new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

Dynamic Intelligence Assessment: Benchmarking LLMs on the Road to AGI with a Focus on Model Confidence

As machine intelligence evolves, the need to test and compare the problem-solving abilities of different AI models grows. However, current benchmarks are often overly simplistic, allowing models to perform uniformly well, making it difficult to distinguish their capabilities. Additionally, benchmarks typically rely on static question-answer pairs, which models might memorize or guess. To address these limitations, we introduce the Dynamic Intelligence Assessment (DIA), a novel methodology for testing AI models using dynamic question templates and improved metrics across multiple disciplines such as mathematics, cryptography, cybersecurity, and computer science. The accompanying DIA-Bench dataset, which includes 150 diverse and challenging task templates with mutable parameters, is presented in various formats such as text, PDFs, compiled binaries, and visual puzzles. Our framework introduces four new metrics to assess a model's reliability and confidence across multiple attempts. These metrics revealed that even simple questions are frequently answered incorrectly when posed in varying forms, highlighting significant gaps in models' reliability. Notably, models like GPT-4o tended to overestimate their mathematical abilities, while ChatGPT-4o demonstrated better decision-making and performance through effective tool usage. We evaluated eight state-of-the-art large language models (LLMs) using DIA-Bench, showing that current models struggle with complex tasks and often display unexpectedly low confidence, even with simpler questions. The DIA framework sets a new standard for assessing not only problem-solving but also a model's adaptive intelligence and ability to assess its own limitations. The dataset is publicly available on our project's website.

  • 12 authors
·
Oct 20, 2024

The Hidden DNA of LLM-Generated JavaScript: Structural Patterns Enable High-Accuracy Authorship Attribution

In this paper, we present the first large-scale study exploring whether JavaScript code generated by Large Language Models (LLMs) can reveal which model produced it, enabling reliable authorship attribution and model fingerprinting. With the rapid rise of AI-generated code, attribution is playing a critical role in detecting vulnerabilities, flagging malicious content, and ensuring accountability. While AI-vs-human detection usually treats AI as a single category we show that individual LLMs leave unique stylistic signatures, even among models belonging to the same family or parameter size. To this end, we introduce LLM-NodeJS, a dataset of 50,000 Node.js back-end programs from 20 large language models. Each has four transformed variants, yielding 250,000 unique JavaScript samples and two additional representations (JSIR and AST) for diverse research applications. Using this dataset, we benchmark traditional machine learning classifiers against fine-tuned Transformer encoders and introduce CodeT5-JSA, a custom architecture derived from the 770M-parameter CodeT5 model with its decoder removed and a modified classification head. It achieves 95.8% accuracy on five-class attribution, 94.6% on ten-class, and 88.5% on twenty-class tasks, surpassing other tested models such as BERT, CodeBERT, and Longformer. We demonstrate that classifiers capture deeper stylistic regularities in program dataflow and structure, rather than relying on surface-level features. As a result, attribution remains effective even after mangling, comment removal, and heavy code transformations. To support open science and reproducibility, we release the LLM-NodeJS dataset, Google Colab training scripts, and all related materials on GitHub: https://github.com/LLM-NodeJS-dataset.

  • 5 authors
·
Oct 12, 2025 2

Vulnerability Detection: From Formal Verification to Large Language Models and Hybrid Approaches: A Comprehensive Overview

Software testing and verification are critical for ensuring the reliability and security of modern software systems. Traditionally, formal verification techniques, such as model checking and theorem proving, have provided rigorous frameworks for detecting bugs and vulnerabilities. However, these methods often face scalability challenges when applied to complex, real-world programs. Recently, the advent of Large Language Models (LLMs) has introduced a new paradigm for software analysis, leveraging their ability to understand insecure coding practices. Although LLMs demonstrate promising capabilities in tasks such as bug prediction and invariant generation, they lack the formal guarantees of classical methods. This paper presents a comprehensive study of state-of-the-art software testing and verification, focusing on three key approaches: classical formal methods, LLM-based analysis, and emerging hybrid techniques, which combine their strengths. We explore each approach's strengths, limitations, and practical applications, highlighting the potential of hybrid systems to address the weaknesses of standalone methods. We analyze whether integrating formal rigor with LLM-driven insights can enhance the effectiveness and scalability of software verification, exploring their viability as a pathway toward more robust and adaptive testing frameworks.

