gt_number) + 1e-9) / (abs(gt_number) + 1e-9) rel_diff = min(1.0, max(0.0, rel_diff)) return 1 - rel_diff else: return 0.0 except Exception as e: print(f"Error in reward_fn for question_type '{question_type}': {e}") return 0.0 for i in tqdm(range(start_idx, len(messages), BSZ), desc="Processing batches"): batch_messages = messages[i:i + BSZ] prompts = [processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True) for msg in batch_messages] try: image_inputs, video_inputs, video_kwargs = process_vision_info(batch_messages, return_video_kwargs=True) image_idx = 0 video_idx = 0 llm_inputs = [] for idx, prompt in enumerate(prompts): mm_type = batch_messages[idx][0]['content'][0]['type'] sample_mm_data = {} sample_video_kw = {} if mm_type == 'image': sample_mm_data["image"] = image_inputs[image_idx] image_idx += 1 elif mm_type == 'video': sample_mm_data["video"] = video_inputs[video_idx] for key, value in video_kwargs.items(): sample_video_kw[key] = value[video_idx] video_idx += 1 llm_inputs.append({ "prompt": prompt, "multi_modal_data": sample_mm_data, "mm_processor_kwargs": sample_video_kw, }) outputs = llm.generate(llm_inputs, sampling_params=sampling_params) batch_output_text = [out.outputs[0].text for out in outputs] except Exception as e: print('error:', data[i]['path']) batch_output_text = ['error'] * BSZ for j, (sample, model_output) in enumerate(zip(data[i:i+BSZ], batch_output_text), start=i): think_chain = extract_think(model_output) final_ans = extract_answer(model_output) sample["answer"] = final_ans q_type = sample.get("problem_type", "") sample["reward"] = reward_fn(sample, model_output, q_type) sample['select'] = True if sample["reward"] > 0.6 else False if think_chain: sample["process"] = f"{think_chain}" final_output.append(sample) try: with open(OUTPUT_PATH, "w", encoding="utf-8") as f: json.dump({"results": final_output}, f, indent=2, ensure_ascii=False) print(f"Processed batch {(i - start_idx)//BSZ + 1}, saved {len(final_output)} samples.") except Exception as e: print(f"Error writing to output file: {e}") print(f"Results saved to {OUTPUT_PATH}")