Added ML model
Browse files- SA_ML.ipynb +991 -0
SA_ML.ipynb
ADDED
|
@@ -0,0 +1,991 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 2,
|
| 6 |
+
"id": "0f9f666f",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification, Trainer, TrainingArguments\n",
|
| 11 |
+
"from datasets import load_dataset\n",
|
| 12 |
+
"import torch\n",
|
| 13 |
+
"from sklearn.model_selection import train_test_split\n",
|
| 14 |
+
"from sklearn.metrics import accuracy_score, precision_recall_fscore_support"
|
| 15 |
+
]
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"cell_type": "code",
|
| 19 |
+
"execution_count": 3,
|
| 20 |
+
"id": "2f35116b",
|
| 21 |
+
"metadata": {},
|
| 22 |
+
"outputs": [
|
| 23 |
+
{
|
| 24 |
+
"data": {
|
| 25 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 26 |
+
"model_id": "a3bdffef37cd4d5aaa090640d5384825",
|
| 27 |
+
"version_major": 2,
|
| 28 |
+
"version_minor": 0
|
| 29 |
+
},
|
| 30 |
+
"text/plain": [
|
| 31 |
+
"Map: 0%| | 0/25000 [00:00<?, ? examples/s]"
|
| 32 |
+
]
|
| 33 |
+
},
|
| 34 |
+
"metadata": {},
|
| 35 |
+
"output_type": "display_data"
|
| 36 |
+
}
|
| 37 |
+
],
|
| 38 |
+
"source": [
|
| 39 |
+
"# Load the IMDb dataset\n",
|
| 40 |
+
"dataset = load_dataset(\"imdb\")\n",
|
| 41 |
+
"\n",
|
| 42 |
+
"# Tokenizer function\n",
|
| 43 |
+
"tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')\n",
|
| 44 |
+
"\n",
|
| 45 |
+
"def tokenize_function(examples):\n",
|
| 46 |
+
" return tokenizer(examples[\"text\"], padding=\"max_length\", truncation=True, max_length=512)\n",
|
| 47 |
+
"\n",
|
| 48 |
+
"# Tokenize the dataset\n",
|
| 49 |
+
"tokenized_datasets = dataset.map(tokenize_function, batched=True)\n",
|
| 50 |
+
"\n",
|
| 51 |
+
"# Format for PyTorch\n",
|
| 52 |
+
"train_dataset = tokenized_datasets[\"train\"].shuffle(seed=42).select(range(10000)) # Subset for training\n",
|
| 53 |
+
"test_dataset = tokenized_datasets[\"test\"].shuffle(seed=42).select(range(1000)) # Subset for testing\n",
|
| 54 |
+
"\n",
|
| 55 |
+
"train_dataset.set_format('torch', columns=['input_ids', 'attention_mask', 'label'])\n",
|
| 56 |
+
"test_dataset.set_format('torch', columns=['input_ids', 'attention_mask', 'label'])\n"
|
| 57 |
+
]
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"cell_type": "code",
|
| 61 |
+
"execution_count": 4,
|
| 62 |
+
"id": "93d6a61b",
|
| 63 |
+
"metadata": {},
|
| 64 |
+
"outputs": [
|
| 65 |
+
{
|
| 66 |
+
"name": "stderr",
|
| 67 |
+
"output_type": "stream",
|
| 68 |
+
"text": [
|
| 69 |
+
"Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_layer_norm.bias', 'vocab_transform.bias', 'vocab_projector.bias', 'vocab_layer_norm.weight', 'vocab_projector.weight', 'vocab_transform.weight']\n",
|
| 70 |
+
"- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 71 |
+
"- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
| 72 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.weight', 'pre_classifier.bias', 'classifier.bias', 'pre_classifier.weight']\n",
|
| 73 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 74 |
+
]
|
| 75 |
+
}
|
| 76 |
+
],
|
| 77 |
+
"source": [
|
| 78 |
+
"model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased', num_labels=2)\n"
|
| 79 |
+
]
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"cell_type": "code",
|
| 83 |
+
"execution_count": 5,
|
| 84 |
+
"id": "58400de8",
|
| 85 |
+
"metadata": {},
|
| 86 |
+
"outputs": [],
|
| 87 |
+
"source": [
|
| 88 |
+
"training_args = TrainingArguments(\n",
|
| 89 |
+
" output_dir='./results',\n",
|
| 90 |
+
" num_train_epochs=3,\n",
|
| 91 |
+
" per_device_train_batch_size=16,\n",
|
| 92 |
+
" per_device_eval_batch_size=64,\n",
|
| 93 |
+
" warmup_steps=500,\n",
|
| 94 |
+
" weight_decay=0.01,\n",
|
| 95 |
+
" logging_dir='./logs',\n",
|
| 96 |
+
" evaluation_strategy='steps', \n",
|
| 97 |
+
" save_strategy='steps', \n",
|
| 98 |
+
" load_best_model_at_end=True,\n",
|
| 99 |
+
" logging_steps=50, \n",
|
| 100 |
+
" save_steps=50 \n",
|
| 101 |
+
")\n"
|
| 102 |
+
]
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
"cell_type": "code",
|
| 106 |
+
"execution_count": 6,
|
| 107 |
+
"id": "3389ad91",
|
| 108 |
+
"metadata": {},
|
| 109 |
+
"outputs": [],
|
| 110 |
+
"source": [
|
| 111 |
+
"def compute_metrics(pred):\n",
|
| 112 |
+
" labels = pred.label_ids\n",
|
| 113 |
+
" preds = pred.predictions.argmax(-1)\n",
|
| 114 |
+
" precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='binary')\n",
|
| 115 |
+
" acc = accuracy_score(labels, preds)\n",
|
| 116 |
+
" return {\n",
|
| 117 |
+
" 'accuracy': acc,\n",
|
| 118 |
+
" 'f1': f1,\n",
|
| 119 |
+
" 'precision': precision,\n",
|
| 120 |
+
" 'recall': recall\n",
|
| 121 |
+
" }\n"
|
| 122 |
+
]
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"cell_type": "code",
|
| 126 |
+
"execution_count": 7,
|
| 127 |
+
"id": "0d68d5ea",
|
| 128 |
+
"metadata": {},
|
| 129 |
+
"outputs": [
|
| 130 |
+
{
|
| 131 |
+
"name": "stderr",
|
| 132 |
+
"output_type": "stream",
|
| 133 |
+
"text": [
|
| 134 |
+
"The following columns in the training set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 135 |