  • 7 authors
·
Mar 13, 2025

From LLM Reasoning to Autonomous AI Agents: A Comprehensive Review

Large language models and autonomous AI agents have evolved rapidly, resulting in a diverse array of evaluation benchmarks, frameworks, and collaboration protocols. However, the landscape remains fragmented and lacks a unified taxonomy or comprehensive survey. Therefore, we present a side-by-side comparison of benchmarks developed between 2019 and 2025 that evaluate these models and agents across multiple domains. In addition, we propose a taxonomy of approximately 60 benchmarks that cover general and academic knowledge reasoning, mathematical problem-solving, code generation and software engineering, factual grounding and retrieval, domain-specific evaluations, multimodal and embodied tasks, task orchestration, and interactive assessments. Furthermore, we review AI-agent frameworks introduced between 2023 and 2025 that integrate large language models with modular toolkits to enable autonomous decision-making and multi-step reasoning. Moreover, we present real-world applications of autonomous AI agents in materials science, biomedical research, academic ideation, software engineering, synthetic data generation, chemical reasoning, mathematical problem-solving, geographic information systems, multimedia, healthcare, and finance. We then survey key agent-to-agent collaboration protocols, namely the Agent Communication Protocol (ACP), the Model Context Protocol (MCP), and the Agent-to-Agent Protocol (A2A). Finally, we discuss recommendations for future research, focusing on advanced reasoning strategies, failure modes in multi-agent LLM systems, automated scientific discovery, dynamic tool integration via reinforcement learning, integrated search capabilities, and security vulnerabilities in agent protocols.

  • 3 authors
·
Apr 28, 2025

A New Era in Software Security: Towards Self-Healing Software via Large Language Models and Formal Verification

In this paper we present a novel solution that combines the capabilities of Large Language Models (LLMs) with Formal Verification strategies to verify and automatically repair software vulnerabilities. Initially, we employ Bounded Model Checking (BMC) to locate the software vulnerability and derive a counterexample. The counterexample provides evidence that the system behaves incorrectly or contains a vulnerability. The counterexample that has been detected, along with the source code, are provided to the LLM engine. Our approach involves establishing a specialized prompt language for conducting code debugging and generation to understand the vulnerability's root cause and repair the code. Finally, we use BMC to verify the corrected version of the code generated by the LLM. As a proof of concept, we create ESBMC-AI based on the Efficient SMT-based Context-Bounded Model Checker (ESBMC) and a pre-trained Transformer model, specifically gpt-3.5-turbo, to detect and fix errors in C programs. Our experimentation involved generating a dataset comprising 1000 C code samples, each consisting of 20 to 50 lines of code. Notably, our proposed method achieved an impressive success rate of up to 80% in repairing vulnerable code encompassing buffer overflow and pointer dereference failures. We assert that this automated approach can effectively incorporate into the software development lifecycle's continuous integration and deployment (CI/CD) process.

  • 6 authors
·
May 24, 2023

CAvity DEtection Tool (CADET): Pipeline for automatic detection of X-ray cavities in hot galactic and cluster atmospheres

The study of jet-inflated X-ray cavities provides a powerful insight into the energetics of hot galactic atmospheres and radio-mechanical AGN feedback. By estimating the volumes of X-ray cavities, the total energy and thus also the corresponding mechanical jet power required for their inflation can be derived. Properly estimating their total extent is, however, non-trivial, prone to biases, nearly impossible for poor-quality data, and so far has been done manually by scientists. We present a novel and automated machine-learning pipeline called Cavity Detection Tool (CADET), developed to detect and estimate the sizes of X-ray cavities from raw Chandra images. The pipeline consists of a convolutional neural network trained for producing pixel-wise cavity predictions and a DBSCAN clustering algorithm, which decomposes the predictions into individual cavities. The convolutional network was trained using mock observations of early-type galaxies simulated to resemble real noisy Chandra-like images. The network's performance has been tested on simulated data obtaining an average cavity volume error of 14 % at an 89 % true-positive rate. For simulated images without any X-ray cavities inserted, we obtain a 5 % false-positive rate. When applied to real Chandra images, the pipeline recovered 91 out of 100 previously known X-ray cavities in nearby early-type galaxies and all 14 cavities in chosen galaxy clusters. Besides that, the CADET pipeline discovered 8 new cavity pairs in atmospheres of early-type galaxies and galaxy clusters (IC4765, NGC533, NGC2300, NGC3091, NGC4073, NGC4125, NGC4472, NGC5129) and a number of potential cavity candidates.

