Initial commit
Browse files- .gitattributes +1 -0
- README.md +70 -0
- args.yml +75 -0
- config.yml +29 -0
- env_kwargs.yml +1 -0
- ppo-seals-Swimmer-v0.zip +3 -0
- ppo-seals-Swimmer-v0/_stable_baselines3_version +1 -0
- ppo-seals-Swimmer-v0/data +118 -0
- ppo-seals-Swimmer-v0/policy.optimizer.pth +3 -0
- ppo-seals-Swimmer-v0/policy.pth +3 -0
- ppo-seals-Swimmer-v0/pytorch_variables.pth +3 -0
- ppo-seals-Swimmer-v0/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
|
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- seals/Swimmer-v0
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: PPO
|
| 10 |
+
results:
|
| 11 |
+
- metrics:
|
| 12 |
+
- type: mean_reward
|
| 13 |
+
value: 367.88 +/- 1.43
|
| 14 |
+
name: mean_reward
|
| 15 |
+
task:
|
| 16 |
+
type: reinforcement-learning
|
| 17 |
+
name: reinforcement-learning
|
| 18 |
+
dataset:
|
| 19 |
+
name: seals/Swimmer-v0
|
| 20 |
+
type: seals/Swimmer-v0
|
| 21 |
+
---
|
| 22 |
+
|
| 23 |
+
# **PPO** Agent playing **seals/Swimmer-v0**
|
| 24 |
+
This is a trained model of a **PPO** agent playing **seals/Swimmer-v0**
|
| 25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
| 26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
| 27 |
+
|
| 28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
| 29 |
+
reinforcement learning agents,
|
| 30 |
+
with hyperparameter optimization and pre-trained agents included.
|
| 31 |
+
|
| 32 |
+
## Usage (with SB3 RL Zoo)
|
| 33 |
+
|
| 34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
| 35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
| 36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
| 37 |
+
|
| 38 |
+
```
|
| 39 |
+
# Download model and save it into the logs/ folder
|
| 40 |
+
python -m utils.load_from_hub --algo ppo --env seals/Swimmer-v0 -orga HumanCompatibleAI -f logs/
|
| 41 |
+
python enjoy.py --algo ppo --env seals/Swimmer-v0 -f logs/
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
## Training (with the RL Zoo)
|
| 45 |
+
```
|
| 46 |
+
python train.py --algo ppo --env seals/Swimmer-v0 -f logs/
|
| 47 |
+
# Upload the model and generate video (when possible)
|
| 48 |
+
python -m utils.push_to_hub --algo ppo --env seals/Swimmer-v0 -f logs/ -orga HumanCompatibleAI
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
## Hyperparameters
|
| 52 |
+
```python
|
| 53 |
+
OrderedDict([('batch_size', 8),
|
| 54 |
+
('clip_range', 0.1),
|
| 55 |
+
('ent_coef', 5.167107294612664e-08),
|
| 56 |
+
('gae_lambda', 0.95),
|
| 57 |
+
('gamma', 0.999),
|
| 58 |
+
('learning_rate', 0.0001214437022727675),
|
| 59 |
+
('max_grad_norm', 2),
|
| 60 |
+
('n_epochs', 20),
|
| 61 |
