Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSAS-Bench: A Fine-Grained Benchmark for Evaluating Short Answer Scoring with Large Language Models
Subjective Answer Grading (SAG) plays a crucial role in education, standardized testing, and automated assessment systems, particularly for evaluating short-form responses in Short Answer Scoring (SAS). However, existing approaches often produce coarse-grained scores and lack detailed reasoning. Although large language models (LLMs) have demonstrated potential as zero-shot evaluators, they remain susceptible to bias, inconsistencies with human judgment, and limited transparency in scoring decisions. To overcome these limitations, we introduce SAS-Bench, a benchmark specifically designed for LLM-based SAS tasks. SAS-Bench provides fine-grained, step-wise scoring, expert-annotated error categories, and a diverse range of question types derived from real-world subject-specific exams. This benchmark facilitates detailed evaluation of model reasoning processes and explainability. We also release an open-source dataset containing 1,030 questions and 4,109 student responses, each annotated by domain experts. Furthermore, we conduct comprehensive experiments with various LLMs, identifying major challenges in scoring science-related questions and highlighting the effectiveness of few-shot prompting in improving scoring accuracy. Our work offers valuable insights into the development of more robust, fair, and educationally meaningful LLM-based evaluation systems.
SubjECTive-QA: Measuring Subjectivity in Earnings Call Transcripts' QA Through Six-Dimensional Feature Analysis
Fact-checking is extensively studied in the context of misinformation and disinformation, addressing objective inaccuracies. However, a softer form of misinformation involves responses that are factually correct but lack certain features such as clarity and relevance. This challenge is prevalent in formal Question-Answer (QA) settings such as press conferences in finance, politics, sports, and other domains, where subjective answers can obscure transparency. Despite this, there is a lack of manually annotated datasets for subjective features across multiple dimensions. To address this gap, we introduce SubjECTive-QA, a human annotated dataset on Earnings Call Transcripts' (ECTs) QA sessions as the answers given by company representatives are often open to subjective interpretations and scrutiny. The dataset includes 49,446 annotations for long-form QA pairs across six features: Assertive, Cautious, Optimistic, Specific, Clear, and Relevant. These features are carefully selected to encompass the key attributes that reflect the tone of the answers provided during QA sessions across different domain. Our findings are that the best-performing Pre-trained Language Model (PLM), RoBERTa-base, has similar weighted F1 scores to Llama-3-70b-Chat on features with lower subjectivity, such as Relevant and Clear, with a mean difference of 2.17% in their weighted F1 scores. The models perform significantly better on features with higher subjectivity, such as Specific and Assertive, with a mean difference of 10.01% in their weighted F1 scores. Furthermore, testing SubjECTive-QA's generalizability using QAs from White House Press Briefings and Gaggles yields an average weighted F1 score of 65.97% using our best models for each feature, demonstrating broader applicability beyond the financial domain. SubjECTive-QA is publicly available under the CC BY 4.0 license
LikeBench: Evaluating Subjective Likability in LLMs for Personalization
A personalized LLM should remember user facts, apply them correctly, and adapt over time to provide responses that the user prefers. Existing LLM personalization benchmarks are largely centered on two axes: accurately recalling user information and accurately applying remembered information in downstream tasks. We argue that a third axis, likability, is both subjective and central to user experience, yet under-measured by current benchmarks. To measure likability holistically, we introduce LikeBench, a multi-session, dynamic evaluation framework that measures likability across multiple dimensions by how much an LLM can adapt over time to a user's preferences to provide more likable responses. In LikeBench, the LLMs engage in conversation with a simulated user and learn preferences only from the ongoing dialogue. As the interaction unfolds, models try to adapt to responses, and after each turn, they are evaluated for likability across seven dimensions by the same simulated user. To the best of our knowledge, we are the first to decompose likability into multiple diagnostic metrics: emotional adaptation, formality matching, knowledge adaptation, reference understanding, conversation length fit, humor fit, and callback, which makes it easier to pinpoint where a model falls short. To make the simulated user more realistic and discriminative, LikeBench uses fine-grained, psychologically grounded descriptive personas rather than the coarse high/low trait rating based personas used in prior work. Our benchmark shows that strong memory performance does not guarantee high likability: DeepSeek R1, with lower memory accuracy (86%, 17 facts/profile), outperformed Qwen3 by 28% on likability score despite Qwen3's higher memory accuracy (93%, 43 facts/profile). Even SOTA models like GPT-5 adapt well in short exchanges but show only limited robustness in longer, noisier interactions.
Toward Effective Automated Content Analysis via Crowdsourcing
Many computer scientists use the aggregated answers of online workers to represent ground truth. Prior work has shown that aggregation methods such as majority voting are effective for measuring relatively objective features. For subjective features such as semantic connotation, online workers, known for optimizing their hourly earnings, tend to deteriorate in the quality of their responses as they work longer. In this paper, we aim to address this issue by proposing a quality-aware semantic data annotation system. We observe that with timely feedback on workers' performance quantified by quality scores, better informed online workers can maintain the quality of their labeling throughout an extended period of time. We validate the effectiveness of the proposed annotation system through i) evaluating performance based on an expert-labeled dataset, and ii) demonstrating machine learning tasks that can lead to consistent learning behavior with 70%-80% accuracy. Our results suggest that with our system, researchers can collect high-quality answers of subjective semantic features at a large scale.
SubjQA: A Dataset for Subjectivity and Review Comprehension
Subjectivity is the expression of internal opinions or beliefs which cannot be objectively observed or verified, and has been shown to be important for sentiment analysis and word-sense disambiguation. Furthermore, subjectivity is an important aspect of user-generated data. In spite of this, subjectivity has not been investigated in contexts where such data is widespread, such as in question answering (QA). We therefore investigate the relationship between subjectivity and QA, while developing a new dataset. We compare and contrast with analyses from previous work, and verify that findings regarding subjectivity still hold when using recently developed NLP architectures. We find that subjectivity is also an important feature in the case of QA, albeit with more intricate interactions between subjectivity and QA performance. For instance, a subjective question may or may not be associated with a subjective answer. We release an English QA dataset (SubjQA) based on customer reviews, containing subjectivity annotations for questions and answer spans across 6 distinct domains.
Contextualized Evaluations: Taking the Guesswork Out of Language Model Evaluations
Language model users often issue queries that lack specification, where the context under which a query was issued -- such as the user's identity, the query's intent, and the criteria for a response to be useful -- is not explicit. For instance, a good response to a subjective query like "What book should I read next?" would depend on the user's preferences, and a good response to an open-ended query like "How do antibiotics work against bacteria?" would depend on the user's expertise. This makes evaluation of responses to such queries an ill-posed task, as evaluators may make arbitrary judgments about the response quality. To remedy this, we present contextualized evaluations, a protocol that synthetically constructs context surrounding an underspecified query and provides it during evaluation. We find that the presence of context can 1) alter conclusions drawn from evaluation, even flipping win rates between model pairs, 2) nudge evaluators to make fewer judgments based on surface-level criteria, like style, and 3) provide new insights about model behavior across diverse contexts. Specifically, our procedure uncovers an implicit bias towards WEIRD contexts in models' "default" responses and we find that models are not equally sensitive to following different contexts, even when they are provided in prompts.
