- Coarse-to-Fine Knowledge Selection for Document Grounded Dialogs Multi-document grounded dialogue systems (DGDS) belong to a class of conversational agents that answer users' requests by finding supporting knowledge from a collection of documents. Most previous studies aim to improve the knowledge retrieval model or propose more effective ways to incorporate external knowledge into a parametric generation model. These methods, however, focus on retrieving knowledge from mono-granularity language units (e.g. passages, sentences, or spans in documents), which is not enough to effectively and efficiently capture precise knowledge in long documents. This paper proposes Re3G, which aims to optimize both coarse-grained knowledge retrieval and fine-grained knowledge extraction in a unified framework. Specifically, the former efficiently finds relevant passages in a retrieval-and-reranking process, whereas the latter effectively extracts finer-grain spans within those passages to incorporate into a parametric answer generation model (BART, T5). Experiments on DialDoc Shared Task demonstrate the effectiveness of our method. 6 authors · Feb 23, 2023
- Cascaded Span Extraction and Response Generation for Document-Grounded Dialog This paper summarizes our entries to both subtasks of the first DialDoc shared task which focuses on the agent response prediction task in goal-oriented document-grounded dialogs. The task is split into two subtasks: predicting a span in a document that grounds an agent turn and generating an agent response based on a dialog and grounding document. In the first subtask, we restrict the set of valid spans to the ones defined in the dataset, use a biaffine classifier to model spans, and finally use an ensemble of different models. For the second subtask, we use a cascaded model which grounds the response prediction on the predicted span instead of the full document. With these approaches, we obtain significant improvements in both subtasks compared to the baseline. 4 authors · Jun 14, 2021