Update pintar.py
Browse files
pintar.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
import os
|
| 2 |
import numpy as np
|
| 3 |
from skimage import color, io
|
|
|
|
| 4 |
import torch
|
| 5 |
import torch.nn.functional as F
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
from models import ColorEncoder, ColorUNet
|
| 8 |
from extractor.manga_panel_extractor import PanelExtractor
|
|
@@ -20,7 +22,7 @@ def Lab2RGB_out(img_lab):
|
|
| 20 |
img_ab = img_lab[:,1:,:,:]
|
| 21 |
img_l = img_l + 50
|
| 22 |
pred_lab = torch.cat((img_l, img_ab), 1)[0,...].numpy()
|
| 23 |
-
out = (np.clip(color.lab2rgb(pred_lab.transpose(1, 2, 0)), 0, 1)
|
| 24 |
return out
|
| 25 |
|
| 26 |
def RGB2Lab(inputs):
|
|
@@ -49,19 +51,20 @@ def preprocessing(inputs):
|
|
| 49 |
return img.unsqueeze(0), img_lab.unsqueeze(0)
|
| 50 |
|
| 51 |
if __name__ == "__main__":
|
| 52 |
-
parser = argparse.ArgumentParser(description="Colorize manga images.")
|
| 53 |
-
parser.add_argument("-i", "--
|
| 54 |
-
parser.add_argument("-r", "--
|
| 55 |
-
parser.add_argument("-
|
| 56 |
-
parser.add_argument("-
|
| 57 |
-
|
| 58 |
args = parser.parse_args()
|
| 59 |
|
| 60 |
device = "cuda"
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
| 65 |
imgsize = 256
|
| 66 |
|
| 67 |
ckpt = torch.load(ckpt_path, map_location=lambda storage, loc: storage)
|
|
@@ -74,32 +77,39 @@ if __name__ == "__main__":
|
|
| 74 |
colorUNet.load_state_dict(ckpt["colorUNet"])
|
| 75 |
colorUNet.eval()
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
|
| 92 |
-
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
| 104 |
|
| 105 |
-
print(f'Colored
|
|
|
|
| 1 |
import os
|
| 2 |
import numpy as np
|
| 3 |
from skimage import color, io
|
| 4 |
+
|
| 5 |
import torch
|
| 6 |
import torch.nn.functional as F
|
| 7 |
+
|
| 8 |
from PIL import Image
|
| 9 |
from models import ColorEncoder, ColorUNet
|
| 10 |
from extractor.manga_panel_extractor import PanelExtractor
|
|
|
|
| 22 |
img_ab = img_lab[:,1:,:,:]
|
| 23 |
img_l = img_l + 50
|
| 24 |
pred_lab = torch.cat((img_l, img_ab), 1)[0,...].numpy()
|
| 25 |
+
out = (np.clip(color.lab2rgb(pred_lab.transpose(1, 2, 0)), 0, 1)* 255).astype("uint8")
|
| 26 |
return out
|
| 27 |
|
| 28 |
def RGB2Lab(inputs):
|
|
|
|
| 51 |
return img.unsqueeze(0), img_lab.unsqueeze(0)
|
| 52 |
|
| 53 |
if __name__ == "__main__":
|
| 54 |
+
parser = argparse.ArgumentParser(description="Colorize manga images based on a single reference image.")
|
| 55 |
+
parser.add_argument("-i", "--input_folder", type=str, required=True, help="Path to the input folder containing images to be colorized.")
|
| 56 |
+
parser.add_argument("-r", "--reference_image", type=str, required=True, help="Path to the reference image.")
|
| 57 |
+
parser.add_argument("-c", "--ckpt", type=str, required=True, help="Path to the model checkpoint file.")
|
| 58 |
+
parser.add_argument("-o", "--output_folder", type=str, required=True, help="Path to the output folder to save colorized images.")
|
|
|
|
| 59 |
args = parser.parse_args()
|
| 60 |
|
| 61 |
device = "cuda"
|
| 62 |
+
|
| 63 |
+
input_folder = args.input_folder
|
| 64 |
+
reference_image_path = args.reference_image
|
| 65 |
+
ckpt_path = args.ckpt
|
| 66 |
+
output_folder = args.output_folder
|
| 67 |
+
|
| 68 |
imgsize = 256
|
| 69 |
|
| 70 |
ckpt = torch.load(ckpt_path, map_location=lambda storage, loc: storage)
|
|
|
|
| 77 |
colorUNet.load_state_dict(ckpt["colorUNet"])
|
| 78 |
colorUNet.eval()
|
| 79 |
|
| 80 |
+
# Recorre recursivamente el directorio de entrada y procesa cada imagen encontrada
|
| 81 |
+
for root, dirs, files in os.walk(input_folder):
|
| 82 |
+
for file in files:
|
| 83 |
+
if file.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp')):
|
| 84 |
+
input_image_path = os.path.join(root, file)
|
| 85 |
+
img_name = os.path.splitext(os.path.basename(input_image_path))[0]
|
| 86 |
+
|
| 87 |
+
img1 = Image.open(input_image_path).convert("RGB")
|
| 88 |
+
width, height = img1.size
|
| 89 |
+
img1, img1_lab = preprocessing(img1)
|
| 90 |
+
img2, img2_lab = preprocessing(Image.open(reference_image_path).convert("RGB"))
|
| 91 |
|
| 92 |
+
img1 = img1.to(device)
|
| 93 |
+
img1_lab = img1_lab.to(device)
|
| 94 |
+
img2 = img2.to(device)
|
| 95 |
+
img2_lab = img2_lab.to(device)
|
| 96 |
|
| 97 |
+
with torch.no_grad():
|
| 98 |
+
img2_resize = F.interpolate(img2 / 255., size=(imgsize, imgsize), mode='bilinear', recompute_scale_factor=False, align_corners=False)
|
| 99 |
+
img1_L_resize = F.interpolate(img1_lab[:,:1,:,:] / 50., size=(imgsize, imgsize), mode='bilinear', recompute_scale_factor=False, align_corners=False)
|
| 100 |
|
| 101 |
+
color_vector = colorEncoder(img2_resize)
|
| 102 |
|
| 103 |
+
fake_ab = colorUNet((img1_L_resize, color_vector))
|
| 104 |
+
fake_ab = F.interpolate(fake_ab*110, size=(height, width), mode='bilinear', recompute_scale_factor=False, align_corners=False)
|
| 105 |
|
| 106 |
+
fake_img = torch.cat((img1_lab[:,:1,:,:], fake_ab), 1)
|
| 107 |
+
fake_img = Lab2RGB_out(fake_img)
|
| 108 |
|
| 109 |
+
out_subfolder = os.path.join(output_folder, os.path.relpath(root, input_folder))
|
| 110 |
+
out_folder = os.path.join(out_subfolder, 'color')
|
| 111 |
+
mkdirs(out_folder)
|
| 112 |
+
out_img_path = os.path.join(out_folder, f'{img_name}_color.png')
|
| 113 |
+
io.imsave(out_img_path, fake_img)
|
| 114 |
|
| 115 |
+
print(f'Colored images have been saved to {output_folder}.')
|