  • 4 authors
·
Apr 11, 2023

A comprehensive grid of massive binary evolution models for the Galaxy - Surface properties of post-mass transfer stars

Massive stars often evolve in binary systems, in which binary interactions significantly affect their evolution. Massive stars in the Galaxy serve as valuable testbeds for this due to their proximity. We computed the evolution of more than 38000 galactic binary systems with initial primary star masses of 5...100 Msun. In this paper, we aim to investigate the surface properties of post-mass transfer mass donor and mass gainer stars through core hydrogen burning, core helium burning, and for the pre-supernova stage. The models are computed with MESA, incorporating detailed stellar and binary physics, including internal differential rotation, magnetic angular momentum transport, mass-dependent overshooting, stellar wind mass-loss, mass and angular momentum transfer and tidal interaction. They incorporate a new extensive nuclear network for hydrogen burning, which allows us to track the full range of hydrogen burning nucleosynthesis products, from the light elements to aluminum. The widest, non-interacting binary models in our grid effectively serve as single star models. We find that mass gainers and mass donors may evolve through long-lived blue and yellow supergiant stages during core helium burning where single stars of the same mass remain red supergiants. Furthermore, some of our gainers evolve into more luminous yellow and blue supergiants prior to core collapse than single stars, while some donors end their life as red or yellow supergiants, showing a rich diversity in supernova progenitors. We show that the surface elemental and isotopic abundances carry valuable information about a star's evolutionary history and can be used to distinguish binary interaction products from single stars. Our binary model grid may serve as a tool for identifying post-mass transfer stars and supernovae, and holds potential for population studies, supernova modeling, and guidance of future observations.

  • 4 authors
·
Oct 22, 2025

From Prompt Injections to Protocol Exploits: Threats in LLM-Powered AI Agents Workflows

Autonomous AI agents powered by large language models (LLMs) with structured function-calling interfaces have dramatically expanded capabilities for real-time data retrieval, complex computation, and multi-step orchestration. Yet, the explosive proliferation of plugins, connectors, and inter-agent protocols has outpaced discovery mechanisms and security practices, resulting in brittle integrations vulnerable to diverse threats. In this survey, we introduce the first unified, end-to-end threat model for LLM-agent ecosystems, spanning host-to-tool and agent-to-agent communications, formalize adversary capabilities and attacker objectives, and catalog over thirty attack techniques. Specifically, we organized the threat model into four domains: Input Manipulation (e.g., prompt injections, long-context hijacks, multimodal adversarial inputs), Model Compromise (e.g., prompt- and parameter-level backdoors, composite and encrypted multi-backdoors, poisoning strategies), System and Privacy Attacks (e.g., speculative side-channels, membership inference, retrieval poisoning, social-engineering simulations), and Protocol Vulnerabilities (e.g., exploits in Model Context Protocol (MCP), Agent Communication Protocol (ACP), Agent Network Protocol (ANP), and Agent-to-Agent (A2A) protocol). For each category, we review representative scenarios, assess real-world feasibility, and evaluate existing defenses. Building on our threat taxonomy, we identify key open challenges and future research directions, such as securing MCP deployments through dynamic trust management and cryptographic provenance tracking; designing and hardening Agentic Web Interfaces; and achieving resilience in multi-agent and federated environments. Our work provides a comprehensive reference to guide the design of robust defense mechanisms and establish best practices for resilient LLM-agent workflows.