+
"C:\\Users\\saime\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\transformers\\optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
| 136 |
+
" warnings.warn(\n",
|
| 137 |
+
"***** Running training *****\n",
|
| 138 |
+
" Num examples = 10000\n",
|
| 139 |
+
" Num Epochs = 3\n",
|
| 140 |
+
" Instantaneous batch size per device = 16\n",
|
| 141 |
+
" Total train batch size (w. parallel, distributed & accumulation) = 16\n",
|
| 142 |
+
" Gradient Accumulation steps = 1\n",
|
| 143 |
+
" Total optimization steps = 1875\n",
|
| 144 |
+
" Number of trainable parameters = 66955010\n"
|
| 145 |
+
]
|
| 146 |
+
},
|
| 147 |
+
{
|
| 148 |
+
"data": {
|
| 149 |
+
"text/html": [
|
| 150 |
+
"\n",
|
| 151 |
+
" <div>\n",
|
| 152 |
+
" \n",
|
| 153 |
+
" <progress value='1875' max='1875' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 154 |
+
" [1875/1875 14:06:36, Epoch 3/3]\n",
|
| 155 |
+
" </div>\n",
|
| 156 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
| 157 |
+
" <thead>\n",
|
| 158 |
+
" <tr style=\"text-align: left;\">\n",
|
| 159 |
+
" <th>Step</th>\n",
|
| 160 |
+
" <th>Training Loss</th>\n",
|
| 161 |
+
" <th>Validation Loss</th>\n",
|
| 162 |
+
" <th>Accuracy</th>\n",
|
| 163 |
+
" <th>F1</th>\n",
|
| 164 |
+
" <th>Precision</th>\n",
|
| 165 |
+
" <th>Recall</th>\n",
|
| 166 |
+
" </tr>\n",
|
| 167 |
+
" </thead>\n",
|
| 168 |
+
" <tbody>\n",
|
| 169 |
+
" <tr>\n",
|
| 170 |
+
" <td>50</td>\n",
|
| 171 |
+
" <td>0.688800</td>\n",
|
| 172 |
+
" <td>0.680938</td>\n",
|
| 173 |
+
" <td>0.661000</td>\n",
|
| 174 |
+
" <td>0.543742</td>\n",
|
| 175 |
+
" <td>0.792157</td>\n",
|
| 176 |
+
" <td>0.413934</td>\n",
|
| 177 |
+
" </tr>\n",
|
| 178 |
+
" <tr>\n",
|
| 179 |
+
" <td>100</td>\n",
|
| 180 |
+
" <td>0.629000</td>\n",
|
| 181 |
+
" <td>0.465259</td>\n",
|
| 182 |
+
" <td>0.841000</td>\n",
|
| 183 |
+
" <td>0.819113</td>\n",
|
| 184 |
+
" <td>0.920716</td>\n",
|
| 185 |
+
" <td>0.737705</td>\n",
|
| 186 |
+
" </tr>\n",
|
| 187 |
+
" <tr>\n",
|
| 188 |
+
" <td>150</td>\n",
|
| 189 |
+
" <td>0.371200</td>\n",
|
| 190 |
+
" <td>0.323407</td>\n",
|
| 191 |
+
" <td>0.868000</td>\n",
|
| 192 |
+
" <td>0.867470</td>\n",
|
| 193 |
+
" <td>0.850394</td>\n",
|
| 194 |
+
" <td>0.885246</td>\n",
|
| 195 |
+
" </tr>\n",
|
| 196 |
+
" <tr>\n",
|
| 197 |
+
" <td>200</td>\n",
|
| 198 |
+
" <td>0.336300</td>\n",
|
| 199 |
+
" <td>0.374150</td>\n",
|
| 200 |
+
" <td>0.857000</td>\n",
|
| 201 |
+
" <td>0.836197</td>\n",
|
| 202 |
+
" <td>0.948052</td>\n",
|
| 203 |
+
" <td>0.747951</td>\n",
|
| 204 |
+
" </tr>\n",
|
| 205 |
+
" <tr>\n",
|
| 206 |
+
" <td>250</td>\n",
|
| 207 |
+
" <td>0.336700</td>\n",
|
| 208 |
+
" <td>0.312763</td>\n",
|
| 209 |
+
" <td>0.865000</td>\n",
|
| 210 |
+
" <td>0.871795</td>\n",
|
| 211 |
+
" <td>0.812389</td>\n",
|
| 212 |
+
" <td>0.940574</td>\n",
|
| 213 |
+
" </tr>\n",
|
| 214 |
+
" <tr>\n",
|
| 215 |
+
" <td>300</td>\n",
|
| 216 |
+
" <td>0.311800</td>\n",
|
| 217 |
+
" <td>0.296506</td>\n",
|
| 218 |
+
" <td>0.889000</td>\n",
|
| 219 |
+
" <td>0.882540</td>\n",
|
| 220 |
+
" <td>0.912473</td>\n",
|
| 221 |
+
" <td>0.854508</td>\n",
|
| 222 |
+
" </tr>\n",
|
| 223 |
+
" <tr>\n",
|
| 224 |
+
" <td>350</td>\n",
|
| 225 |
+
" <td>0.309800</td>\n",
|
| 226 |
+
" <td>0.286319</td>\n",
|
| 227 |
+
" <td>0.886000</td>\n",
|
| 228 |
+
" <td>0.886228</td>\n",
|
| 229 |
+
" <td>0.863813</td>\n",
|
| 230 |
+
" <td>0.909836</td>\n",
|
| 231 |
+
" </tr>\n",
|
| 232 |
+
" <tr>\n",
|
| 233 |
+
" <td>400</td>\n",
|
| 234 |
+
" <td>0.272300</td>\n",
|
| 235 |
+
" <td>0.292773</td>\n",
|
| 236 |
+
" <td>0.890000</td>\n",
|
| 237 |
+
" <td>0.884696</td>\n",
|
| 238 |
+
" <td>0.905579</td>\n",
|
| 239 |
+
" <td>0.864754</td>\n",
|
| 240 |
+
" </tr>\n",
|
| 241 |
+
" <tr>\n",
|
| 242 |
+
" <td>450</td>\n",
|
| 243 |
+
" <td>0.315100</td>\n",
|
| 244 |
+
" <td>0.419856</td>\n",
|
| 245 |
+
" <td>0.854000</td>\n",
|
| 246 |
+
" <td>0.831019</td>\n",
|
| 247 |
+
" <td>0.954787</td>\n",
|
| 248 |
+
" <td>0.735656</td>\n",
|
| 249 |
+
" </tr>\n",
|
| 250 |
+
" <tr>\n",
|
| 251 |
+
" <td>500</td>\n",
|
| 252 |
+
" <td>0.350900</td>\n",
|
| 253 |
+
" <td>0.298303</td>\n",
|
| 254 |
+
" <td>0.862000</td>\n",
|
| 255 |
+
" <td>0.869565</td>\n",
|
| 256 |
+
" <td>0.807018</td>\n",
|
| 257 |
+
" <td>0.942623</td>\n",
|
| 258 |
+
" </tr>\n",
|
| 259 |
+
" <tr>\n",
|
| 260 |
+
" <td>550</td>\n",
|
| 261 |
+
" <td>0.355200</td>\n",
|
| 262 |
+
" <td>0.333094</td>\n",
|
| 263 |
+
" <td>0.870000</td>\n",
|
| 264 |
+
" <td>0.852608</td>\n",
|
| 265 |
+
" <td>0.954315</td>\n",
|
| 266 |
+
" <td>0.770492</td>\n",
|
| 267 |
+
" </tr>\n",
|
| 268 |
+
" <tr>\n",
|
| 269 |
+
" <td>600</td>\n",
|
| 270 |
+
" <td>0.279900</td>\n",
|
| 271 |
+
" <td>0.282081</td>\n",
|
| 272 |
+
" <td>0.887000</td>\n",
|
| 273 |
+
" <td>0.879915</td>\n",
|
| 274 |
+
" <td>0.913907</td>\n",
|
| 275 |
+
" <td>0.848361</td>\n",
|
| 276 |
+
" </tr>\n",
|
| 277 |
+
" <tr>\n",
|
| 278 |
+
" <td>650</td>\n",
|
| 279 |
+
" <td>0.279200</td>\n",
|
| 280 |
+
" <td>0.288312</td>\n",
