cd src/r1-v export DEBUG_MODE="true" # Enable Debug if you want to see the rollout of model during RL export LOG_PATH="./debug_log_2b.txt" # For resume training: --resume_from_checkpoint Model_Path \ # Set temporal to choose between T-GRPO and GRPO, and len_control to enable or disable the length control reward. # Qwen/Qwen2.5-VL-3B-Instruct CUDA_VISIBLE_DEVICES=0,1,2,3,5,6,7 torchrun --nproc_per_node="8" \ --nnodes="1" \ --node_rank="0" \ --master_addr="127.0.0.1" \ --master_port="12365" \ src/open_r1/grpo.py \ --output_dir "./log/Qwen2.5-VL-3B-GRPO" \ --model_name_or_path 'Qwen/Qwen2.5-VL-3B-Instruct' \ --dataset_name "./Video-R1-data/Video-R1-260k.json" \ --deepspeed local_scripts/zero3.json \ --max_prompt_length 16384 \ --max_completion_length 768 \ --per_device_train_batch_size 1 \ --gradient_accumulation_steps 1 \ --learning_rate 1e-6 \ --lr_scheduler_type "cosine" \ --weight_decay 0.01 \ --bf16 \ --logging_steps 1 \ --gradient_checkpointing true \ --temporal true \ --len_control true \ --attn_implementation flash_attention_2 \ --max_pixels 401408 \ --num_train_epochs 1 \ --run_name Video-R1 \ --save_steps 100 \ --beta 0.04 \ --max_grad_norm 5 \ --save_only_model false \ --num_generations 8 # number of outputs G in grpo, reduce it would lead to faster training and smaller memory cost but higher variance python /apdcephfs_sh2/share_300000800/user/zongxia/Video-R1/gpu_burn.py