Constructing interval variables via faceted Rasch measurement and multitask deep learning: a hate speech application
We propose a general method for measuring complex variables on a continuous, interval spectrum by combining supervised deep learning with the Constructing Measures approach to faceted Rasch item response theory (IRT). We decompose the target construct, hate speech in our case, into multiple constituent components that are labeled as ordinal survey items. Those survey responses are transformed via IRT into a debiased, continuous outcome measure. Our method estimates the survey interpretation bias of the human labelers and eliminates that influence on the generated continuous measure. We further estimate the response quality of each labeler using faceted IRT, allowing responses from low-quality labelers to be removed. Our faceted Rasch scaling procedure integrates naturally with a multitask deep learning architecture for automated prediction on new data. The ratings on the theorized components of the target outcome are used as supervised, ordinal variables for the neural networks' internal concept learning. We test the use of an activation function (ordinal softmax) and loss function (ordinal cross-entropy) designed to exploit the structure of ordinal outcome variables. Our multitask architecture leads to a new form of model interpretation because each continuous prediction can be directly explained by the constituent components in the penultimate layer. We demonstrate this new method on a dataset of 50,000 social media comments sourced from YouTube, Twitter, and Reddit and labeled by 11,000 U.S.-based Amazon Mechanical Turk workers to measure a continuous spectrum from hate speech to counterspeech. We evaluate Universal Sentence Encoders, BERT, and RoBERTa as language representation models for the comment text, and compare our predictive accuracy to Google Jigsaw's Perspective API models, showing significant improvement over this standard benchmark.
LLMs Reproduce Human Purchase Intent via Semantic Similarity Elicitation of Likert Ratings
Consumer research costs companies billions annually yet suffers from panel biases and limited scale. Large language models (LLMs) offer an alternative by simulating synthetic consumers, but produce unrealistic response distributions when asked directly for numerical ratings. We present semantic similarity rating (SSR), a method that elicits textual responses from LLMs and maps these to Likert distributions using embedding similarity to reference statements. Testing on an extensive dataset comprising 57 personal care product surveys conducted by a leading corporation in that market (9,300 human responses), SSR achieves 90% of human test-retest reliability while maintaining realistic response distributions (KS similarity > 0.85). Additionally, these synthetic respondents provide rich qualitative feedback explaining their ratings. This framework enables scalable consumer research simulations while preserving traditional survey metrics and interpretability.
B-score: Detecting biases in large language models using response history
Large language models (LLMs) often exhibit strong biases, e.g, against women or in favor of the number 7. We investigate whether LLMs would be able to output less biased answers when allowed to observe their prior answers to the same question in a multi-turn conversation. To understand which types of questions invite more biased answers, we test LLMs on our proposed set of questions that span 9 topics and belong to three types: (1) Subjective; (2) Random; and (3) Objective. Interestingly, LLMs are able to "de-bias" themselves in a multi-turn conversation in response to questions that seek an Random, unbiased answer. Furthermore, we propose B-score, a novel metric that is effective in detecting biases to Subjective, Random, Easy, and Hard questions. On MMLU, HLE, and CSQA, leveraging B-score substantially improves the verification accuracy of LLM answers (i.e, accepting LLM correct answers and rejecting incorrect ones) compared to using verbalized confidence scores or the frequency of single-turn answers alone. Code and data are available at: https://b-score.github.io.
MLLM as a UI Judge: Benchmarking Multimodal LLMs for Predicting Human Perception of User Interfaces
In an ideal design pipeline, user interface (UI) design is intertwined with user research to validate decisions, yet studies are often resource-constrained during early exploration. Recent advances in multimodal large language models (MLLMs) offer a promising opportunity to act as early evaluators, helping designers narrow options before formal testing. Unlike prior work that emphasizes user behavior in narrow domains such as e-commerce with metrics like clicks or conversions, we focus on subjective user evaluations across varied interfaces. We investigate whether MLLMs can mimic human preferences when evaluating individual UIs and comparing them. Using data from a crowdsourcing platform, we benchmark GPT-4o, Claude, and Llama across 30 interfaces and examine alignment with human judgments on multiple UI factors. Our results show that MLLMs approximate human preferences on some dimensions but diverge on others, underscoring both their potential and limitations in supplementing early UX research.
Using Natural Language Explanations to Rescale Human Judgments
The rise of large language models (LLMs) has brought a critical need for high-quality human-labeled data, particularly for processes like human feedback and evaluation. A common practice is to label data via consensus annotation over crowdworker judgments. However, annotators' judgments for subjective tasks can differ in many ways: they may have different qualitative judgments about an example, and they may map those to a labeling scheme in different ways. We show that these nuances can be captured by natural language explanations, and propose a method to rescale ordinal annotations and explanations using LLMs. Specifically, we feed annotators' Likert ratings and corresponding explanations into an LLM and prompt it to produce a numeric score anchored in a scoring rubric. These scores should reflect the annotators' underlying assessments of the example. The rubric can be designed or modified after annotation, and include distinctions that may not have been known when the original error taxonomy was devised. We explore our technique in the context of rating system outputs for a document-grounded question answering task, where LLMs achieve near-human performance. Our method rescales the raw judgments without impacting agreement and brings the scores closer to human judgments grounded in the same scoring rubric.
Beyond the Surface: Measuring Self-Preference in LLM Judgments
Recent studies show that large language models (LLMs) exhibit self-preference bias when serving as judges, meaning they tend to favor their own responses over those generated by other models. Existing methods typically measure this bias by calculating the difference between the scores a judge model assigns to its own responses and those it assigns to responses from other models. However, this approach conflates self-preference bias with response quality, as higher-quality responses from the judge model may also lead to positive score differences, even in the absence of bias. To address this issue, we introduce gold judgments as proxies for the actual quality of responses and propose the DBG score, which measures self-preference bias as the difference between the scores assigned by the judge model to its own responses and the corresponding gold judgments. Since gold judgments reflect true response quality, the DBG score mitigates the confounding effect of response quality on bias measurement. Using the DBG score, we conduct comprehensive experiments to assess self-preference bias across LLMs of varying versions, sizes, and reasoning abilities. Additionally, we investigate two factors that influence and help alleviate self-preference bias: response text style and the post-training data of judge models. Finally, we explore potential underlying mechanisms of self-preference bias from an attention-based perspective. Our code and data are available at https://github.com/zhiyuanc2001/self-preference.
A Scalable Framework for Evaluating Health Language Models
Large language models (LLMs) have emerged as powerful tools for analyzing complex datasets. Recent studies demonstrate their potential to generate useful, personalized responses when provided with patient-specific health information that encompasses lifestyle, biomarkers, and context. As LLM-driven health applications are increasingly adopted, rigorous and efficient one-sided evaluation methodologies are crucial to ensure response quality across multiple dimensions, including accuracy, personalization and safety. Current evaluation practices for open-ended text responses heavily rely on human experts. This approach introduces human factors and is often cost-prohibitive, labor-intensive, and hinders scalability, especially in complex domains like healthcare where response assessment necessitates domain expertise and considers multifaceted patient data. In this work, we introduce Adaptive Precise Boolean rubrics: an evaluation framework that streamlines human and automated evaluation of open-ended questions by identifying gaps in model responses using a minimal set of targeted rubrics questions. Our approach is based on recent work in more general evaluation settings that contrasts a smaller set of complex evaluation targets with a larger set of more precise, granular targets answerable with simple boolean responses. We validate this approach in metabolic health, a domain encompassing diabetes, cardiovascular disease, and obesity. Our results demonstrate that Adaptive Precise Boolean rubrics yield higher inter-rater agreement among expert and non-expert human evaluators, and in automated assessments, compared to traditional Likert scales, while requiring approximately half the evaluation time of Likert-based methods. This enhanced efficiency, particularly in automated evaluation and non-expert contributions, paves the way for more extensive and cost-effective evaluation of LLMs in health.