+
('n_steps', 2048),
|
| 62 |
+
('n_timesteps', 1000000.0),
|
| 63 |
+
('normalize', True),
|
| 64 |
+
('policy', 'MlpPolicy'),
|
| 65 |
+
('policy_kwargs',
|
| 66 |
+
'dict(activation_fn=nn.Tanh, net_arch=[dict(pi=[64, 64], vf=[64, '
|
| 67 |
+
'64])])'),
|
| 68 |
+
('vf_coef', 0.6162112311062333),
|
| 69 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
| 70 |
+
```
|
args.yml
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
!!python/object/apply:collections.OrderedDict
|
| 2 |
+
- - - algo
|
| 3 |
+
- ppo
|
| 4 |
+
- - device
|
| 5 |
+
- cpu
|
| 6 |
+
- - env
|
| 7 |
+
- seals/Swimmer-v0
|
| 8 |
+
- - env_kwargs
|
| 9 |
+
- null
|
| 10 |
+
- - eval_episodes
|
| 11 |
+
- 5
|
| 12 |
+
- - eval_freq
|
| 13 |
+
- 25000
|
| 14 |
+
- - gym_packages
|
| 15 |
+
- - seals
|
| 16 |
+
- - hyperparams
|
| 17 |
+
- null
|
| 18 |
+
- - log_folder
|
| 19 |
+
- seals_experts_wandb/
|
| 20 |
+
- - log_interval
|
| 21 |
+
- -1
|
| 22 |
+
- - max_total_trials
|
| 23 |
+
- null
|
| 24 |
+
- - n_eval_envs
|
| 25 |
+
- 1
|
| 26 |
+
- - n_evaluations
|
| 27 |
+
- null
|
| 28 |
+
- - n_jobs
|
| 29 |
+
- 1
|
| 30 |
+
- - n_startup_trials
|
| 31 |
+
- 10
|
| 32 |
+
- - n_timesteps
|
| 33 |
+
- -1
|
| 34 |
+
- - n_trials
|
| 35 |
+
- 500
|
| 36 |
+
- - no_optim_plots
|
| 37 |
+
- false
|
| 38 |
+
- - num_threads
|
| 39 |
+
- 1
|
| 40 |
+
- - optimization_log_path
|
| 41 |
+
- null
|
| 42 |
+
- - optimize_hyperparameters
|
| 43 |
+
- false
|
| 44 |
+
- - pruner
|
| 45 |
+
- median
|
| 46 |
+
- - sampler
|
| 47 |
+
- tpe
|
| 48 |
+
- - save_freq
|
| 49 |
+
- -1
|
| 50 |
+
- - save_replay_buffer
|
| 51 |
+
- false
|
| 52 |
+
- - seed
|
| 53 |
+
- 9
|
| 54 |
+
- - storage
|
| 55 |
+
- null
|
| 56 |
+
- - study_name
|
| 57 |
+
- null
|
| 58 |
+
- - tensorboard_log
|
| 59 |
+
- runs/seals/Swimmer-v0__ppo__9__1658503223
|
| 60 |
+
- - track
|
| 61 |
+
- true
|
| 62 |
+
- - trained_agent
|
| 63 |
+
- ''
|
| 64 |
+
- - truncate_last_trajectory
|
| 65 |
+
- true
|
| 66 |
+
- - uuid
|
| 67 |
+
- false
|
| 68 |
+
- - vec_env
|
| 69 |
+
- dummy
|
| 70 |
+
- - verbose
|
| 71 |
+
- 1
|
| 72 |
+
- - wandb_entity
|
| 73 |
+
- null
|
| 74 |
+
- - wandb_project_name
|
| 75 |
+
- seals-experts
|
config.yml
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
!!python/object/apply:collections.OrderedDict
|
| 2 |
+
- - - batch_size
|
| 3 |
+
- 8
|
| 4 |
+
- - clip_range
|
| 5 |
+
- 0.1
|
| 6 |
+
- - ent_coef
|
| 7 |
+
- 5.167107294612664e-08
|
| 8 |
+
- - gae_lambda
|
| 9 |
+
- 0.95
|
| 10 |
+
- - gamma
|
| 11 |
+
- 0.999
|
| 12 |
+
- - learning_rate
|
| 13 |
+
- 0.0001214437022727675
|
| 14 |
+
- - max_grad_norm
|
| 15 |
+
- 2