|
| 281 |
+
" <td>0.892000</td>\n",
|
| 282 |
+
" <td>0.883621</td>\n",
|
| 283 |
+
" <td>0.931818</td>\n",
|
| 284 |
+
" <td>0.840164</td>\n",
|
| 285 |
+
" </tr>\n",
|
| 286 |
+
" <tr>\n",
|
| 287 |
+
" <td>700</td>\n",
|
| 288 |
+
" <td>0.198600</td>\n",
|
| 289 |
+
" <td>0.338301</td>\n",
|
| 290 |
+
" <td>0.876000</td>\n",
|
| 291 |
+
" <td>0.863736</td>\n",
|
| 292 |
+
" <td>0.931280</td>\n",
|
| 293 |
+
" <td>0.805328</td>\n",
|
| 294 |
+
" </tr>\n",
|
| 295 |
+
" <tr>\n",
|
| 296 |
+
" <td>750</td>\n",
|
| 297 |
+
" <td>0.195600</td>\n",
|
| 298 |
+
" <td>0.292916</td>\n",
|
| 299 |
+
" <td>0.897000</td>\n",
|
| 300 |
+
" <td>0.897512</td>\n",
|
| 301 |
+
" <td>0.872340</td>\n",
|
| 302 |
+
" <td>0.924180</td>\n",
|
| 303 |
+
" </tr>\n",
|
| 304 |
+
" <tr>\n",
|
| 305 |
+
" <td>800</td>\n",
|
| 306 |
+
" <td>0.243400</td>\n",
|
| 307 |
+
" <td>0.289307</td>\n",
|
| 308 |
+
" <td>0.899000</td>\n",
|
| 309 |
+
" <td>0.900883</td>\n",
|
| 310 |
+
" <td>0.864407</td>\n",
|
| 311 |
+
" <td>0.940574</td>\n",
|
| 312 |
+
" </tr>\n",
|
| 313 |
+
" <tr>\n",
|
| 314 |
+
" <td>850</td>\n",
|
| 315 |
+
" <td>0.193000</td>\n",
|
| 316 |
+
" <td>0.304464</td>\n",
|
| 317 |
+
" <td>0.897000</td>\n",
|
| 318 |
+
" <td>0.894359</td>\n",
|
| 319 |
+
" <td>0.895277</td>\n",
|
| 320 |
+
" <td>0.893443</td>\n",
|
| 321 |
+
" </tr>\n",
|
| 322 |
+
" <tr>\n",
|
| 323 |
+
" <td>900</td>\n",
|
| 324 |
+
" <td>0.214500</td>\n",
|
| 325 |
+
" <td>0.257609</td>\n",
|
| 326 |
+
" <td>0.899000</td>\n",
|
| 327 |
+
" <td>0.895337</td>\n",
|
| 328 |
+
" <td>0.905660</td>\n",
|
| 329 |
+
" <td>0.885246</td>\n",
|
| 330 |
+
" </tr>\n",
|
| 331 |
+
" <tr>\n",
|
| 332 |
+
" <td>950</td>\n",
|
| 333 |
+
" <td>0.228000</td>\n",
|
| 334 |
+
" <td>0.279465</td>\n",
|
| 335 |
+
" <td>0.887000</td>\n",
|
| 336 |
+
" <td>0.891659</td>\n",
|
| 337 |
+
" <td>0.837838</td>\n",
|
| 338 |
+
" <td>0.952869</td>\n",
|
| 339 |
+
" </tr>\n",
|
| 340 |
+
" <tr>\n",
|
| 341 |
+
" <td>1000</td>\n",
|
| 342 |
+
" <td>0.208100</td>\n",
|
| 343 |
+
" <td>0.230380</td>\n",
|
| 344 |
+
" <td>0.910000</td>\n",
|
| 345 |
+
" <td>0.908537</td>\n",
|
| 346 |
+
" <td>0.901210</td>\n",
|
| 347 |
+
" <td>0.915984</td>\n",
|
| 348 |
+
" </tr>\n",
|
| 349 |
+
" <tr>\n",
|
| 350 |
+
" <td>1050</td>\n",
|
| 351 |
+
" <td>0.200600</td>\n",
|
| 352 |
+
" <td>0.307765</td>\n",
|
| 353 |
+
" <td>0.901000</td>\n",
|
| 354 |
+
" <td>0.902077</td>\n",
|
| 355 |
+
" <td>0.871893</td>\n",
|
| 356 |
+
" <td>0.934426</td>\n",
|
| 357 |
+
" </tr>\n",
|
| 358 |
+
" <tr>\n",
|
| 359 |
+
" <td>1100</td>\n",
|
| 360 |
+
" <td>0.210600</td>\n",
|
| 361 |
+
" <td>0.278725</td>\n",
|
| 362 |
+
" <td>0.901000</td>\n",
|
| 363 |
+
" <td>0.901493</td>\n",
|
| 364 |
+
" <td>0.876209</td>\n",
|
| 365 |
+
" <td>0.928279</td>\n",
|
| 366 |
+
" </tr>\n",
|
| 367 |
+
" <tr>\n",
|
| 368 |
+
" <td>1150</td>\n",
|
| 369 |
+
" <td>0.208200</td>\n",
|
| 370 |
+
" <td>0.283095</td>\n",
|
| 371 |
+
" <td>0.912000</td>\n",
|
| 372 |
+
" <td>0.909836</td>\n",
|
| 373 |
+
" <td>0.909836</td>\n",
|
| 374 |
+
" <td>0.909836</td>\n",
|
| 375 |
+
" </tr>\n",
|
| 376 |
+
" <tr>\n",
|
| 377 |
+
" <td>1200</td>\n",
|
| 378 |
+
" <td>0.201000</td>\n",
|
| 379 |
+
" <td>0.256353</td>\n",
|
| 380 |
+
" <td>0.901000</td>\n",
|
| 381 |
+
" <td>0.895238</td>\n",
|
| 382 |
+
" <td>0.925602</td>\n",
|
| 383 |
+
" <td>0.866803</td>\n",
|
| 384 |
+
" </tr>\n",
|
| 385 |
+
" <tr>\n",
|
| 386 |
+
" <td>1250</td>\n",
|
| 387 |
+
" <td>0.186200</td>\n",
|
| 388 |
+
" <td>0.249205</td>\n",
|
| 389 |
+
" <td>0.909000</td>\n",
|
| 390 |
+
" <td>0.906282</td>\n",
|
| 391 |
+
" <td>0.910973</td>\n",
|
| 392 |
+
" <td>0.901639</td>\n",
|
| 393 |
+
" </tr>\n",
|
| 394 |
+
" <tr>\n",
|
| 395 |
+
" <td>1300</td>\n",
|
| 396 |
+
" <td>0.080400</td>\n",
|
| 397 |
+
" <td>0.367344</td>\n",
|
| 398 |
+
" <td>0.902000</td>\n",
|
| 399 |
+
" <td>0.900609</td>\n",
|
| 400 |
+
" <td>0.891566</td>\n",
|
| 401 |
+
" <td>0.909836</td>\n",
|
| 402 |
+
" </tr>\n",
|
| 403 |
+
" <tr>\n",
|
| 404 |
+
" <td>1350</td>\n",
|
| 405 |
+
" <td>0.152700</td>\n",
|
| 406 |
+
" <td>0.323376</td>\n",
|
| 407 |
+
" <td>0.905000</td>\n",
|
| 408 |
+
" <td>0.900315</td>\n",
|
| 409 |
+
" <td>0.922581</td>\n",
|
| 410 |
+
" <td>0.879098</td>\n",
|
| 411 |
+
" </tr>\n",
|
| 412 |
+
" <tr>\n",
|
| 413 |
+
" <td>1400</td>\n",
|
| 414 |
+
" <td>0.100400</td>\n",
|
| 415 |
+
" <td>0.416915</td>\n",
|
| 416 |
+
" <td>0.888000</td>\n",
|
| 417 |
+
" <td>0.891892</td>\n",
|
| 418 |
+
" <td>0.843066</td>\n",
|
| 419 |
+
" <td>0.946721</td>\n",
|
| 420 |
+
" </tr>\n",
|
| 421 |
+
" <tr>\n",
|
| 422 |
+
" <td>1450</td>\n",
|
| 423 |
+
" <td>0.108800</td>\n",
|
| 424 |
+
" <td>0.324885</td>\n",
|
| 425 |
+
" <td>0.908000</td>\n",
|
| 426 |
+
" <td>0.907258</td>\n",
|
| 427 |
+
" <td>0.892857</td>\n",
|
| 428 |
+
" <td>0.922131</td>\n",
|
| 429 |
+
" </tr>\n",
|
| 430 |
+
" <tr>\n",
|
| 431 |
+
" <td>1500</td>\n",
|
| 432 |
+
" <td>0.066700</td>\n",
|
| 433 |
+
" <td>0.378826</td>\n",
|
| 434 |
+
" <td>0.902000</td>\n",
|
| 435 |
+