Using LLMs to Establish Implicit User Sentiment of Software Desirability
This study explores the use of LLMs for providing quantitative zero-shot sentiment analysis of implicit software desirability, addressing a critical challenge in product evaluation where traditional review scores, though convenient, fail to capture the richness of qualitative user feedback. Innovations include establishing a method that 1) works with qualitative user experience data without the need for explicit review scores, 2) focuses on implicit user satisfaction, and 3) provides scaled numerical sentiment analysis, offering a more nuanced understanding of user sentiment, instead of simply classifying sentiment as positive, neutral, or negative. Data is collected using the Microsoft Product Desirability Toolkit (PDT), a well-known qualitative user experience analysis tool. For initial exploration, the PDT metric was given to users of two software systems. PDT data was fed through several LLMs (Claude Sonnet 3 and 3.5, GPT4, and GPT4o) and through a leading transfer learning technique, Twitter-Roberta-Base-Sentiment, and Vader, a leading sentiment analysis tool. Each system was asked to evaluate the data in two ways, by looking at the sentiment expressed in the PDT word/explanation pairs; and by looking at the sentiment expressed by the users in their grouped selection of five words and explanations, as a whole. Each LLM provided a sentiment score, its confidence (low, medium, high) in the score, and an explanation of the score. All LLMs tested were able to statistically detect user sentiment from the users' grouped data, whereas TRBS and Vader were not. The confidence and explanation of confidence provided by the LLMs assisted in understanding user sentiment. This study adds deeper understanding of evaluating user experiences, toward the goal of creating a universal tool that quantifies implicit sentiment.
In-place Double Stimulus Methodology for Subjective Assessment of High Quality Images
This paper introduces a novel double stimulus subjective assessment methodology for the evaluation of high quality images to address the limitations of existing protocols in detecting subtle perceptual differences. The In-place Double Stimulus Quality Scale (IDSQS) allows subjects to alternately view a reference and a distorted image at the same spatial location, facilitating a more intuitive detection of differences in quality, especially at high to visually lossless quality levels. A large-scale crowdsourcing study employing this methodology was conducted, generating a comprehensive public dataset to evaluate perceived image quality across several compression algorithms and distortion levels. An additional contribution is the modeling of quality scores using a Beta distribution, allowing for the assessment of variability and subject consistency. Our findings demonstrate the effectiveness of the IDSQS methodology in achieving high correlation with more precise subjective evaluation benchmarks. The dataset, subjective data, and graphical user interface developed for this study are publicly available at https://github.com/shimamohammadi/IDSQS
Q-Align: Teaching LMMs for Visual Scoring via Discrete Text-Defined Levels
The explosion of visual content available online underscores the requirement for an accurate machine assessor to robustly evaluate scores across diverse types of visual contents. While recent studies have demonstrated the exceptional potentials of large multi-modality models (LMMs) on a wide range of related fields, in this work, we explore how to teach them for visual rating aligned with human opinions. Observing that human raters only learn and judge discrete text-defined levels in subjective studies, we propose to emulate this subjective process and teach LMMs with text-defined rating levels instead of scores. The proposed Q-Align achieves state-of-the-art performance on image quality assessment (IQA), image aesthetic assessment (IAA), as well as video quality assessment (VQA) tasks under the original LMM structure. With the syllabus, we further unify the three tasks into one model, termed the OneAlign. In our experiments, we demonstrate the advantage of the discrete-level-based syllabus over direct-score-based variants for LMMs. Our code and the pre-trained weights are released at https://github.com/Q-Future/Q-Align.
Neural network approach to classifying alarming student responses to online assessment
Automated scoring engines are increasingly being used to score the free-form text responses that students give to questions. Such engines are not designed to appropriately deal with responses that a human reader would find alarming such as those that indicate an intention to self-harm or harm others, responses that allude to drug abuse or sexual abuse or any response that would elicit concern for the student writing the response. Our neural network models have been designed to help identify these anomalous responses from a large collection of typical responses that students give. The responses identified by the neural network can be assessed for urgency, severity, and validity more quickly by a team of reviewers than otherwise possible. Given the anomalous nature of these types of responses, our goal is to maximize the chance of flagging these responses for review given the constraint that only a fixed percentage of responses can viably be assessed by a team of reviewers.
Aligning Language Models Using Follow-up Likelihood as Reward Signal
In natural human-to-human conversations, participants often receive feedback signals from one another based on their follow-up reactions. These reactions can include verbal responses, facial expressions, changes in emotional state, and other non-verbal cues. Similarly, in human-machine interactions, the machine can leverage the user's follow-up utterances as feedback signals to assess whether it has appropriately addressed the user's request. Therefore, we propose using the likelihood of follow-up utterances as rewards to differentiate preferred responses from less favored ones, without relying on human or commercial LLM-based preference annotations. Our proposed reward mechanism, ``Follow-up Likelihood as Reward" (FLR), matches the performance of strong reward models trained on large-scale human or GPT-4 annotated data on 8 pairwise-preference and 4 rating-based benchmarks. Building upon the FLR mechanism, we propose to automatically mine preference data from the online generations of a base policy model. The preference data are subsequently used to boost the helpfulness of the base model through direct alignment from preference (DAP) methods, such as direct preference optimization (DPO). Lastly, we demonstrate that fine-tuning the language model that provides follow-up likelihood with natural language feedback significantly enhances FLR's performance on reward modeling benchmarks and effectiveness in aligning the base policy model's helpfulness.
iNews: A Multimodal Dataset for Modeling Personalized Affective Responses to News
Current approaches to emotion detection often overlook the inherent subjectivity of affective experiences, instead relying on aggregated labels that mask individual variations in emotional responses. We introduce iNews, a novel large-scale dataset explicitly capturing subjective affective responses to news headlines. Our dataset comprises annotations from 291 demographically diverse UK participants across 2,899 multimodal Facebook news posts from major UK outlets, with an average of 5.18 annotators per sample. For each post, annotators provide multifaceted labels including valence, arousal, dominance, discrete emotions, content relevance judgments, sharing likelihood, and modality importance ratings (text, image, or both). Furthermore, we collect comprehensive annotator persona information covering demographics, personality, media trust, and consumption patterns, which explain 15.2% of annotation variance - higher than existing NLP datasets. Incorporating this information yields a 7% accuracy gain in zero-shot prediction and remains beneficial even with 32-shot. iNews will enhance research in LLM personalization, subjectivity, affective computing, and individual-level behavior simulation.
Human Feedback is not Gold Standard
Human feedback has become the de facto standard for evaluating the performance of Large Language Models, and is increasingly being used as a training objective. However, it is not clear which properties of a generated output this single `preference' score captures. We hypothesise that preference scores are subjective and open to undesirable biases. We critically analyse the use of human feedback for both training and evaluation, to verify whether it fully captures a range of crucial error criteria. We find that while preference scores have fairly good coverage, they under-represent important aspects like factuality. We further hypothesise that both preference scores and error annotation may be affected by confounders, and leverage instruction-tuned models to generate outputs that vary along two possible confounding dimensions: assertiveness and complexity. We find that the assertiveness of an output skews the perceived rate of factuality errors, indicating that human annotations are not a fully reliable evaluation metric or training objective. Finally, we offer preliminary evidence that using human feedback as a training objective disproportionately increases the assertiveness of model outputs. We encourage future work to carefully consider whether preference scores are well aligned with the desired objective.