  • 5 authors
·
Jun 29, 2025

Multiplexed quantum repeaters based on dual-species trapped-ion systems

Trapped ions form an advanced technology platform for quantum information processing with long qubit coherence times, high-fidelity quantum logic gates, optically active qubits, and a potential to scale up in size while preserving a high level of connectivity between qubits. These traits make them attractive not only for quantum computing but also for quantum networking. Dedicated, special-purpose trapped-ion processors in conjunction with suitable interconnecting hardware can be used to form quantum repeaters that enable high-rate quantum communications between distant trapped-ion quantum computers in a network. In this regard, hybrid traps with two distinct species of ions, where one ion species can generate ion-photon entanglement that is useful for optically interfacing with the network and the other has long memory lifetimes, useful for qubit storage, have been proposed for entanglement distribution. We consider an architecture for a repeater based on such dual-species trapped-ion systems. We propose and analyze a protocol based on spatial and temporal mode multiplexing for entanglement distribution across a line network of such repeaters. Our protocol offers enhanced rates compared to rates previously reported for such repeaters. We determine the ion resources required at the repeaters to attain the enhanced rates, and the best rates attainable when constraints are placed on the number of repeaters and the number of ions per repeater. Our results bolster the case for near-term trapped-ion systems as quantum repeaters for long-distance quantum communications.

  • 5 authors
·
May 14, 2021

CLIP-ReIdent: Contrastive Training for Player Re-Identification

Sports analytics benefits from recent advances in machine learning providing a competitive advantage for teams or individuals. One important task in this context is the performance measurement of individual players to provide reports and log files for subsequent analysis. During sport events like basketball, this involves the re-identification of players during a match either from multiple camera viewpoints or from a single camera viewpoint at different times. In this work, we investigate whether it is possible to transfer the out-standing zero-shot performance of pre-trained CLIP models to the domain of player re-identification. For this purpose we reformulate the contrastive language-to-image pre-training approach from CLIP to a contrastive image-to-image training approach using the InfoNCE loss as training objective. Unlike previous work, our approach is entirely class-agnostic and benefits from large-scale pre-training. With a fine-tuned CLIP ViT-L/14 model we achieve 98.44 % mAP on the MMSports 2022 Player Re-Identification challenge. Furthermore we show that the CLIP Vision Transformers have already strong OCR capabilities to identify useful player features like shirt numbers in a zero-shot manner without any fine-tuning on the dataset. By applying the Score-CAM algorithm we visualise the most important image regions that our fine-tuned model identifies when calculating the similarity score between two images of a player.

  • 3 authors
·
Mar 21, 2023

Sample4Geo: Hard Negative Sampling For Cross-View Geo-Localisation

Cross-View Geo-Localisation is still a challenging task where additional modules, specific pre-processing or zooming strategies are necessary to determine accurate positions of images. Since different views have different geometries, pre-processing like polar transformation helps to merge them. However, this results in distorted images which then have to be rectified. Adding hard negatives to the training batch could improve the overall performance but with the default loss functions in geo-localisation it is difficult to include them. In this article, we present a simplified but effective architecture based on contrastive learning with symmetric InfoNCE loss that outperforms current state-of-the-art results. Our framework consists of a narrow training pipeline that eliminates the need of using aggregation modules, avoids further pre-processing steps and even increases the generalisation capability of the model to unknown regions. We introduce two types of sampling strategies for hard negatives. The first explicitly exploits geographically neighboring locations to provide a good starting point. The second leverages the visual similarity between the image embeddings in order to mine hard negative samples. Our work shows excellent performance on common cross-view datasets like CVUSA, CVACT, University-1652 and VIGOR. A comparison between cross-area and same-area settings demonstrate the good generalisation capability of our model.