" <td>0.901210</td>\n",
|
| 436 |
+
" <td>0.886905</td>\n",
|
| 437 |
+
" <td>0.915984</td>\n",
|
| 438 |
+
" </tr>\n",
|
| 439 |
+
" <tr>\n",
|
| 440 |
+
" <td>1550</td>\n",
|
| 441 |
+
" <td>0.078500</td>\n",
|
| 442 |
+
" <td>0.368980</td>\n",
|
| 443 |
+
" <td>0.906000</td>\n",
|
| 444 |
+
" <td>0.901674</td>\n",
|
| 445 |
+
" <td>0.920940</td>\n",
|
| 446 |
+
" <td>0.883197</td>\n",
|
| 447 |
+
" </tr>\n",
|
| 448 |
+
" <tr>\n",
|
| 449 |
+
" <td>1600</td>\n",
|
| 450 |
+
" <td>0.081500</td>\n",
|
| 451 |
+
" <td>0.364918</td>\n",
|
| 452 |
+
" <td>0.909000</td>\n",
|
| 453 |
+
" <td>0.907048</td>\n",
|
| 454 |
+
" <td>0.904277</td>\n",
|
| 455 |
+
" <td>0.909836</td>\n",
|
| 456 |
+
" </tr>\n",
|
| 457 |
+
" <tr>\n",
|
| 458 |
+
" <td>1650</td>\n",
|
| 459 |
+
" <td>0.062600</td>\n",
|
| 460 |
+
" <td>0.386855</td>\n",
|
| 461 |
+
" <td>0.905000</td>\n",
|
| 462 |
+
" <td>0.903943</td>\n",
|
| 463 |
+
" <td>0.892216</td>\n",
|
| 464 |
+
" <td>0.915984</td>\n",
|
| 465 |
+
" </tr>\n",
|
| 466 |
+
" <tr>\n",
|
| 467 |
+
" <td>1700</td>\n",
|
| 468 |
+
" <td>0.067000</td>\n",
|
| 469 |
+
" <td>0.392243</td>\n",
|
| 470 |
+
" <td>0.906000</td>\n",
|
| 471 |
+
" <td>0.905051</td>\n",
|
| 472 |
+
" <td>0.892430</td>\n",
|
| 473 |
+
" <td>0.918033</td>\n",
|
| 474 |
+
" </tr>\n",
|
| 475 |
+
" <tr>\n",
|
| 476 |
+
" <td>1750</td>\n",
|
| 477 |
+
" <td>0.047400</td>\n",
|
| 478 |
+
" <td>0.409893</td>\n",
|
| 479 |
+
" <td>0.910000</td>\n",
|
| 480 |
+
" <td>0.908350</td>\n",
|
| 481 |
+
" <td>0.902834</td>\n",
|
| 482 |
+
" <td>0.913934</td>\n",
|
| 483 |
+
" </tr>\n",
|
| 484 |
+
" <tr>\n",
|
| 485 |
+
" <td>1800</td>\n",
|
| 486 |
+
" <td>0.108200</td>\n",
|
| 487 |
+
" <td>0.401962</td>\n",
|
| 488 |
+
" <td>0.909000</td>\n",
|
| 489 |
+
" <td>0.907801</td>\n",
|
| 490 |
+
" <td>0.897796</td>\n",
|
| 491 |
+
" <td>0.918033</td>\n",
|
| 492 |
+
" </tr>\n",
|
| 493 |
+
" <tr>\n",
|
| 494 |
+
" <td>1850</td>\n",
|
| 495 |
+
" <td>0.105400</td>\n",
|
| 496 |
+
" <td>0.390589</td>\n",
|
| 497 |
+
" <td>0.912000</td>\n",
|
| 498 |
+
" <td>0.910020</td>\n",
|
| 499 |
+
" <td>0.908163</td>\n",
|
| 500 |
+
" <td>0.911885</td>\n",
|
| 501 |
+
" </tr>\n",
|
| 502 |
+
" </tbody>\n",
|
| 503 |
+
"</table><p>"
|
| 504 |
+
],
|
| 505 |
+
"text/plain": [
|
| 506 |
+
"<IPython.core.display.HTML object>"
|
| 507 |
+
]
|
| 508 |
+
},
|
| 509 |
+
"metadata": {},
|
| 510 |
+
"output_type": "display_data"
|
| 511 |
+
},
|
| 512 |
+
{
|
| 513 |
+
"name": "stderr",
|
| 514 |
+
"output_type": "stream",
|
| 515 |
+
"text": [
|
| 516 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 517 |
+
"***** Running Evaluation *****\n",
|
| 518 |
+
" Num examples = 1000\n",
|
| 519 |
+
" Batch size = 64\n",
|
| 520 |
+
"Saving model checkpoint to ./results\\checkpoint-50\n",
|
| 521 |
+
"Configuration saved in ./results\\checkpoint-50\\config.json\n",
|
| 522 |
+
"Model weights saved in ./results\\checkpoint-50\\pytorch_model.bin\n",
|
| 523 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 524 |
+
"***** Running Evaluation *****\n",
|
| 525 |
+
" Num examples = 1000\n",
|
| 526 |
+
" Batch size = 64\n",
|
| 527 |
+
"Saving model checkpoint to ./results\\checkpoint-100\n",
|
| 528 |
+
"Configuration saved in ./results\\checkpoint-100\\config.json\n",
|
| 529 |
+
"Model weights saved in ./results\\checkpoint-100\\pytorch_model.bin\n",
|
| 530 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 531 |
+
"***** Running Evaluation *****\n",
|
| 532 |
+
" Num examples = 1000\n",
|
| 533 |
+
" Batch size = 64\n",
|
| 534 |
+
"Saving model checkpoint to ./results\\checkpoint-150\n",
|
| 535 |
+
"Configuration saved in ./results\\checkpoint-150\\config.json\n",
|
| 536 |
+
"Model weights saved in ./results\\checkpoint-150\\pytorch_model.bin\n",
|
| 537 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 538 |
+
"***** Running Evaluation *****\n",
|
| 539 |
+
" Num examples = 1000\n",
|
| 540 |
+
" Batch size = 64\n",
|
| 541 |
+
"Saving model checkpoint to ./results\\checkpoint-200\n",
|
| 542 |
+
"Configuration saved in ./results\\checkpoint-200\\config.json\n",
|
| 543 |
+
"Model weights saved in ./results\\checkpoint-200\\pytorch_model.bin\n",
|
| 544 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 545 |
+
"***** Running Evaluation *****\n",
|
| 546 |
+
" Num examples = 1000\n",
|
| 547 |
+
" Batch size = 64\n",
|
| 548 |
+
"Saving model checkpoint to ./results\\checkpoint-250\n",
|
| 549 |
+
"Configuration saved in ./results\\checkpoint-250\\config.json\n",
|
| 550 |
+
"Model weights saved in ./results\\checkpoint-250\\pytorch_model.bin\n",
|
| 551 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 552 |
+
"***** Running Evaluation *****\n",
|
| 553 |
+
" Num examples = 1000\n",
|
| 554 |
+
" Batch size = 64\n",
|
| 555 |
+
"Saving model checkpoint to ./results\\checkpoint-300\n",
|
| 556 |
+
"Configuration saved in ./results\\checkpoint-300\\config.json\n",
|
| 557 |
+
"Model weights saved in ./results\\checkpoint-300\\pytorch_model.bin\n",
|
| 558 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 559 |