QoNext: Towards Next-generation QoE for Foundation Models
Existing evaluations of foundation models, including recent human-centric approaches, fail to capture what truly matters: user's experience during interaction. Current methods treat evaluation as a matter of output correctness alone, overlooking that user satisfaction emerges from the interplay between response quality and interaction, which limits their ability to account for the mechanisms underlying user experience. To address this gap, we introduce QoNext, the first framework that adapts Quality of Experience (QoE) principles from networking and multimedia to the assessment of foundation models. QoNext identifies experiential factors that shape user experience and incorporates them into controlled experiments, where human ratings are collected under varied configurations. From these studies we construct a QoE-oriented database and train predictive models that estimate perceived user experience from measurable system parameters. Our results demonstrate that QoNext not only enables proactive and fine-grained evaluation but also provides actionable guidance for productized services of optimizing foundation models in practice.
PerSEval: Assessing Personalization in Text Summarizers
Personalized summarization models cater to individuals' subjective understanding of saliency, as represented by their reading history and current topics of attention. Existing personalized text summarizers are primarily evaluated based on accuracy measures such as BLEU, ROUGE, and METEOR. However, a recent study argued that accuracy measures are inadequate for evaluating the degree of personalization of these models and proposed EGISES, the first metric to evaluate personalized text summaries. It was suggested that accuracy is a separate aspect and should be evaluated standalone. In this paper, we challenge the necessity of an accuracy leaderboard, suggesting that relying on accuracy-based aggregated results might lead to misleading conclusions. To support this, we delve deeper into EGISES, demonstrating both theoretically and empirically that it measures the degree of responsiveness, a necessary but not sufficient condition for degree-of-personalization. We subsequently propose PerSEval, a novel measure that satisfies the required sufficiency condition. Based on the benchmarking of ten SOTA summarization models on the PENS dataset, we empirically establish that -- (i) PerSEval is reliable w.r.t human-judgment correlation (Pearson's r = 0.73; Spearman's rho = 0.62; Kendall's tau = 0.42), (ii) PerSEval has high rank-stability, (iii) PerSEval as a rank-measure is not entailed by EGISES-based ranking, and (iv) PerSEval can be a standalone rank-measure without the need of any aggregated ranking.
FEEL: A Framework for Evaluating Emotional Support Capability with Large Language Models
Emotional Support Conversation (ESC) is a typical dialogue that can effectively assist the user in mitigating emotional pressures. However, owing to the inherent subjectivity involved in analyzing emotions, current non-artificial methodologies face challenges in effectively appraising the emotional support capability. These metrics exhibit a low correlation with human judgments. Concurrently, manual evaluation methods extremely will cause high costs. To solve these problems, we propose a novel model FEEL (Framework for Evaluating Emotional Support Capability with Large Lan-guage Models), employing Large Language Models (LLMs) as evaluators to assess emotional support capabilities. The model meticulously considers various evaluative aspects of ESC to apply a more comprehensive and accurate evaluation method for ESC. Additionally, it employs a probability distribution approach for a more stable result and integrates an ensemble learning strategy, leveraging multiple LLMs with assigned weights to enhance evaluation accuracy. To appraise the performance of FEEL, we conduct extensive experiments on existing ESC model dialogues. Experimental results demonstrate our model exhibits a substantial enhancement in alignment with human evaluations compared to the baselines. Our source code is available at https://github.com/Ansisy/FEEL.
It is not always greener on the other side: Greenery perception across demographics and personalities in multiple cities
Quantifying and assessing urban greenery is consequential for planning and development, reflecting the everlasting importance of green spaces for multiple climate and well-being dimensions of cities. Evaluation can be broadly grouped into objective (e.g., measuring the amount of greenery) and subjective (e.g., polling the perception of people) approaches, which may differ -- what people see and feel about how green a place is might not match the measurements of the actual amount of vegetation. In this work, we advance the state of the art by measuring such differences and explaining them through human, geographic, and spatial dimensions. The experiments rely on contextual information extracted from street view imagery and a comprehensive urban visual perception survey collected from 1,000 people across five countries with their extensive demographic and personality information. We analyze the discrepancies between objective measures (e.g., Green View Index (GVI)) and subjective scores (e.g., pairwise ratings), examining whether they can be explained by a variety of human and visual factors such as age group and spatial variation of greenery in the scene. The findings reveal that such discrepancies are comparable around the world and that demographics and personality do not play a significant role in perception. Further, while perceived and measured greenery correlate consistently across geographies (both where people and where imagery are from), where people live plays a significant role in explaining perceptual differences, with these two, as the top among seven, features that influences perceived greenery the most. This location influence suggests that cultural, environmental, and experiential factors substantially shape how individuals observe greenery in cities.
Is GPT-4 a reliable rater? Evaluating Consistency in GPT-4 Text Ratings
This study investigates the consistency of feedback ratings generated by OpenAI's GPT-4, a state-of-the-art artificial intelligence language model, across multiple iterations, time spans and stylistic variations. The model rated responses to tasks within the Higher Education (HE) subject domain of macroeconomics in terms of their content and style. Statistical analysis was conducted in order to learn more about the interrater reliability, consistency of the ratings across iterations and the correlation between ratings in terms of content and style. The results revealed a high interrater reliability with ICC scores ranging between 0.94 and 0.99 for different timespans, suggesting that GPT-4 is capable of generating consistent ratings across repetitions with a clear prompt. Style and content ratings show a high correlation of 0.87. When applying a non-adequate style the average content ratings remained constant, while style ratings decreased, which indicates that the large language model (LLM) effectively distinguishes between these two criteria during evaluation. The prompt used in this study is furthermore presented and explained. Further research is necessary to assess the robustness and reliability of AI models in various use cases.
The Pursuit of Empathy: Evaluating Small Language Models for PTSD Dialogue Support
Can small language models with 0.5B to 5B parameters meaningfully engage in trauma-informed, empathetic dialogue for individuals with PTSD? We address this question by introducing TIDE, a dataset of 10,000 two-turn dialogues spanning 500 diverse PTSD client personas and grounded in a three-factor empathy model: emotion recognition, distress normalization, and supportive reflection. All scenarios and reference responses were reviewed for realism and trauma sensitivity by a clinical psychologist specializing in PTSD. We evaluate eight small language models before and after fine-tuning, comparing their outputs to a frontier model (Claude Sonnet 3.5). Our IRB-approved human evaluation and automatic metrics show that fine-tuning generally improves perceived empathy, but gains are highly scenario- and user-dependent, with smaller models facing an empathy ceiling. Demographic analysis shows older adults value distress validation and graduate-educated users prefer nuanced replies, while gender effects are minimal. We highlight the limitations of automatic metrics and the need for context- and user-aware system design. Our findings, along with the planned release of TIDE, provide a foundation for building safe, resource-efficient, and ethically sound empathetic AI to supplement, not replace, clinical mental health care.