|
| 16 |
+
- - n_epochs
|
| 17 |
+
- 20
|
| 18 |
+
- - n_steps
|
| 19 |
+
- 2048
|
| 20 |
+
- - n_timesteps
|
| 21 |
+
- 1000000.0
|
| 22 |
+
- - normalize
|
| 23 |
+
- true
|
| 24 |
+
- - policy
|
| 25 |
+
- MlpPolicy
|
| 26 |
+
- - policy_kwargs
|
| 27 |
+
- dict(activation_fn=nn.Tanh, net_arch=[dict(pi=[64, 64], vf=[64, 64])])
|
| 28 |
+
- - vf_coef
|
| 29 |
+
- 0.6162112311062333
|
env_kwargs.yml
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{}
|
ppo-seals-Swimmer-v0.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3143cb0982c56eb56b7ab75b95cdb121ec73f50a06d7bcf55647f41da5bac555
|
| 3 |
+
size 154313
|
ppo-seals-Swimmer-v0/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
1.6.0
|
ppo-seals-Swimmer-v0/data
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9c471dc790>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9c471dc820>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9c471dc8b0>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9c471dc940>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9c471dc9d0>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9c471dca60>",
|
| 13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9c471dcaf0>",
|
| 14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9c471dcb80>",
|
| 15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9c471dcc10>",
|
| 16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9c471dcca0>",
|
| 17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9c471dcd30>",
|
| 18 |
+
"__abstractmethods__": "frozenset()",
|
| 19 |
+
"_abc_impl": "<_abc_data object at 0x7f9c471d3cc0>"
|
| 20 |
+
},
|
| 21 |
+
"verbose": 1,
|
| 22 |
+
"policy_kwargs": {
|
| 23 |
+
":type:": "<class 'dict'>",
|
| 24 |
+
":serialized:": "gAWVaAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoS0BLQGWMAnZmlF2UKEtAS0BldWF1Lg==",
|
| 25 |
+
"activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
|
| 26 |
+
"net_arch": [
|
| 27 |
+
{
|
| 28 |
+
"pi": [
|
| 29 |
+
64,
|
| 30 |
+
64
|
| 31 |
+
],
|
| 32 |
+
"vf": [
|
| 33 |
+
64,
|
| 34 |
+
64
|
| 35 |
+
]
|
| 36 |
+
}
|
| 37 |
+
]
|
| 38 |
+
},
|
| 39 |
+
"observation_space": {
|
| 40 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
| 41 |
+
":serialized:": "gAWVAwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWUAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5RoCksKhZSMAUOUdJRSlIwEaGlnaJRoEiiWUAAAAAAAAAAAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoCksKhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgoAAAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksKhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolgoAAAAAAAAAAAAAAAAAAAAAAJRoIUsKhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