+
"***** Running Evaluation *****\n",
|
| 560 |
+
" Num examples = 1000\n",
|
| 561 |
+
" Batch size = 64\n",
|
| 562 |
+
"Saving model checkpoint to ./results\\checkpoint-350\n",
|
| 563 |
+
"Configuration saved in ./results\\checkpoint-350\\config.json\n",
|
| 564 |
+
"Model weights saved in ./results\\checkpoint-350\\pytorch_model.bin\n",
|
| 565 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 566 |
+
"***** Running Evaluation *****\n",
|
| 567 |
+
" Num examples = 1000\n",
|
| 568 |
+
" Batch size = 64\n",
|
| 569 |
+
"Saving model checkpoint to ./results\\checkpoint-400\n",
|
| 570 |
+
"Configuration saved in ./results\\checkpoint-400\\config.json\n",
|
| 571 |
+
"Model weights saved in ./results\\checkpoint-400\\pytorch_model.bin\n",
|
| 572 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 573 |
+
"***** Running Evaluation *****\n",
|
| 574 |
+
" Num examples = 1000\n",
|
| 575 |
+
" Batch size = 64\n",
|
| 576 |
+
"Saving model checkpoint to ./results\\checkpoint-450\n",
|
| 577 |
+
"Configuration saved in ./results\\checkpoint-450\\config.json\n",
|
| 578 |
+
"Model weights saved in ./results\\checkpoint-450\\pytorch_model.bin\n",
|
| 579 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 580 |
+
"***** Running Evaluation *****\n",
|
| 581 |
+
" Num examples = 1000\n",
|
| 582 |
+
" Batch size = 64\n",
|
| 583 |
+
"Saving model checkpoint to ./results\\checkpoint-500\n",
|
| 584 |
+
"Configuration saved in ./results\\checkpoint-500\\config.json\n",
|
| 585 |
+
"Model weights saved in ./results\\checkpoint-500\\pytorch_model.bin\n",
|
| 586 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 587 |
+
"***** Running Evaluation *****\n",
|
| 588 |
+
" Num examples = 1000\n",
|
| 589 |
+
" Batch size = 64\n",
|
| 590 |
+
"Saving model checkpoint to ./results\\checkpoint-550\n",
|
| 591 |
+
"Configuration saved in ./results\\checkpoint-550\\config.json\n",
|
| 592 |
+
"Model weights saved in ./results\\checkpoint-550\\pytorch_model.bin\n",
|
| 593 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 594 |
+
"***** Running Evaluation *****\n",
|
| 595 |
+
" Num examples = 1000\n",
|
| 596 |
+
" Batch size = 64\n",
|
| 597 |
+
"Saving model checkpoint to ./results\\checkpoint-600\n",
|
| 598 |
+
"Configuration saved in ./results\\checkpoint-600\\config.json\n",
|
| 599 |
+
"Model weights saved in ./results\\checkpoint-600\\pytorch_model.bin\n",
|
| 600 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 601 |
+
"***** Running Evaluation *****\n",
|
| 602 |
+
" Num examples = 1000\n",
|
| 603 |
+
" Batch size = 64\n",
|
| 604 |
+
"Saving model checkpoint to ./results\\checkpoint-650\n",
|
| 605 |
+
"Configuration saved in ./results\\checkpoint-650\\config.json\n",
|
| 606 |
+
"Model weights saved in ./results\\checkpoint-650\\pytorch_model.bin\n",
|
| 607 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 608 |
+
"***** Running Evaluation *****\n",
|
| 609 |
+
" Num examples = 1000\n",
|
| 610 |
+
" Batch size = 64\n",
|
| 611 |
+
"Saving model checkpoint to ./results\\checkpoint-700\n",
|
| 612 |
+
"Configuration saved in ./results\\checkpoint-700\\config.json\n",
|
| 613 |
+
"Model weights saved in ./results\\checkpoint-700\\pytorch_model.bin\n",
|
| 614 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 615 |
+
"***** Running Evaluation *****\n",
|
| 616 |
+
" Num examples = 1000\n",
|
| 617 |
+
" Batch size = 64\n",
|
| 618 |
+
"Saving model checkpoint to ./results\\checkpoint-750\n",
|
| 619 |
+
"Configuration saved in ./results\\checkpoint-750\\config.json\n",
|
| 620 |
+
"Model weights saved in ./results\\checkpoint-750\\pytorch_model.bin\n",
|
| 621 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 622 |
+
"***** Running Evaluation *****\n",
|
| 623 |
+
" Num examples = 1000\n",
|
| 624 |
+
" Batch size = 64\n",
|
| 625 |
+
"Saving model checkpoint to ./results\\checkpoint-800\n",
|
| 626 |
+
"Configuration saved in ./results\\checkpoint-800\\config.json\n"
|
| 627 |
+
]
|
| 628 |
+
},
|
| 629 |
+
{
|
| 630 |
+
"name": "stderr",
|
| 631 |
+
"output_type": "stream",
|
| 632 |
+
"text": [
|
| 633 |
+
"Model weights saved in ./results\\checkpoint-800\\pytorch_model.bin\n",
|
| 634 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 635 |
+
"***** Running Evaluation *****\n",
|
| 636 |
+
" Num examples = 1000\n",
|
| 637 |
+
" Batch size = 64\n",
|
| 638 |
+
"Saving model checkpoint to ./results\\checkpoint-850\n",
|
| 639 |
+
"Configuration saved in ./results\\checkpoint-850\\config.json\n",
|
| 640 |
+
"Model weights saved in ./results\\checkpoint-850\\pytorch_model.bin\n",
|
| 641 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 642 |
+
"***** Running Evaluation *****\n",
|
| 643 |
+
" Num examples = 1000\n",
|
| 644 |
+
" Batch size = 64\n",
|
| 645 |
+
"Saving model checkpoint to ./results\\checkpoint-900\n",
|
| 646 |
+
"Configuration saved in ./results\\checkpoint-900\\config.json\n",
|
| 647 |
+
"Model weights saved in ./results\\checkpoint-900\\pytorch_model.bin\n",
|
| 648 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 649 |