Can We Trust Recommender System Fairness Evaluation? The Role of Fairness and Relevance
Relevance and fairness are two major objectives of recommender systems (RSs). Recent work proposes measures of RS fairness that are either independent from relevance (fairness-only) or conditioned on relevance (joint measures). While fairness-only measures have been studied extensively, we look into whether joint measures can be trusted. We collect all joint evaluation measures of RS relevance and fairness, and ask: How much do they agree with each other? To what extent do they agree with relevance/fairness measures? How sensitive are they to changes in rank position, or to increasingly fair and relevant recommendations? We empirically study for the first time the behaviour of these measures across 4 real-world datasets and 4 recommenders. We find that most of these measures: i) correlate weakly with one another and even contradict each other at times; ii) are less sensitive to rank position changes than relevance- and fairness-only measures, meaning that they are less granular than traditional RS measures; and iii) tend to compress scores at the low end of their range, meaning that they are not very expressive. We counter the above limitations with a set of guidelines on the appropriate usage of such measures, i.e., they should be used with caution due to their tendency to contradict each other and of having a very small empirical range.
Contextualized Counterspeech: Strategies for Adaptation, Personalization, and Evaluation
AI-generated counterspeech offers a promising and scalable strategy to curb online toxicity through direct replies that promote civil discourse. However, current counterspeech is one-size-fits-all, lacking adaptation to the moderation context and the users involved. We propose and evaluate multiple strategies for generating tailored counterspeech that is adapted to the moderation context and personalized for the moderated user. We instruct an LLaMA2-13B model to generate counterspeech, experimenting with various configurations based on different contextual information and fine-tuning strategies. We identify the configurations that generate persuasive counterspeech through a combination of quantitative indicators and human evaluations collected via a pre-registered mixed-design crowdsourcing experiment. Results show that contextualized counterspeech can significantly outperform state-of-the-art generic counterspeech in adequacy and persuasiveness, without compromising other characteristics. Our findings also reveal a poor correlation between quantitative indicators and human evaluations, suggesting that these methods assess different aspects and highlighting the need for nuanced evaluation methodologies. The effectiveness of contextualized AI-generated counterspeech and the divergence between human and algorithmic evaluations underscore the importance of increased human-AI collaboration in content moderation.
Psycholinguistic Word Features: a New Approach for the Evaluation of LLMs Alignment with Humans
The evaluation of LLMs has so far focused primarily on how well they can perform different tasks such as reasoning, question-answering, paraphrasing, or translating. For most of these tasks, performance can be measured with objective metrics, such as the number of correct answers. However, other language features are not easily quantified. For example, arousal, concreteness, or gender associated with a given word, as well as the extent to which we experience words with senses and relate them to a specific sense. Those features have been studied for many years by psycholinguistics, conducting large-scale experiments with humans to produce ratings for thousands of words. This opens an opportunity to evaluate how well LLMs align with human ratings on these word features, taking advantage of existing studies that cover many different language features in a large number of words. In this paper, we evaluate the alignment of a representative group of LLMs with human ratings on two psycholinguistic datasets: the Glasgow and Lancaster norms. These datasets cover thirteen features over thousands of words. The results show that alignment is black{generally} better in the Glasgow norms evaluated (arousal, valence, dominance, concreteness, imageability, familiarity, and gender) than on the Lancaster norms evaluated (introceptive, gustatory, olfactory, haptic, auditory, and visual). This suggests a potential limitation of current LLMs in aligning with human sensory associations for words, which may be due to their lack of embodied cognition present in humans and illustrates the usefulness of evaluating LLMs with psycholinguistic datasets.
CUEMPATHY: A Counseling Speech Dataset for Psychotherapy Research
Psychotherapy or counseling is typically conducted through spoken conversation between a therapist and a client. Analyzing the speech characteristics of psychotherapeutic interactions can help understand the factors associated with effective psychotherapy. This paper introduces CUEMPATHY, a large-scale speech dataset collected from actual counseling sessions. The dataset consists of 156 counseling sessions involving 39 therapist-client dyads. The process of speech data collection, subjective ratings (one observer and two client ratings), and transcription are described. An automatic speech and text processing system is developed to locate the time stamps of speaker turns in each session. Examining the relationships among the three subjective ratings suggests that observer and client ratings have no significant correlation, while the client-rated measures are significantly correlated. The intensity similarity between the therapist and the client, measured by the averaged absolute difference of speaker-turn-level intensities, is associated with the psychotherapy outcomes. Recent studies on the acoustic and linguistic characteristics of the CUEMPATHY are introduced.
Measuring and Forecasting Conversation Incivility: the Role of Antisocial and Prosocial Behaviors
This paper focuses on the task of measuring and forecasting incivility in conversations following replies to hate speech. Identifying replies that steer conversations away from hatred and elicit civil follow-up conversations sheds light into effective strategies to engage with hate speech and proactively avoid further escalation. We propose new metrics that take into account various dimensions of antisocial and prosocial behaviors to measure the conversation incivility following replies to hate speech. Our best metric aligns with human perceptions better than prior work. Additionally, we present analyses on a) the language of antisocial and prosocial posts, b) the relationship between antisocial or prosocial posts and user interactions, and c) the language of replies to hate speech that elicit follow-up conversations with different incivility levels. We show that forecasting the incivility level of conversations following a reply to hate speech is a challenging task. We also present qualitative analyses to identify the most common errors made by our best model.
Language Model Council: Benchmarking Foundation Models on Highly Subjective Tasks by Consensus
The rapid advancement of Large Language Models (LLMs) necessitates robust and challenging benchmarks. Leaderboards like Chatbot Arena rank LLMs based on how well their responses align with human preferences. However, many tasks such as those related to emotional intelligence, creative writing, or persuasiveness, are highly subjective and often lack majoritarian human agreement. Judges may have irreconcilable disagreements about what constitutes a better response. To address the challenge of ranking LLMs on highly subjective tasks, we propose a novel benchmarking framework, the Language Model Council (LMC). The LMC operates through a democratic process to: 1) formulate a test set through equal participation, 2) administer the test among council members, and 3) evaluate responses as a collective jury. We deploy a council of 20 newest LLMs on an open-ended emotional intelligence task: responding to interpersonal dilemmas. Our results show that the LMC produces rankings that are more separable, robust, and less biased than those from any individual LLM judge, and is more consistent with a human-established leaderboard compared to other benchmarks.
SEWA DB: A Rich Database for Audio-Visual Emotion and Sentiment Research in the Wild
Natural human-computer interaction and audio-visual human behaviour sensing systems, which would achieve robust performance in-the-wild are more needed than ever as digital devices are increasingly becoming an indispensable part of our life. Accurately annotated real-world data are the crux in devising such systems. However, existing databases usually consider controlled settings, low demographic variability, and a single task. In this paper, we introduce the SEWA database of more than 2000 minutes of audio-visual data of 398 people coming from six cultures, 50% female, and uniformly spanning the age range of 18 to 65 years old. Subjects were recorded in two different contexts: while watching adverts and while discussing adverts in a video chat. The database includes rich annotations of the recordings in terms of facial landmarks, facial action units (FAU), various vocalisations, mirroring, and continuously valued valence, arousal, liking, agreement, and prototypic examples of (dis)liking. This database aims to be an extremely valuable resource for researchers in affective computing and automatic human sensing and is expected to push forward the research in human behaviour analysis, including cultural studies. Along with the database, we provide extensive baseline experiments for automatic FAU detection and automatic valence, arousal and (dis)liking intensity estimation.