  • 3 authors
·
Mar 21, 2023

DFIR-Metric: A Benchmark Dataset for Evaluating Large Language Models in Digital Forensics and Incident Response

Digital Forensics and Incident Response (DFIR) involves analyzing digital evidence to support legal investigations. Large Language Models (LLMs) offer new opportunities in DFIR tasks such as log analysis and memory forensics, but their susceptibility to errors and hallucinations raises concerns in high-stakes contexts. Despite growing interest, there is no comprehensive benchmark to evaluate LLMs across both theoretical and practical DFIR domains. To address this gap, we present DFIR-Metric, a benchmark with three components: (1) Knowledge Assessment: a set of 700 expert-reviewed multiple-choice questions sourced from industry-standard certifications and official documentation; (2) Realistic Forensic Challenges: 150 CTF-style tasks testing multi-step reasoning and evidence correlation; and (3) Practical Analysis: 500 disk and memory forensics cases from the NIST Computer Forensics Tool Testing Program (CFTT). We evaluated 14 LLMs using DFIR-Metric, analyzing both their accuracy and consistency across trials. We also introduce a new metric, the Task Understanding Score (TUS), designed to more effectively evaluate models in scenarios where they achieve near-zero accuracy. This benchmark offers a rigorous, reproducible foundation for advancing AI in digital forensics. All scripts, artifacts, and results are available on the project website at https://github.com/DFIR-Metric.

  • 6 authors
·
May 26, 2025 2

Generative AI and Large Language Models for Cyber Security: All Insights You Need

This paper provides a comprehensive review of the future of cybersecurity through Generative AI and Large Language Models (LLMs). We explore LLM applications across various domains, including hardware design security, intrusion detection, software engineering, design verification, cyber threat intelligence, malware detection, and phishing detection. We present an overview of LLM evolution and its current state, focusing on advancements in models such as GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, and LLaMA. Our analysis extends to LLM vulnerabilities, such as prompt injection, insecure output handling, data poisoning, DDoS attacks, and adversarial instructions. We delve into mitigation strategies to protect these models, providing a comprehensive look at potential attack scenarios and prevention techniques. Furthermore, we evaluate the performance of 42 LLM models in cybersecurity knowledge and hardware security, highlighting their strengths and weaknesses. We thoroughly evaluate cybersecurity datasets for LLM training and testing, covering the lifecycle from data creation to usage and identifying gaps for future research. In addition, we review new strategies for leveraging LLMs, including techniques like Half-Quadratic Quantization (HQQ), Reinforcement Learning with Human Feedback (RLHF), Direct Preference Optimization (DPO), Quantized Low-Rank Adapters (QLoRA), and Retrieval-Augmented Generation (RAG). These insights aim to enhance real-time cybersecurity defenses and improve the sophistication of LLM applications in threat detection and response. Our paper provides a foundational understanding and strategic direction for integrating LLMs into future cybersecurity frameworks, emphasizing innovation and robust model deployment to safeguard against evolving cyber threats.

  • 6 authors
·
May 21, 2024

Can Alfvénic Fluctuations Affect the Correlation and Complexity of Magnetic Fields in Magnetic Ejecta? A Case Study Based on Multi-Spacecraft Measurements at 1~au

We investigate whether Alfv\'enic fluctuations (AFs) can affect the structure of magnetic ejecta (MEs) within interplanetary coronal mass ejections (ICMEs). We study an ICME observed on 2001 December 29 at 1 au by ACE and Wind, at a total angular separation of sim0.8^circ (sim0.014~au). We focus on the correlation and complexity of its magnetic structure measured between two spacecraft in association with large-amplitude AFs. The Alfv\'enicity of the ME is investigated in terms of the residual energy and cross helicity of fluctuations. We find that as for the event of interest, large-amplitude AFs occur in the rear region of the ME at both Wind and ACE with a duration of about six hours. We compare the correlation of the magnetic field strength and vector components measured between Wind and ACE, and investigate complexity in terms of the magnetic hodograms. The region showing AFs is found to be associated with a decreased correlation of the magnetic field components and an increased complexity of the ME magnetic configuration detected at ACE and Wind, which may be due to the fact that the two spacecraft crossing the same ME along different trajectories likely sampled AFs in different oscillation phases. Combining multi-point in-situ measurements and remote-sensing observations of the ICME source region, we further discuss different potential sources of the AFs.