| 42 |
+
"dtype": "float64",
|
| 43 |
+
"_shape": [
|
| 44 |
+
10
|
| 45 |
+
],
|
| 46 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
| 47 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf]",
|
| 48 |
+
"bounded_below": "[False False False False False False False False False False]",
|
| 49 |
+
"bounded_above": "[False False False False False False False False False False]",
|
| 50 |
+
"_np_random": null
|
| 51 |
+
},
|
| 52 |
+
"action_space": {
|
| 53 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
| 54 |
+
":serialized:": "gAWV6wsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAAAAAIA/AACAP5RoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
| 55 |
+
"dtype": "float32",
|
| 56 |
+
"_shape": [
|
| 57 |
+
2
|
| 58 |
+
],
|
| 59 |
+
"low": "[-1. -1.]",
|
| 60 |
+
"high": "[1. 1.]",
|
| 61 |
+
"bounded_below": "[ True True]",
|
| 62 |
+
"bounded_above": "[ True True]",
|
| 63 |
+
"_np_random": "RandomState(MT19937)"
|
| 64 |
+
},
|
| 65 |
+
"n_envs": 1,
|
| 66 |
+
"num_timesteps": 1001472,
|
| 67 |
+
"_total_timesteps": 1000000,
|
| 68 |
+
"_num_timesteps_at_start": 0,
|
| 69 |
+
"seed": 0,
|
| 70 |
+
"action_noise": null,
|
| 71 |
+
"start_time": 1658503227.9944735,
|
| 72 |
+
"learning_rate": {
|
| 73 |
+
":type:": "<class 'function'>",
|
| 74 |
+
":serialized:": "gAWVhwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVS9ob21lL21heGltaWxpYW4vLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/H9Xy6xOIRIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
| 75 |
+
},
|
| 76 |
+
"tensorboard_log": "runs/seals/Swimmer-v0__ppo__9__1658503223/seals-Swimmer-v0",
|
| 77 |
+
"lr_schedule": {
|
| 78 |
+
":type:": "<class 'function'>",
|
| 79 |
+
":serialized:": "gAWVhwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVS9ob21lL21heGltaWxpYW4vLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/H9Xy6xOIRIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
| 80 |
+
},
|
| 81 |
+
"_last_obs": null,
|
| 82 |
+
"_last_episode_starts": {
|
| 83 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 84 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
| 85 |
+
},
|
| 86 |
+
"_last_original_obs": {
|
| 87 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 88 |
+
":serialized:": "gAWVxQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZQAAAAAAAAAKgNxuOOlIa/WKSZ6peFpT/Y1R+KPhuSP1S6YsIfEKo/qokcJXwstz/ordGVTjGJvw58+bg8ErG/gLfoemkWgj8gPmAejk6Qv0CbIPSxZ4I/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwqGlIwBQ5R0lFKULg=="
|
| 89 |
+
},
|
| 90 |
+
"_episode_num": 0,
|
| 91 |
+
"use_sde": false,
|
| 92 |