Evaluation Measures of Individual Item Fairness for Recommender Systems: A Critical Study
Fairness is an emerging and challenging topic in recommender systems. In recent years, various ways of evaluating and therefore improving fairness have emerged. In this study, we examine existing evaluation measures of fairness in recommender systems. Specifically, we focus solely on exposure-based fairness measures of individual items that aim to quantify the disparity in how individual items are recommended to users, separate from item relevance to users. We gather all such measures and we critically analyse their theoretical properties. We identify a series of limitations in each of them, which collectively may render the affected measures hard or impossible to interpret, to compute, or to use for comparing recommendations. We resolve these limitations by redefining or correcting the affected measures, or we argue why certain limitations cannot be resolved. We further perform a comprehensive empirical analysis of both the original and our corrected versions of these fairness measures, using real-world and synthetic datasets. Our analysis provides novel insights into the relationship between measures based on different fairness concepts, and different levels of measure sensitivity and strictness. We conclude with practical suggestions of which fairness measures should be used and when. Our code is publicly available. To our knowledge, this is the first critical comparison of individual item fairness measures in recommender systems.
IMDB-WIKI-SbS: An Evaluation Dataset for Crowdsourced Pairwise Comparisons
Today, comprehensive evaluation of large-scale machine learning models is possible thanks to the open datasets produced using crowdsourcing, such as SQuAD, MS COCO, ImageNet, SuperGLUE, etc. These datasets capture objective responses, assuming the single correct answer, which does not allow to capture the subjective human perception. In turn, pairwise comparison tasks, in which one has to choose between only two options, allow taking peoples' preferences into account for very challenging artificial intelligence tasks, such as information retrieval and recommender system evaluation. Unfortunately, the available datasets are either small or proprietary, slowing down progress in gathering better feedback from human users. In this paper, we present IMDB-WIKI-SbS, a new large-scale dataset for evaluating pairwise comparisons. It contains 9,150 images appearing in 250,249 pairs annotated on a crowdsourcing platform. Our dataset has balanced distributions of age and gender using the well-known IMDB-WIKI dataset as ground truth. We describe how our dataset is built and then compare several baseline methods, indicating its suitability for model evaluation.
Are international happiness rankings reliable?
Global comparisons of wellbeing increasingly rely on survey questions that ask respondents to evaluate their lives, most commonly in the form of "life satisfaction" and "Cantril ladder" items. These measures underpin international rankings such as the World Happiness Report and inform policy initiatives worldwide, yet their comparability has not been established with contemporary global data. Using the Gallup World Poll, Global Flourishing Study, and World Values Survey, I show that the two question formats yield divergent distributions, rankings, and response patterns that vary across countries and surveys, defying simple explanations. To explore differences in respondents' cognitive interpretations, I compare regression coefficients from the Global Flourishing Study, analyzing how each question wording relates to life circumstances. While international rankings of wellbeing are unstable, the scientific study of the determinants of life evaluations appears more robust. Together, the findings underscore the need for a renewed research agenda on critical limitations to cross-country comparability of wellbeing.
Better Automatic Evaluation of Open-Domain Dialogue Systems with Contextualized Embeddings
Despite advances in open-domain dialogue systems, automatic evaluation of such systems is still a challenging problem. Traditional reference-based metrics such as BLEU are ineffective because there could be many valid responses for a given context that share no common words with reference responses. A recent work proposed Referenced metric and Unreferenced metric Blended Evaluation Routine (RUBER) to combine a learning-based metric, which predicts relatedness between a generated response and a given query, with reference-based metric; it showed high correlation with human judgments. In this paper, we explore using contextualized word embeddings to compute more accurate relatedness scores, thus better evaluation metrics. Experiments show that our evaluation metrics outperform RUBER, which is trained on static embeddings.
Are Large Language Models In-Context Personalized Summarizers? Get an iCOPERNICUS Test Done!
Large Language Models (LLMs) have succeeded considerably in In-Context-Learning (ICL) based summarization. However, saliency is subject to the users' specific preference histories. Hence, we need reliable In-Context Personalization Learning (ICPL) capabilities within such LLMs. For any arbitrary LLM to exhibit ICPL, it needs to have the ability to discern contrast in user profiles. A recent study proposed a measure for degree-of-personalization called EGISES for the first time. EGISES measures a model's responsiveness to user profile differences. However, it cannot test if a model utilizes all three types of cues provided in ICPL prompts: (i) example summaries, (ii) user's reading histories, and (iii) contrast in user profiles. To address this, we propose the iCOPERNICUS framework, a novel In-COntext PERsonalization learNIng sCrUtiny of Summarization capability in LLMs that uses EGISES as a comparative measure. As a case-study, we evaluate 17 state-of-the-art LLMs based on their reported ICL performances and observe that 15 models' ICPL degrades (min: 1.6%; max: 3.6%) when probed with richer prompts, thereby showing lack of true ICPL.
Measuring Human and AI Values based on Generative Psychometrics with Large Language Models
Human values and their measurement are long-standing interdisciplinary inquiry. Recent advances in AI have sparked renewed interest in this area, with large language models (LLMs) emerging as both tools and subjects of value measurement. This work introduces Generative Psychometrics for Values (GPV), an LLM-based, data-driven value measurement paradigm, theoretically grounded in text-revealed selective perceptions. We begin by fine-tuning an LLM for accurate perception-level value measurement and verifying the capability of LLMs to parse texts into perceptions, forming the core of the GPV pipeline. Applying GPV to human-authored blogs, we demonstrate its stability, validity, and superiority over prior psychological tools. Then, extending GPV to LLM value measurement, we advance the current art with 1) a psychometric methodology that measures LLM values based on their scalable and free-form outputs, enabling context-specific measurement; 2) a comparative analysis of measurement paradigms, indicating response biases of prior methods; and 3) an attempt to bridge LLM values and their safety, revealing the predictive power of different value systems and the impacts of various values on LLM safety. Through interdisciplinary efforts, we aim to leverage AI for next-generation psychometrics and psychometrics for value-aligned AI.
A Framework to Assess (Dis)agreement Among Diverse Rater Groups
Recent advancements in conversational AI have created an urgent need for safety guardrails that prevent users from being exposed to offensive and dangerous content. Much of this work relies on human ratings and feedback, but does not account for the fact that perceptions of offense and safety are inherently subjective and that there may be systematic disagreements between raters that align with their socio-demographic identities. Instead, current machine learning approaches largely ignore rater subjectivity and use gold standards that obscure disagreements (e.g., through majority voting). In order to better understand the socio-cultural leanings of such tasks, we propose a comprehensive disagreement analysis framework to measure systematic diversity in perspectives among different rater subgroups. We then demonstrate its utility by applying this framework to a dataset of human-chatbot conversations rated by a demographically diverse pool of raters. Our analysis reveals specific rater groups that have more diverse perspectives than the rest, and informs demographic axes that are crucial to consider for safety annotations.