+
"***** Running Evaluation *****\n",
|
| 650 |
+
" Num examples = 1000\n",
|
| 651 |
+
" Batch size = 64\n",
|
| 652 |
+
"Saving model checkpoint to ./results\\checkpoint-950\n",
|
| 653 |
+
"Configuration saved in ./results\\checkpoint-950\\config.json\n",
|
| 654 |
+
"Model weights saved in ./results\\checkpoint-950\\pytorch_model.bin\n",
|
| 655 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 656 |
+
"***** Running Evaluation *****\n",
|
| 657 |
+
" Num examples = 1000\n",
|
| 658 |
+
" Batch size = 64\n",
|
| 659 |
+
"Saving model checkpoint to ./results\\checkpoint-1000\n",
|
| 660 |
+
"Configuration saved in ./results\\checkpoint-1000\\config.json\n",
|
| 661 |
+
"Model weights saved in ./results\\checkpoint-1000\\pytorch_model.bin\n",
|
| 662 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 663 |
+
"***** Running Evaluation *****\n",
|
| 664 |
+
" Num examples = 1000\n",
|
| 665 |
+
" Batch size = 64\n",
|
| 666 |
+
"Saving model checkpoint to ./results\\checkpoint-1050\n",
|
| 667 |
+
"Configuration saved in ./results\\checkpoint-1050\\config.json\n",
|
| 668 |
+
"Model weights saved in ./results\\checkpoint-1050\\pytorch_model.bin\n",
|
| 669 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 670 |
+
"***** Running Evaluation *****\n",
|
| 671 |
+
" Num examples = 1000\n",
|
| 672 |
+
" Batch size = 64\n",
|
| 673 |
+
"Saving model checkpoint to ./results\\checkpoint-1100\n",
|
| 674 |
+
"Configuration saved in ./results\\checkpoint-1100\\config.json\n",
|
| 675 |
+
"Model weights saved in ./results\\checkpoint-1100\\pytorch_model.bin\n",
|
| 676 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 677 |
+
"***** Running Evaluation *****\n",
|
| 678 |
+
" Num examples = 1000\n",
|
| 679 |
+
" Batch size = 64\n",
|
| 680 |
+
"Saving model checkpoint to ./results\\checkpoint-1150\n",
|
| 681 |
+
"Configuration saved in ./results\\checkpoint-1150\\config.json\n",
|
| 682 |
+
"Model weights saved in ./results\\checkpoint-1150\\pytorch_model.bin\n",
|
| 683 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 684 |
+
"***** Running Evaluation *****\n",
|
| 685 |
+
" Num examples = 1000\n",
|
| 686 |
+
" Batch size = 64\n",
|
| 687 |
+
"Saving model checkpoint to ./results\\checkpoint-1200\n",
|
| 688 |
+
"Configuration saved in ./results\\checkpoint-1200\\config.json\n",
|
| 689 |
+
"Model weights saved in ./results\\checkpoint-1200\\pytorch_model.bin\n",
|
| 690 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 691 |
+
"***** Running Evaluation *****\n",
|
| 692 |
+
" Num examples = 1000\n",
|
| 693 |
+
" Batch size = 64\n",
|
| 694 |
+
"Saving model checkpoint to ./results\\checkpoint-1250\n",
|
| 695 |
+
"Configuration saved in ./results\\checkpoint-1250\\config.json\n",
|
| 696 |
+
"Model weights saved in ./results\\checkpoint-1250\\pytorch_model.bin\n",
|
| 697 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 698 |
+
"***** Running Evaluation *****\n",
|
| 699 |
+
" Num examples = 1000\n",
|
| 700 |
+
" Batch size = 64\n",
|
| 701 |
+
"Saving model checkpoint to ./results\\checkpoint-1300\n",
|
| 702 |
+
"Configuration saved in ./results\\checkpoint-1300\\config.json\n",
|
| 703 |
+
"Model weights saved in ./results\\checkpoint-1300\\pytorch_model.bin\n",
|
| 704 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 705 |
+
"***** Running Evaluation *****\n",
|
| 706 |
+
" Num examples = 1000\n",
|
| 707 |
+
" Batch size = 64\n",
|
| 708 |
+
"Saving model checkpoint to ./results\\checkpoint-1350\n",
|
| 709 |
+
"Configuration saved in ./results\\checkpoint-1350\\config.json\n",
|
| 710 |
+
"Model weights saved in ./results\\checkpoint-1350\\pytorch_model.bin\n",
|
| 711 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 712 |
+
"***** Running Evaluation *****\n",
|
| 713 |
+
" Num examples = 1000\n",
|
| 714 |
+
" Batch size = 64\n",
|
| 715 |
+
"Saving model checkpoint to ./results\\checkpoint-1400\n",
|
| 716 |
+
"Configuration saved in ./results\\checkpoint-1400\\config.json\n",
|
| 717 |
+
"Model weights saved in ./results\\checkpoint-1400\\pytorch_model.bin\n",
|
| 718 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 719 |
+
"***** Running Evaluation *****\n",
|
| 720 |
+
" Num examples = 1000\n",
|
| 721 |
+
" Batch size = 64\n",
|
| 722 |
+
"Saving model checkpoint to ./results\\checkpoint-1450\n",
|
| 723 |
+
"Configuration saved in ./results\\checkpoint-1450\\config.json\n",
|
| 724 |
+
"Model weights saved in ./results\\checkpoint-1450\\pytorch_model.bin\n",
|
| 725 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 726 |
+
"***** Running Evaluation *****\n",
|
| 727 |
+
" Num examples = 1000\n",
|
| 728 |
+
" Batch size = 64\n",
|
| 729 |
+
"Saving model checkpoint to ./results\\checkpoint-1500\n",
|
| 730 |
+
"Configuration saved in ./results\\checkpoint-1500\\config.json\n",
|
| 731 |
+
"Model weights saved in ./results\\checkpoint-1500\\pytorch_model.bin\n",
|
| 732 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 733 |
+
"***** Running Evaluation *****\n",
|
| 734 |
+