+
"sde_sample_freq": -1,
|
| 93 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
| 94 |
+
"ep_info_buffer": {
|
| 95 |
+
":type:": "<class 'collections.deque'>",
|
| 96 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwJfCg6addkCUhpRSlIwBbJRN6AOMAXSUR0DIH9KSNfgKdX2UKGgGaAloD0MIiSmRRC/GdkCUhpRSlGgVTegDaBZHQMggNo065oZ1fZQoaAZoCWgPQwiF7pI465F2QJSGlFKUaBVN6ANoFkdAyCyKWN3np3V9lChoBmgJaA9DCAWnPpB8knZAlIaUUpRoFU3oA2gWR0DILVHcxj8UdX2UKGgGaAloD0MIMzUJ3lCUdkCUhpRSlGgVTegDaBZHQMg31zW5H3F1fZQoaAZoCWgPQwgjLZW347p2QJSGlFKUaBVN6ANoFkdAyDilBLPD53V9lChoBmgJaA9DCHC1TlyOoXZAlIaUUpRoFU3oA2gWR0DIRFYtpVS5dX2UKGgGaAloD0MI1As+zQmedkCUhpRSlGgVTegDaBZHQMhFE8gZCOZ1fZQoaAZoCWgPQwgMj/0s1ot2QJSGlFKUaBVN6ANoFkdAyFFWRlHz6XV9lChoBmgJaA9DCNLgtrbwsnZAlIaUUpRoFU3oA2gWR0DIUi3Aj6eodX2UKGgGaAloD0MIRkHw+LbSdkCUhpRSlGgVTegDaBZHQMhdb6C+UQl1fZQoaAZoCWgPQwgqrFRQUbt2QJSGlFKUaBVN6ANoFkdAyF5Qs90RvnV9lChoBmgJaA9DCH4bYrzmn3ZAlIaUUpRoFU3oA2gWR0DIaqt3r2QGdX2UKGgGaAloD0MIlMDmHHy6dkCUhpRSlGgVTegDaBZHQMhrDOgxrSF1fZQoaAZoCWgPQwh3L/fJ0dB2QJSGlFKUaBVN6ANoFkdAyHMwrtE5Q3V9lChoBmgJaA9DCKxWJvxSknZAlIaUUpRoFU3oA2gWR0DIc5L5GjKxdX2UKGgGaAloD0MIS+mZXmLQdkCUhpRSlGgVTegDaBZHQMh/rulGgBd1fZQoaAZoCWgPQwi610l92ZN2QJSGlFKUaBVN6ANoFkdAyIBVU1hsqXV9lChoBmgJaA9DCIs1XOTeuHZAlIaUUpRoFU3oA2gWR0DIjNhavA45dX2UKGgGaAloD0MIMucZ+1LAdkCUhpRSlGgVTegDaBZHQMiNrspgCwN1fZQoaAZoCWgPQwjSjEXTGat2QJSGlFKUaBVN6ANoFkdAyJsI/5+H8HV9lChoBmgJaA9DCJesinBTunZAlIaUUpRoFU3oA2gWR0DIm9c96kZadX2UKGgGaAloD0MIlZ7pJcbBdkCUhpRSlGgVTegDaBZHQMionA+yJKt1fZQoaAZoCWgPQwh6G5sdqcN2QJSGlFKUaBVN6ANoFkdAyKj5EWqLj3V9lChoBmgJaA9DCMv1tpmKoHZAlIaUUpRoFU3oA2gWR0DIt3ZiZv1ldX2UKGgGaAloD0MINlt5yb+tdkCUhpRSlGgVTegDaBZHQMi4UMi0OVh1fZQoaAZoCWgPQwjWGd8X15N2QJSGlFKUaBVN6ANoFkdAyMQ90CA+ZHV9lChoBmgJaA9DCBOCVfXylHZAlIaUUpRoFU3oA2gWR0DIxPdm8M/hdX2UKGgGaAloD0MIHzAPmTKadkCUhpRSlGgVTegDaBZHQMjPVUI9kjJ1fZQoaAZoCWgPQwhRiIBD6MF2QJSGlFKUaBVN6ANoFkdAyNAUtCiRGXV9lChoBmgJaA9DCLjqOlSTzHZAlIaUUpRoFU3oA2gWR0DI2OM9SuQqdX2UKGgGaAloD0MIprT+lsDrdkCUhpRSlGgVTegDaBZHQMjZQnFo+Oh1fZQoaAZoCWgPQwjYne488Yh2QJSGlFKUaBVN6ANoFkdAyOEaieumrXV9lChoBmgJaA9DCFqfckxW7nZAlIaUUpRoFU3oA2gWR0DI4XjtRekYdX2UKGgGaAloD0MItD7lmCyXdkCUhpRSlGgVTegDaBZHQMjqRU2LpA51fZQoaAZoCWgPQwiUS+MXHup2QJSGlFKUaBVN6ANoFkdAyOqmktVaOnV9lChoBmgJaA9DCNUkeEOanHZAlIaUUpRoFU3oA2gWR0DI8vlLxqfwdX2UKGgGaAloD0MIfAvrxnsPd0CUhpRSlGgVTegDaBZHQMjzWGkep4t1fZQoaAZoCWgPQwihFK3ci9t2QJSGlFKUaBVN6ANoFkdAyPO3aB7NS3V9lChoBmgJaA9DCP0yGCNS/3ZAlIaUUpRoFU3oA2gWR0DI/vbl1bJPdX2UKGgGaAloD0MIWaKzzGLYdkCUhpRSlGgVTegDaBZHQMj/V4Bmwq11fZQoaAZoCWgPQwjp8BDGT892QJSGlFKUaBVN6ANoFkdAyQomHP/rB3V9lChoBmgJaA9DCCkJibRN7nZAlIaUUpRoFU3oA2gWR0DJCoMtK7I1dX2UKGgGaAloD0MIZAeVuI7mdkCUhpRSlGgVTegDaBZHQMkSvJK8L8d1fZQoaAZoCWgPQwiNs