  • 7 authors
·
Dec 10, 2024

A new sample of massive B-type contact binary candidates from the OGLE survey of the Magellanic Clouds

Massive contact binaries (CBs) are key to understanding close-binary evolution and stellar mergers, yet their study has been limited by the scarcity of observed systems, particularly of B-type binaries expected to dominate this class. We bridge this gap by mining a large sample of massive CB candidates from the OGLE-IV database, increasing their known numbers in the Magellanic Clouds by nearly an order of magnitude. Using main-sequence colour-magnitude limits, an observationally informed period-luminosity-colour relation for CBs, and a high morph-parameter cut (cgeq0.7), we identified 68 O- and B-type binaries that exhibit smooth, sinusoidal light curves with nearly equal eclipse depths. We then isolated a bona fide sample of 37 CB candidates (28 in the LMC and 9 in the SMC) that match theoretical colour-magnitude and period distributions derived from an extensive grid of MESA binary models. The bona fide sample, dominated by B-type systems with Papprox0.6-1 d, agrees with the predicted population and may contain many qapprox1 binaries, as expected from models showing mass equalization preceding temperature equalization during nuclear-timescale contact. Synthetic PHOEBE light curves of contact and near-contact phases of MESA models reveal a degeneracy between these configurations, suggesting possible misidentifications among these systems. Spectroscopic follow-up is required to test these predictions and refine the evolutionary framework of massive CBs.

  • 5 authors
·
Oct 21, 2024

A Methodology for Evaluating RAG Systems: A Case Study On Configuration Dependency Validation

Retrieval-augmented generation (RAG) is an umbrella of different components, design decisions, and domain-specific adaptations to enhance the capabilities of large language models and counter their limitations regarding hallucination and outdated and missing knowledge. Since it is unclear which design decisions lead to a satisfactory performance, developing RAG systems is often experimental and needs to follow a systematic and sound methodology to gain sound and reliable results. However, there is currently no generally accepted methodology for RAG evaluation despite a growing interest in this technology. In this paper, we propose a first blueprint of a methodology for a sound and reliable evaluation of RAG systems and demonstrate its applicability on a real-world software engineering research task: the validation of configuration dependencies across software technologies. In summary, we make two novel contributions: (i) A novel, reusable methodological design for evaluating RAG systems, including a demonstration that represents a guideline, and (ii) a RAG system, which has been developed following this methodology, that achieves the highest accuracy in the field of dependency validation. For the blueprint's demonstration, the key insights are the crucial role of choosing appropriate baselines and metrics, the necessity for systematic RAG refinements derived from qualitative failure analysis, as well as the reporting practices of key design decision to foster replication and evaluation.

  • 4 authors
·
Oct 11, 2024

Digitizing Touch with an Artificial Multimodal Fingertip

Touch is a crucial sensing modality that provides rich information about object properties and interactions with the physical environment. Humans and robots both benefit from using touch to perceive and interact with the surrounding environment (Johansson and Flanagan, 2009; Li et al., 2020; Calandra et al., 2017). However, no existing systems provide rich, multi-modal digital touch-sensing capabilities through a hemispherical compliant embodiment. Here, we describe several conceptual and technological innovations to improve the digitization of touch. These advances are embodied in an artificial finger-shaped sensor with advanced sensing capabilities. Significantly, this fingertip contains high-resolution sensors (~8.3 million taxels) that respond to omnidirectional touch, capture multi-modal signals, and use on-device artificial intelligence to process the data in real time. Evaluations show that the artificial fingertip can resolve spatial features as small as 7 um, sense normal and shear forces with a resolution of 1.01 mN and 1.27 mN, respectively, perceive vibrations up to 10 kHz, sense heat, and even sense odor. Furthermore, it embeds an on-device AI neural network accelerator that acts as a peripheral nervous system on a robot and mimics the reflex arc found in humans. These results demonstrate the possibility of digitizing touch with superhuman performance. The implications are profound, and we anticipate potential applications in robotics (industrial, medical, agricultural, and consumer-level), virtual reality and telepresence, prosthetics, and e-commerce. Toward digitizing touch at scale, we open-source a modular platform to facilitate future research on the nature of touch.