" Num examples = 1000\n",
|
| 735 |
+
" Batch size = 64\n",
|
| 736 |
+
"Saving model checkpoint to ./results\\checkpoint-1550\n",
|
| 737 |
+
"Configuration saved in ./results\\checkpoint-1550\\config.json\n",
|
| 738 |
+
"Model weights saved in ./results\\checkpoint-1550\\pytorch_model.bin\n",
|
| 739 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 740 |
+
"***** Running Evaluation *****\n",
|
| 741 |
+
" Num examples = 1000\n"
|
| 742 |
+
]
|
| 743 |
+
},
|
| 744 |
+
{
|
| 745 |
+
"name": "stderr",
|
| 746 |
+
"output_type": "stream",
|
| 747 |
+
"text": [
|
| 748 |
+
" Batch size = 64\n",
|
| 749 |
+
"Saving model checkpoint to ./results\\checkpoint-1600\n",
|
| 750 |
+
"Configuration saved in ./results\\checkpoint-1600\\config.json\n",
|
| 751 |
+
"Model weights saved in ./results\\checkpoint-1600\\pytorch_model.bin\n",
|
| 752 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 753 |
+
"***** Running Evaluation *****\n",
|
| 754 |
+
" Num examples = 1000\n",
|
| 755 |
+
" Batch size = 64\n",
|
| 756 |
+
"Saving model checkpoint to ./results\\checkpoint-1650\n",
|
| 757 |
+
"Configuration saved in ./results\\checkpoint-1650\\config.json\n",
|
| 758 |
+
"Model weights saved in ./results\\checkpoint-1650\\pytorch_model.bin\n",
|
| 759 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 760 |
+
"***** Running Evaluation *****\n",
|
| 761 |
+
" Num examples = 1000\n",
|
| 762 |
+
" Batch size = 64\n",
|
| 763 |
+
"Saving model checkpoint to ./results\\checkpoint-1700\n",
|
| 764 |
+
"Configuration saved in ./results\\checkpoint-1700\\config.json\n",
|
| 765 |
+
"Model weights saved in ./results\\checkpoint-1700\\pytorch_model.bin\n",
|
| 766 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 767 |
+
"***** Running Evaluation *****\n",
|
| 768 |
+
" Num examples = 1000\n",
|
| 769 |
+
" Batch size = 64\n",
|
| 770 |
+
"Saving model checkpoint to ./results\\checkpoint-1750\n",
|
| 771 |
+
"Configuration saved in ./results\\checkpoint-1750\\config.json\n",
|
| 772 |
+
"Model weights saved in ./results\\checkpoint-1750\\pytorch_model.bin\n",
|
| 773 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 774 |
+
"***** Running Evaluation *****\n",
|
| 775 |
+
" Num examples = 1000\n",
|
| 776 |
+
" Batch size = 64\n",
|
| 777 |
+
"Saving model checkpoint to ./results\\checkpoint-1800\n",
|
| 778 |
+
"Configuration saved in ./results\\checkpoint-1800\\config.json\n",
|
| 779 |
+
"Model weights saved in ./results\\checkpoint-1800\\pytorch_model.bin\n",
|
| 780 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 781 |
+
"***** Running Evaluation *****\n",
|
| 782 |
+
" Num examples = 1000\n",
|
| 783 |
+
" Batch size = 64\n",
|
| 784 |
+
"Saving model checkpoint to ./results\\checkpoint-1850\n",
|
| 785 |
+
"Configuration saved in ./results\\checkpoint-1850\\config.json\n",
|
| 786 |
+
"Model weights saved in ./results\\checkpoint-1850\\pytorch_model.bin\n",
|
| 787 |
+
"\n",
|
| 788 |
+
"\n",
|
| 789 |
+
"Training completed. Do not forget to share your model on huggingface.co/models =)\n",
|
| 790 |
+
"\n",
|
| 791 |
+
"\n",
|
| 792 |
+
"Loading best model from ./results\\checkpoint-1000 (score: 0.23037973046302795).\n"
|
| 793 |
+
]
|
| 794 |
+
},
|
| 795 |
+
{
|
| 796 |
+
"data": {
|
| 797 |
+
"text/plain": [
|
| 798 |
+
"TrainOutput(global_step=1875, training_loss=0.22492422332763673, metrics={'train_runtime': 50814.837, 'train_samples_per_second': 0.59, 'train_steps_per_second': 0.037, 'total_flos': 3974021959680000.0, 'train_loss': 0.22492422332763673, 'epoch': 3.0})"
|
| 799 |
+
]
|
| 800 |
+
},
|
| 801 |
+
"execution_count": 7,
|
| 802 |
+
"metadata": {},
|
| 803 |
+
"output_type": "execute_result"
|
| 804 |
+
}
|
| 805 |
+
],
|
| 806 |
+
"source": [
|
| 807 |
+
"trainer = Trainer(\n",
|
| 808 |
+
" model=model,\n",
|
| 809 |
+
" args=training_args,\n",
|
| 810 |
+
" train_dataset=train_dataset,\n",
|
| 811 |
+
" eval_dataset=test_dataset,\n",
|
| 812 |
+
" compute_metrics=compute_metrics,\n",
|
| 813 |
+
")\n",
|
| 814 |
+
"\n",
|
| 815 |
+
"trainer.train()\n"
|
| 816 |
+
]
|
| 817 |
+
},
|
| 818 |
+
{
|
| 819 |
+
"cell_type": "code",
|
| 820 |
+
"execution_count": 8,
|
| 821 |
+
"id": "e2b3a88e",
|
| 822 |
+
"metadata": {},
|
| 823 |
+
"outputs": [
|
| 824 |
+
{
|
| 825 |
+
"name": "stderr",
|
| 826 |
+
"output_type": "stream",
|
| 827 |
+
"text": [
|
| 828 |
+
"The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
|
| 829 |
+
"***** Running Evaluation *****\n",
|
| 830 |
+
" Num examples = 1000\n",
|
| 831 |
+
" Batch size = 64\n"
|
| 832 |
+
]
|
| 833 |
+
},
|
| 834 |
+
{
|
| 835 |
+
"data": {
|
| 836 |
+
"text/html": [
|
| 837 |
+
"\n",
|
| 838 |
+
" <div>\n",
|
| 839 |
+
" \n",
|
| 840 |
+
" <progress value='16' max='16' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 841 |
+
" [16/16 07:01]\n",
|
| 842 |
+
" </div>\n",
|
| 843 |
+
" "
|
| 844 |
+
],
|
| 845 |
+
"text/plain": [
|
| 846 |
+
"<IPython.core.display.HTML object>"
|
| 847 |
+
]
|
| 848 |
+
},
|
| 849 |
+
"metadata": {},
|
| 850 |
+
"output_type": "display_data"