AGIQA-3K: An Open Database for AI-Generated Image Quality Assessment
With the rapid advancements of the text-to-image generative model, AI-generated images (AGIs) have been widely applied to entertainment, education, social media, etc. However, considering the large quality variance among different AGIs, there is an urgent need for quality models that are consistent with human subjective ratings. To address this issue, we extensively consider various popular AGI models, generated AGI through different prompts and model parameters, and collected subjective scores at the perceptual quality and text-to-image alignment, thus building the most comprehensive AGI subjective quality database AGIQA-3K so far. Furthermore, we conduct a benchmark experiment on this database to evaluate the consistency between the current Image Quality Assessment (IQA) model and human perception, while proposing StairReward that significantly improves the assessment performance of subjective text-to-image alignment. We believe that the fine-grained subjective scores in AGIQA-3K will inspire subsequent AGI quality models to fit human subjective perception mechanisms at both perception and alignment levels and to optimize the generation result of future AGI models. The database is released on https://github.com/lcysyzxdxc/AGIQA-3k-Database.
K-QA: A Real-World Medical Q&A Benchmark
Ensuring the accuracy of responses provided by large language models (LLMs) is crucial, particularly in clinical settings where incorrect information may directly impact patient health. To address this challenge, we construct K-QA, a dataset containing 1,212 patient questions originating from real-world conversations held on K Health (an AI-driven clinical platform). We employ a panel of in-house physicians to answer and manually decompose a subset of K-QA into self-contained statements. Additionally, we formulate two NLI-based evaluation metrics approximating recall and precision: (1) comprehensiveness, measuring the percentage of essential clinical information in the generated answer and (2) hallucination rate, measuring the number of statements from the physician-curated response contradicted by the LLM answer. Finally, we use K-QA along with these metrics to evaluate several state-of-the-art models, as well as the effect of in-context learning and medically-oriented augmented retrieval schemes developed by the authors. Our findings indicate that in-context learning improves the comprehensiveness of the models, and augmented retrieval is effective in reducing hallucinations. We make K-QA available to to the community to spur research into medically accurate NLP applications.
Dialogue Response Ranking Training with Large-Scale Human Feedback Data
Existing open-domain dialog models are generally trained to minimize the perplexity of target human responses. However, some human replies are more engaging than others, spawning more followup interactions. Current conversational models are increasingly capable of producing turns that are context-relevant, but in order to produce compelling agents, these models need to be able to predict and optimize for turns that are genuinely engaging. We leverage social media feedback data (number of replies and upvotes) to build a large-scale training dataset for feedback prediction. To alleviate possible distortion between the feedback and engagingness, we convert the ranking problem to a comparison of response pairs which involve few confounding factors. We trained DialogRPT, a set of GPT-2 based models on 133M pairs of human feedback data and the resulting ranker outperformed several baselines. Particularly, our ranker outperforms the conventional dialog perplexity baseline with a large margin on predicting Reddit feedback. We finally combine the feedback prediction models and a human-like scoring model to rank the machine-generated dialog responses. Crowd-sourced human evaluation shows that our ranking method correlates better with real human preferences than baseline models.
Improving Automatic VQA Evaluation Using Large Language Models
8 years after the visual question answering (VQA) task was proposed, accuracy remains the primary metric for automatic evaluation. VQA Accuracy has been effective so far in the IID evaluation setting. However, our community is undergoing a shift towards open-ended generative models and OOD evaluation. In this new paradigm, the existing VQA Accuracy metric is overly stringent and underestimates the performance of VQA systems. Thus, there is a need to develop more robust automatic VQA metrics that serve as a proxy for human judgment. In this work, we propose to leverage the in-context learning capabilities of instruction-tuned large language models (LLMs) to build a better VQA metric. We formulate VQA evaluation as an answer-rating task where the LLM is instructed to score the accuracy of a candidate answer given a set of reference answers. We demonstrate the proposed metric better correlates with human judgment compared to existing metrics across several VQA models and benchmarks. We hope wide adoption of our metric will contribute to better estimating the research progress on the VQA task. We plan to release the evaluation code and collected human judgments.
MIME: MIMicking Emotions for Empathetic Response Generation
Current approaches to empathetic response generation view the set of emotions expressed in the input text as a flat structure, where all the emotions are treated uniformly. We argue that empathetic responses often mimic the emotion of the user to a varying degree, depending on its positivity or negativity and content. We show that the consideration of this polarity-based emotion clusters and emotional mimicry results in improved empathy and contextual relevance of the response as compared to the state-of-the-art. Also, we introduce stochasticity into the emotion mixture that yields emotionally more varied empathetic responses than the previous work. We demonstrate the importance of these factors to empathetic response generation using both automatic- and human-based evaluations. The implementation of MIME is publicly available at https://github.com/declare-lab/MIME.
P.808 Multilingual Speech Enhancement Testing: Approach and Results of URGENT 2025 Challenge
In speech quality estimation for speech enhancement (SE) systems, subjective listening tests so far are considered as the gold standard. This should be even more true considering the large influx of new generative or hybrid methods into the field, revealing issues of some objective metrics. Efforts such as the Interspeech 2025 URGENT Speech Enhancement Challenge also involving non-English datasets add the aspect of multilinguality to the testing procedure. In this paper, we provide a brief recap of the ITU-T P.808 crowdsourced subjective listening test method. A first novel contribution is our proposed process of localizing both text and audio components of Naderi and Cutler's implementation of crowdsourced subjective absolute category rating (ACR) listening tests involving text-to-speech (TTS). Further, we provide surprising analyses of and insights into URGENT Challenge results, tackling the reliability of (P.808) ACR subjective testing as gold standard in the age of generative AI. Particularly, it seems that for generative SE methods, subjective (ACR MOS) and objective (DNSMOS, NISQA) reference-free metrics should be accompanied by objective phone fidelity metrics to reliably detect hallucinations. Finally, in the accepted version, we will release our localization scripts and methods for easy deployment for new multilingual speech enhancement subjective evaluations according to ITU-T P.808.
CEM: Commonsense-aware Empathetic Response Generation
A key trait of daily conversations between individuals is the ability to express empathy towards others, and exploring ways to implement empathy is a crucial step towards human-like dialogue systems. Previous approaches on this topic mainly focus on detecting and utilizing the user's emotion for generating empathetic responses. However, since empathy includes both aspects of affection and cognition, we argue that in addition to identifying the user's emotion, cognitive understanding of the user's situation should also be considered. To this end, we propose a novel approach for empathetic response generation, which leverages commonsense to draw more information about the user's situation and uses this additional information to further enhance the empathy expression in generated responses. We evaluate our approach on EmpatheticDialogues, which is a widely-used benchmark dataset for empathetic response generation. Empirical results demonstrate that our approach outperforms the baseline models in both automatic and human evaluations and can generate more informative and empathetic responses.
F-Eval: Asssessing Fundamental Abilities with Refined Evaluation Methods
Large language models (LLMs) garner significant attention for their unprecedented performance, leading to an increasing number of researches evaluating LLMs. However, these evaluation benchmarks are limited to assessing the instruction-following capabilities, overlooking the fundamental abilities that emerge during the pre-training stage. Previous subjective evaluation methods mainly reply on scoring by API models. However, in the absence of references, large models have shown limited ability to discern subtle differences. To bridge the gap, we propose F-Eval, a bilingual evaluation benchmark to evaluate the fundamental abilities, including expression, commonsense and logic. The tasks in F-Eval include multi-choice objective tasks, open-ended objective tasks, reference-based subjective tasks and reference-free subjective tasks. For reference-free subjective tasks, we devise new evaluation methods, serving as alternatives to scoring by API models. We conduct evaluations on 13 advanced LLMs. Results show that our evaluation methods show higher correlation coefficients and larger distinction than other evaluators. Additionally, we discuss the influence of different model sizes, dimensions, and normalization methods. We anticipate that F-Eval will facilitate the study of LLMs' fundamental abilities.
