--- annotations_creators: - derived language: - amh - arq - ary - hau - ibo - kin - pcm - por - swa - tso - twi - yor license: cc-by-4.0 multilinguality: multilingual task_categories: - text-classification task_ids: - sentiment-analysis - sentiment-scoring - sentiment-classification - hate-speech-detection dataset_info: - config_name: amh features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 1143080 num_examples: 5984 - name: validation num_bytes: 284108 num_examples: 1497 - name: test num_bytes: 408373 num_examples: 1999 download_size: 1029065 dataset_size: 1835561 - config_name: arq features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 202346 num_examples: 1651 - name: validation num_bytes: 49001 num_examples: 414 - name: test num_bytes: 122486 num_examples: 958 download_size: 192507 dataset_size: 373833 - config_name: ary features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 700562 num_examples: 5583 - name: validation num_bytes: 63044 num_examples: 494 - name: test num_bytes: 229785 num_examples: 2048 download_size: 641623 dataset_size: 993391 - config_name: hau features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 1377534 num_examples: 14172 - name: validation num_bytes: 270965 num_examples: 2677 - name: test num_bytes: 162422 num_examples: 2048 download_size: 1115786 dataset_size: 1810921 - config_name: ibo features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 888336 num_examples: 10192 - name: validation num_bytes: 160053 num_examples: 1841 - name: test num_bytes: 134740 num_examples: 2048 download_size: 725832 dataset_size: 1183129 - config_name: kin features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 413231 num_examples: 3302 - name: validation num_bytes: 101872 num_examples: 827 - name: test num_bytes: 129274 num_examples: 1026 download_size: 419177 dataset_size: 644377 - config_name: pcm features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 657515 num_examples: 5121 - name: validation num_bytes: 164063 num_examples: 1281 - name: test num_bytes: 195936 num_examples: 2048 download_size: 635281 dataset_size: 1017514 - config_name: por features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 374720 num_examples: 3063 - name: validation num_bytes: 92212 num_examples: 767 - name: test num_bytes: 210282 num_examples: 2048 download_size: 445458 dataset_size: 677214 - config_name: swa features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 217414 num_examples: 1810 - name: validation num_bytes: 52592 num_examples: 453 - name: test num_bytes: 92720 num_examples: 748 download_size: 244103 dataset_size: 362726 - config_name: tso features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 58473 num_examples: 804 - name: validation num_bytes: 14564 num_examples: 203 - name: test num_bytes: 18118 num_examples: 254 download_size: 60441 dataset_size: 91155 - config_name: twi features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 215571 num_examples: 3481 - name: validation num_bytes: 23552 num_examples: 388 - name: test num_bytes: 57232 num_examples: 949 download_size: 185305 dataset_size: 296355 - config_name: yor features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 1341405 num_examples: 8522 - name: validation num_bytes: 329966 num_examples: 2090 - name: test num_bytes: 248982 num_examples: 2048 download_size: 1235782 dataset_size: 1920353 configs: - config_name: amh data_files: - split: train path: amh/train-* - split: validation path: amh/validation-* - split: test path: amh/test-* - config_name: arq data_files: - split: train path: arq/train-* - split: validation path: arq/validation-* - split: test path: arq/test-* - config_name: ary data_files: - split: train path: ary/train-* - split: validation path: ary/validation-* - split: test path: ary/test-* - config_name: hau data_files: - split: train path: hau/train-* - split: validation path: hau/validation-* - split: test path: hau/test-* - config_name: ibo data_files: - split: train path: ibo/train-* - split: validation path: ibo/validation-* - split: test path: ibo/test-* - config_name: kin data_files: - split: train path: kin/train-* - split: validation path: kin/validation-* - split: test path: kin/test-* - config_name: pcm data_files: - split: train path: pcm/train-* - split: validation path: pcm/validation-* - split: test path: pcm/test-* - config_name: por data_files: - split: train path: por/train-* - split: validation path: por/validation-* - split: test path: por/test-* - config_name: swa data_files: - split: train path: swa/train-* - split: validation path: swa/validation-* - split: test path: swa/test-* - config_name: tso data_files: - split: train path: tso/train-* - split: validation path: tso/validation-* - split: test path: tso/test-* - config_name: twi data_files: - split: train path: twi/train-* - split: validation path: twi/validation-* - split: test path: twi/test-* - config_name: yor data_files: - split: train path: yor/train-* - split: validation path: yor/validation-* - split: test path: yor/test-* tags: - mteb - text ---

AfriSentiClassification

An MTEB dataset
Massive Text Embedding Benchmark
AfriSenti is the largest sentiment analysis dataset for under-represented African languages. | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | Social, Written | | Reference | https://arxiv.org/abs/2302.08956 | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["AfriSentiClassification"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @inproceedings{Muhammad2023AfriSentiAT, author = {Shamsuddeen Hassan Muhammad and Idris Abdulmumin and Abinew Ali Ayele and Nedjma Ousidhoum and David Ifeoluwa Adelani and Seid Muhie Yimam and Ibrahim Sa'id Ahmad and Meriem Beloucif and Saif Mohammad and Sebastian Ruder and Oumaima Hourrane and Pavel Brazdil and Felermino D'ario M'ario Ant'onio Ali and Davis Davis and Salomey Osei and Bello Shehu Bello and Falalu Ibrahim and Tajuddeen Gwadabe and Samuel Rutunda and Tadesse Belay and Wendimu Baye Messelle and Hailu Beshada Balcha and Sisay Adugna Chala and Hagos Tesfahun Gebremichael and Bernard Opoku and Steven Arthur}, title = {AfriSenti: A Twitter Sentiment Analysis Benchmark for African Languages}, year = {2023}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics
Dataset Statistics The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("AfriSentiClassification") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 18222, "number_of_characters": 1378570, "number_texts_intersect_with_train": 595, "min_text_length": 6, "average_text_length": 75.65415431895511, "max_text_length": 414, "unique_text": 18222, "unique_labels": 3, "labels": { "0": { "count": 9206 }, "2": { "count": 3876 }, "1": { "count": 5140 } } }, "train": { "num_samples": 63685, "number_of_characters": 5446582, "number_texts_intersect_with_train": null, "min_text_length": 1, "average_text_length": 85.52378111015153, "max_text_length": 771, "unique_text": 62635, "unique_labels": 3, "labels": { "2": { "count": 20108 }, "1": { "count": 22794 }, "0": { "count": 20783 } } } } ```
--- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*