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"data": {
|
| 854 |
+
"text/plain": [
|
| 855 |
+
"{'eval_loss': 0.23037973046302795,\n",
|
| 856 |
+
" 'eval_accuracy': 0.91,\n",
|
| 857 |
+
" 'eval_f1': 0.9085365853658537,\n",
|
| 858 |
+
" 'eval_precision': 0.9012096774193549,\n",
|
| 859 |
+
" 'eval_recall': 0.9159836065573771,\n",
|
| 860 |
+
" 'eval_runtime': 450.0402,\n",
|
| 861 |
+
" 'eval_samples_per_second': 2.222,\n",
|
| 862 |
+
" 'eval_steps_per_second': 0.036,\n",
|
| 863 |
+
" 'epoch': 3.0}"
|
| 864 |
+
]
|
| 865 |
+
},
|
| 866 |
+
"execution_count": 8,
|
| 867 |
+
"metadata": {},
|
| 868 |
+
"output_type": "execute_result"
|
| 869 |
+
}
|
| 870 |
+
],
|
| 871 |
+
"source": [
|
| 872 |
+
"trainer.evaluate()"
|
| 873 |
+
]
|
| 874 |
+
},
|
| 875 |
+
{
|
| 876 |
+
"cell_type": "code",
|
| 877 |
+
"execution_count": 9,
|
| 878 |
+
"id": "a15f4208",
|
| 879 |
+
"metadata": {},
|
| 880 |
+
"outputs": [
|
| 881 |
+
{
|
| 882 |
+
"name": "stderr",
|
| 883 |
+
"output_type": "stream",
|
| 884 |
+
"text": [
|
| 885 |
+
"Configuration saved in ./saved_model\\config.json\n",
|
| 886 |
+
"Model weights saved in ./saved_model\\pytorch_model.bin\n",
|
| 887 |
+
"tokenizer config file saved in ./saved_model\\tokenizer_config.json\n",
|
| 888 |
+
"Special tokens file saved in ./saved_model\\special_tokens_map.json\n"
|
| 889 |
+
]
|
| 890 |
+
},
|
| 891 |
+
{
|
| 892 |
+
"data": {
|
| 893 |
+
"text/plain": [
|
| 894 |
+
"('./saved_model\\\\tokenizer_config.json',\n",
|
| 895 |
+
" './saved_model\\\\special_tokens_map.json',\n",
|
| 896 |
+
" './saved_model\\\\vocab.txt',\n",
|
| 897 |
+
" './saved_model\\\\added_tokens.json',\n",
|
| 898 |
+
" './saved_model\\\\tokenizer.json')"
|
| 899 |
+
]
|
| 900 |
+
},
|
| 901 |
+
"execution_count": 9,
|
| 902 |
+
"metadata": {},
|
| 903 |
+
"output_type": "execute_result"
|
| 904 |
+
}
|
| 905 |
+
],
|
| 906 |
+
"source": [
|
| 907 |
+
"model.save_pretrained('./saved_model')\n",
|
| 908 |
+
"tokenizer.save_pretrained('./saved_model')"
|
| 909 |
+
]
|
| 910 |
+
},
|
| 911 |
+
{
|
| 912 |
+
"cell_type": "code",
|
| 913 |
+
"execution_count": 10,
|
| 914 |
+
"id": "eb978982",
|
| 915 |
+
"metadata": {},
|
| 916 |
+
"outputs": [
|
| 917 |
+
{
|
| 918 |
+
"name": "stdout",
|
| 919 |
+
"output_type": "stream",
|
| 920 |
+
"text": [
|
| 921 |
+
"positive\n"
|
| 922 |
+
]
|
| 923 |
+
}
|
| 924 |
+
],
|
| 925 |
+
"source": [
|
| 926 |
+
"def predict_sentiment(text):\n",
|
| 927 |
+
" inputs = tokenizer(text, return_tensors=\"pt\", padding=True, truncation=True, max_length=512)\n",
|
| 928 |
+
" inputs = {k: v.to(model.device) for k, v in inputs.items()}\n",
|
| 929 |
+
" with torch.no_grad():\n",
|
| 930 |
+
" logits = model(**inputs).logits\n",
|
| 931 |
+
" prediction = logits.argmax(-1).item()\n",
|
| 932 |
+
" return 'positive' if prediction == 1 else 'negative'\n",
|
| 933 |
+
"\n",
|
| 934 |
+
"# Test with a new sentence\n",
|
| 935 |
+
"print(predict_sentiment(\"This movie was great! I loved it.\"))\n"
|
| 936 |
+
]
|
| 937 |
+
},
|
| 938 |
+
{
|
| 939 |
+
"cell_type": "code",
|
| 940 |
+
"execution_count": 3,
|
| 941 |
+
"id": "30dac866",
|
| 942 |
+
"metadata": {},
|
| 943 |
+
"outputs": [
|
| 944 |
+
{
|
| 945 |
+
"ename": "NameError",
|
| 946 |
+
"evalue": "name 'model' is not defined",
|
| 947 |
+
"output_type": "error",
|
| 948 |
+
"traceback": [
|
| 949 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
| 950 |
+
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
|
| 951 |
+
"Input \u001b[1;32mIn [3]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241m.\u001b[39msave_pretrained(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m./Sentimental_Analysis\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m 2\u001b[0m tokenizer\u001b[38;5;241m.\u001b[39msave_pretrained(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m./Sentimental_Analysis\u001b[39m\u001b[38;5;124m'\u001b[39m)\n",
|
| 952 |
+
"\u001b[1;31mNameError\u001b[0m: name 'model' is not defined"
|
| 953 |
+
]
|
| 954 |
+
}
|
| 955 |
+
],
|
| 956 |
+
"source": [
|
| 957 |
+
"model.save_pretrained('./Sentimental_Analysis')\n",
|
| 958 |
+
"tokenizer.save_pretrained('./Sentimental_Analysis')\n"
|
| 959 |
+
]
|
| 960 |
+
},
|
| 961 |
+
{
|
| 962 |
+
"cell_type": "code",
|
| 963 |
+
"execution_count": null,
|
| 964 |
+
"id": "f3b53c73",
|
| 965 |
+
"metadata": {},
|
| 966 |
+
"outputs": [],
|
| 967 |
+
"source": []
|
| 968 |
+
}
|
| 969 |
+
],
|
| 970 |
+
"metadata": {
|
| 971 |
+
"kernelspec": {
|
| 972 |
+
"display_name": "Python 3 (ipykernel)",
|
| 973 |
+
"language": "python",
|
| 974 |
+
"name": "python3"
|
| 975 |
+
},
|
| 976 |
+
"language_info": {
|
| 977 |
+
"codemirror_mode": {
|
| 978 |
+
"name": "ipython",
|
| 979 |
+
"version": 3
|
| 980 |
+
},
|
| 981 |
+
"file_extension": ".py",
|
| 982 |
+
"mimetype": "text/x-python",
|
| 983 |
+
"name": "python",
|
| 984 |
+
"nbconvert_exporter": "python",
|
| 985 |
+
"pygments_lexer": "ipython3",
|
| 986 |
+
"version": "3.10.4"
|
| 987 |
+
}
|
| 988 |
+
},
|
| 989 |
+
"nbformat": 4,
|
| 990 |
+
"nbformat_minor": 5
|
| 991 |
+
}
|