+kI4Pl2QJSGlFKUaBVN6ANoFkdAyRMcrvLHMnV9lChoBmgJaA9DCED8/PdgA3dAlIaUUpRoFU3oA2gWR0DJGt2qkuYhdX2UKGgGaAloD0MIrn/XZ47ndkCUhpRSlGgVTegDaBZHQMkbOt3np0R1fZQoaAZoCWgPQwhXIeUnVdZ2QJSGlFKUaBVN6ANoFkdAySXBW/ag3HV9lChoBmgJaA9DCDNwQEtX53ZAlIaUUpRoFU3oA2gWR0DJJh30I1LrdX2UKGgGaAloD0MIa5+Ox4zhdkCUhpRSlGgVTegDaBZHQMkxJqKP4mF1fZQoaAZoCWgPQwh9rrZiv+t2QJSGlFKUaBVN6ANoFkdAyTHx4TK1X3V9lChoBmgJaA9DCF3BNuIJ8XZAlIaUUpRoFU3oA2gWR0DJPvynm7rcdX2UKGgGaAloD0MI0bLuHwundkCUhpRSlGgVTegDaBZHQMk/xTIvJzV1fZQoaAZoCWgPQwjCFVCoJ/x2QJSGlFKUaBVN6ANoFkdAyUyoT8HfM3V9lChoBmgJaA9DCOfhBKaToXZAlIaUUpRoFU3oA2gWR0DJTW5sO5J9dX2UKGgGaAloD0MIOugSDv0Fd0CUhpRSlGgVTegDaBZHQMlYF84xUNt1fZQoaAZoCWgPQwiEYcCS6wR3QJSGlFKUaBVN6ANoFkdAyViVVxS5y3V9lChoBmgJaA9DCB9Hc2Tl/XZAlIaUUpRoFU3oA2gWR0DJYnl8PWhAdX2UKGgGaAloD0MIopi8ASbmdkCUhpRSlGgVTegDaBZHQMli1akyk9F1fZQoaAZoCWgPQwjGpwAYz9d2QJSGlFKUaBVN6ANoFkdAyWqPjmSyMXV9lChoBmgJaA9DCLaA0Hq4DXdAlIaUUpRoFU3oA2gWR0DJau/vphWpdX2UKGgGaAloD0MIFhQGZVrPdkCUhpRSlGgVTegDaBZHQMlzr9g4Otp1fZQoaAZoCWgPQwg1RuuoqnN2QJSGlFKUaBVN6ANoFkdAyXQPZnL7oHV9lChoBmgJaA9DCNJxNbJrrHZAlIaUUpRoFU3oA2gWR0DJfbX0yxiYdX2UKGgGaAloD0MIp6/na9ahdkCUhpRSlGgVTegDaBZHQMl+YVtXPqt1fZQoaAZoCWgPQwiaQXxgh5N2QJSGlFKUaBVN6ANoFkdAyYYOhakhzXV9lChoBmgJaA9DCPdZZaa0unZAlIaUUpRoFU3oA2gWR0DJhmyBNEgGdX2UKGgGaAloD0MIhxiveVV0dkCUhpRSlGgVTegDaBZHQMmRU75VOsV1fZQoaAZoCWgPQwiDMSJRqNF2QJSGlFKUaBVN6ANoFkdAyZIIw+MZP3V9lChoBmgJaA9DCMR7DixH+HZAlIaUUpRoFU3oA2gWR0DJnqmAuqWDdX2UKGgGaAloD0MI9gmgGBmUdkCUhpRSlGgVTegDaBZHQMmfbet8uz11fZQoaAZoCWgPQwiojH+fcc12QJSGlFKUaBVN6ANoFkdAyatjKBd2PnV9lChoBmgJaA9DCIv+0MwTmXZAlIaUUpRoFU3oA2gWR0DJq8A1aW5ZdX2UKGgGaAloD0MIY+yEl6DwdkCUhpRSlGgVTegDaBZHQMm0sNjTa0x1fZQoaAZoCWgPQwif46PFWfR2QJSGlFKUaBVN6ANoFkdAyba/Da4+bHV9lChoBmgJaA9DCAPso1NX+3ZAlIaUUpRoFU3oA2gWR0DJv99olD4QdX2UKGgGaAloD0MIuD1BYvvsdkCUhpRSlGgVTegDaBZHQMnAPI/A0sR1fZQoaAZoCWgPQwjeV+VCJfZ2QJSGlFKUaBVN6ANoFkdAyckG7dznzXV9lChoBmgJaA9DCL00RYCT5nZAlIaUUpRoFU3oA2gWR0DJyWThLoOhdX2UKGgGaAloD0MI93MK8jOydkCUhpRSlGgVTegDaBZHQMnR48POIIp1fZQoaAZoCWgPQwgz4gLQKPt2QJSGlFKUaBVN6ANoFkdAydKifXf643V9lChoBmgJaA9DCBHg9C7erXZAlIaUUpRoFU3oA2gWR0DJ00juSfUXdX2UKGgGaAloD0MIdqp8z4jIdkCUhpRSlGgVTegDaBZHQMna2pwbVBl1fZQoaAZoCWgPQwgQyvs4GuJ2QJSGlFKUaBVN6ANoFkdAyds24CIUJ3V9lChoBmgJaA9DCDXUKCQZ83ZAlIaUUpRoFU3oA2gWR0DJ4rCUPhAGdX2UKGgGaAloD0MIZttpa4TxdkCUhpRSlGgVTegDaBZHQMnjDC8vmHR1fZQoaAZoCWgPQwjWc9L7hvZ2QJSGlFKUaBVN6ANoFkdAyeqP/cWTHXV9lChoBmgJaA9DCK7VHvZCy3ZAlIaUUpRoFU3oA2gWR0DJ6uv5eqrBdX2UKGgGaAloD0MICcGqenmYdkCUhpRSlGgVTegDaBZHQMnzoH5rP+p1fZQoaAZoCWgPQwj44/bLJ9p2QJSGlFKUaBVN6ANoFkdAyfReN2ki2XV9lChoBmgJaA9DCGKdKt8zxHZAlIaUUpRoFU3oA2gWR0DJ/OY5vLowdX2UKGgGaAloD0MI6Iam7HSsdkCUhpRSlGgVTegDaBZHQMn9Q6jnFHd1fZQoaAZoCWgPQwhGtYgoZvx2QJSGlFKUaBVN6ANoFkdAyga1M8HObHV9lChoBmgJaA9DCBKhEWwcFHdAlIaUUpRoFU3oA2gWR0DKBxMgQpWndX2UKGgGaAloD0MI0H05s93edkCUhpRSlGgVTegDaBZHQMoOrsOf/WF1fZQoaAZoCWgPQwieXinLkO92QJSGlFKUaBVN6ANoFkdAyg8LMotth3V9lChoBmgJaA9DCOF5qdhYCndAlIaUUpRoFU3oA2gWR0DKFrxY5ksjdX2UKGgGaAloD0MIRdREn4+2dkCUhpRSlGgVTegDaBZHQMoXGZpBX0Z1fZQoaAZoCWgPQwhfeZCeovd2QJSGlFKUaBVN6ANoFkdAyh6k1tO2zHV9lChoBmgJaA9DCHGt9rAXGXdAlIaUUpRoFU3oA2gWR0DKIPQMUh3adWUu"
|
| 97 |
+
},
|
| 98 |
+
"ep_success_buffer": {
|
| 99 |
+
":type:": "<class 'collections.deque'>",
|
| 100 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 101 |
+
},
|
| 102 |
+
"_n_updates": 9780,
|
| 103 |
+
"n_steps": 2048,
|
| 104 |
+
"gamma": 0.999,
|
| 105 |
+
"gae_lambda": 0.95,
|
| 106 |
+
"ent_coef": 5.167107294612664e-08,
|
| 107 |
+
"vf_coef": 0.6162112311062333,
|
| 108 |
+
"max_grad_norm": 2,
|
| 109 |
+
"batch_size": 8,
|
| 110 |
+
"n_epochs": 20,
|
| 111 |
+
"clip_range": {
|
| 112 |
+
":type:": "<class 'function'>",
|
| 113 |
+
":serialized:": "gAWVhwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVS9ob21lL21heGltaWxpYW4vLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
| 114 |
+
},
|
| 115 |
+
"clip_range_vf": null,
|
| 116 |
+
"normalize_advantage": true,
|
| 117 |
+
"target_kl": null
|
| 118 |
+
}
|
ppo-seals-Swimmer-v0/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ede79600cb9ec742bebbffb56990305e0eabcfcab34be9664199097219365907
|
| 3 |
+
size 89264
|
ppo-seals-Swimmer-v0/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d10d0a9876274b21b07fb180e71097dbd3c4b36ee0bfa70dce8a0d55f5eb162f
|
| 3 |
+
size 43902
|
ppo-seals-Swimmer-v0/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
| 3 |
+
size 431
|
ppo-seals-Swimmer-v0/system_info.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
OS: Linux-5.4.0-122-generic-x86_64-with-glibc2.29 #138-Ubuntu SMP Wed Jun 22 15:00:31 UTC 2022
|
| 2 |
+
Python: 3.8.10
|
| 3 |
+
Stable-Baselines3: 1.6.0
|
| 4 |
+
PyTorch: 1.11.0+cu102
|
| 5 |
+
GPU Enabled: False
|
| 6 |
+
Numpy: 1.22.3
|
| 7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0a9c9f0a679f0427696f0a6e1af3ee15a2e1d957f943e57a2f0547eb8417ce3c
|
| 3 |
+
size 1403007
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": 367.8820217, "std_reward": 1.4284948440936103, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-25T13:03:34.786779"}
|
train_eval_metrics.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e1c71d991ae619fb693f64faf20e0d3d7585bff382157ed4fc992e824bf44450
|
| 3 |
+
size 33502
|
vec_normalize.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:303c1dc25c22f3721a3946ee16ca84d34068cfc5193616634dd8ae1434b01e22
|
| 3 |
+
size 4394
|