  • 23 authors
·
Nov 4, 2024

I Know Which LLM Wrote Your Code Last Summer: LLM generated Code Stylometry for Authorship Attribution

Detecting AI-generated code, deepfakes, and other synthetic content is an emerging research challenge. As code generated by Large Language Models (LLMs) becomes more common, identifying the specific model behind each sample is increasingly important. This paper presents the first systematic study of LLM authorship attribution for C programs. We released CodeT5-Authorship, a novel model that uses only the encoder layers from the original CodeT5 encoder-decoder architecture, discarding the decoder to focus on classification. Our model's encoder output (first token) is passed through a two-layer classification head with GELU activation and dropout, producing a probability distribution over possible authors. To evaluate our approach, we introduce LLM-AuthorBench, a benchmark of 32,000 compilable C programs generated by eight state-of-the-art LLMs across diverse tasks. We compare our model to seven traditional ML classifiers and eight fine-tuned transformer models, including BERT, RoBERTa, CodeBERT, ModernBERT, DistilBERT, DeBERTa-V3, Longformer, and LoRA-fine-tuned Qwen2-1.5B. In binary classification, our model achieves 97.56% accuracy in distinguishing C programs generated by closely related models such as GPT-4.1 and GPT-4o, and 95.40% accuracy for multi-class attribution among five leading LLMs (Gemini 2.5 Flash, Claude 3.5 Haiku, GPT-4.1, Llama 3.3, and DeepSeek-V3). To support open science, we release the CodeT5-Authorship architecture, the LLM-AuthorBench benchmark, and all relevant Google Colab scripts on GitHub: https://github.com/LLMauthorbench/.

  • 9 authors
·
Jun 18, 2025 1

MERT: Acoustic Music Understanding Model with Large-Scale Self-supervised Training

Self-supervised learning (SSL) has recently emerged as a promising paradigm for training generalisable models on large-scale data in the fields of vision, text, and speech. Although SSL has been proven effective in speech and audio, its application to music audio has yet to be thoroughly explored. This is primarily due to the distinctive challenges associated with modelling musical knowledge, particularly its tonal and pitched characteristics of music. To address this research gap, we propose an acoustic Music undERstanding model with large-scale self-supervised Training (MERT), which incorporates teacher models to provide pseudo labels in the masked language modelling (MLM) style acoustic pre-training. In our exploration, we identified a superior combination of teacher models, which outperforms conventional speech and audio approaches in terms of performance. This combination includes an acoustic teacher based on Residual Vector Quantization - Variational AutoEncoder (RVQ-VAE) and a musical teacher based on the Constant-Q Transform (CQT). These teachers effectively guide our student model, a BERT-style transformer encoder, to better model music audio. In addition, we introduce an in-batch noise mixture augmentation to enhance the representation robustness. Furthermore, we explore a wide range of settings to overcome the instability in acoustic language model pre-training, which allows our designed paradigm to scale from 95M to 330M parameters. Experimental results indicate that our model can generalise and perform well on 14 music understanding tasks and attains state-of-the-art (SOTA) overall scores. The code and models are online: https://github.com/yizhilll/MERT.

  • 18 authors
·
May 31, 2023

SoccerNet 2023 Challenges Results

The SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three main themes. The first theme, broadcast video understanding, is composed of three high-level tasks related to describing events occurring in the video broadcasts: (1) action spotting, focusing on retrieving all timestamps related to global actions in soccer, (2) ball action spotting, focusing on retrieving all timestamps related to the soccer ball change of state, and (3) dense video captioning, focusing on describing the broadcast with natural language and anchored timestamps. The second theme, field understanding, relates to the single task of (4) camera calibration, focusing on retrieving the intrinsic and extrinsic camera parameters from images. The third and last theme, player understanding, is composed of three low-level tasks related to extracting information about the players: (5) re-identification, focusing on retrieving the same players across multiple views, (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams, and (7) jersey number recognition, focusing on recognizing the jersey number of players from tracklets. Compared to the previous editions of the SoccerNet challenges, tasks (2-3-7) are novel, including new annotations and data, task (4) was enhanced with more data and annotations, and task (6) now focuses on end-to-end approaches. More information on the tasks, challenges, and leaderboards are available on https://www.soccer-net.org. Baselines and development kits can be found on https://github.com/SoccerNet.

  • 102 authors
·
Sep 12, 2023