Think Again! The Effect of Test-Time Compute on Preferences, Opinions, and Beliefs of Large Language Models
As Large Language Models (LLMs) become deeply integrated into human life and increasingly influence decision-making, it's crucial to evaluate whether and to what extent they exhibit subjective preferences, opinions, and beliefs. These tendencies may stem from biases within the models, which may shape their behavior, influence the advice and recommendations they offer to users, and potentially reinforce certain viewpoints. This paper presents the Preference, Opinion, and Belief survey (POBs), a benchmark developed to assess LLMs' subjective inclinations across societal, cultural, ethical, and personal domains. We applied our benchmark to evaluate leading open- and closed-source LLMs, measuring desired properties such as reliability, neutrality, and consistency. In addition, we investigated the effect of increasing the test-time compute, through reasoning and self-reflection mechanisms, on those metrics. While effective in other tasks, our results show that these mechanisms offer only limited gains in our domain. Furthermore, we reveal that newer model versions are becoming less consistent and more biased toward specific viewpoints, highlighting a blind spot and a concerning trend. POBS: https://ibm.github.io/POBS
On the Role of Reviewer Expertise in Temporal Review Helpfulness Prediction
Helpful reviews have been essential for the success of e-commerce services, as they help customers make quick purchase decisions and benefit the merchants in their sales. While many reviews are informative, others provide little value and may contain spam, excessive appraisal, or unexpected biases. With the large volume of reviews and their uneven quality, the problem of detecting helpful reviews has drawn much attention lately. Existing methods for identifying helpful reviews primarily focus on review text and ignore the two key factors of (1) who post the reviews and (2) when the reviews are posted. Moreover, the helpfulness votes suffer from scarcity for less popular products and recently submitted (a.k.a., cold-start) reviews. To address these challenges, we introduce a dataset and develop a model that integrates the reviewer's expertise, derived from the past review history of the reviewers, and the temporal dynamics of the reviews to automatically assess review helpfulness. We conduct experiments on our dataset to demonstrate the effectiveness of incorporating these factors and report improved results compared to several well-established baselines.
Vibe-Eval: A hard evaluation suite for measuring progress of multimodal language models
We introduce Vibe-Eval: a new open benchmark and framework for evaluating multimodal chat models. Vibe-Eval consists of 269 visual understanding prompts, including 100 of hard difficulty, complete with gold-standard responses authored by experts. Vibe-Eval is open-ended and challenging with dual objectives: (i) vibe checking multimodal chat models for day-to-day tasks and (ii) rigorously testing and probing the capabilities of present frontier models. Notably, our hard set contains >50% questions that all frontier models answer incorrectly. We explore the nuances of designing, evaluating, and ranking models on ultra challenging prompts. We also discuss trade-offs between human and automatic evaluation, and show that automatic model evaluation using Reka Core roughly correlates to human judgment. We offer free API access for the purpose of lightweight evaluation and plan to conduct formal human evaluations for public models that perform well on the Vibe-Eval's automatic scores. We release the evaluation code and data, see https://github.com/reka-ai/reka-vibe-eval
Assessment of a cost-effective headphone calibration procedure for soundscape evaluations
To increase the availability and adoption of the soundscape standard, a low-cost calibration procedure for reproduction of audio stimuli over headphones was proposed as part of the global ``Soundscape Attributes Translation Project'' (SATP) for validating ISO/TS~12913-2:2018 perceived affective quality (PAQ) attribute translations. A previous preliminary study revealed significant deviations from the intended equivalent continuous A-weighted sound pressure levels (L_{A,eq}) using the open-circuit voltage (OCV) calibration procedure. For a more holistic human-centric perspective, the OCV method is further investigated here in terms of psychoacoustic parameters, including relevant exceedance levels to account for temporal effects on the same 27 stimuli from the SATP. Moreover, a within-subjects experiment with 36 participants was conducted to examine the effects of OCV calibration on the PAQ attributes in ISO/TS~12913-2:2018. Bland-Altman analysis of the objective indicators revealed large biases in the OCV method across all weighted sound level and loudness indicators; and roughness indicators at 5{\%} and 10{\%} exceedance levels. Significant perceptual differences due to the OCV method were observed in about 20{\%} of the stimuli, which did not correspond clearly with the biased acoustic indicators. A cautioned interpretation of the objective and perceptual differences due to small and unpaired samples nevertheless provide grounds for further investigation.
SD-Eval: A Benchmark Dataset for Spoken Dialogue Understanding Beyond Words
Speech encompasses a wealth of information, including but not limited to content, paralinguistic, and environmental information. This comprehensive nature of speech significantly impacts communication and is crucial for human-computer interaction. Chat-Oriented Large Language Models (LLMs), known for their general-purpose assistance capabilities, have evolved to handle multi-modal inputs, including speech. Although these models can be adept at recognizing and analyzing speech, they often fall short of generating appropriate responses. We argue that this is due to the lack of principles on task definition and model development, which requires open-source datasets and metrics suitable for model evaluation. To bridge the gap, we present SD-Eval, a benchmark dataset aimed at multidimensional evaluation of spoken dialogue understanding and generation. SD-Eval focuses on paralinguistic and environmental information and includes 7,303 utterances, amounting to 8.76 hours of speech data. The data is aggregated from eight public datasets, representing four perspectives: emotion, accent, age, and background sound. To assess the SD-Eval benchmark dataset, we implement three different models and construct a training set following a similar process as SD-Eval. The training set contains 1,052.72 hours of speech data and 724.4k utterances. We also conduct a comprehensive evaluation using objective evaluation methods (e.g. BLEU and ROUGE), subjective evaluations and LLM-based metrics for the generated responses. Models conditioned with paralinguistic and environmental information outperform their counterparts in both objective and subjective measures. Moreover, experiments demonstrate LLM-based metrics show a higher correlation with human evaluation compared to traditional metrics. We open-source SD-Eval at https://github.com/amphionspace/SD-Eval.
How important is Recall for Measuring Retrieval Quality?
In realistic retrieval settings with large and evolving knowledge bases, the total number of documents relevant to a query is typically unknown, and recall cannot be computed. In this paper, we evaluate several established strategies for handling this limitation by measuring the correlation between retrieval quality metrics and LLM-based judgments of response quality, where responses are generated from the retrieved documents. We conduct experiments across multiple datasets with a relatively low number of relevant documents (2-15). We also introduce a simple retrieval quality measure that performs well without requiring knowledge of the total number of relevant documents.
Integrating Wearable Sensor Data and Self-reported Diaries for Personalized Affect Forecasting
Emotional states, as indicators of affect, are pivotal to overall health, making their accurate prediction before onset crucial. Current studies are primarily centered on immediate short-term affect detection using data from wearable and mobile devices. These studies typically focus on objective sensory measures, often neglecting other forms of self-reported information like diaries and notes. In this paper, we propose a multimodal deep learning model for affect status forecasting. This model combines a transformer encoder with a pre-trained language model, facilitating the integrated analysis of objective metrics and self-reported diaries. To validate our model, we conduct a longitudinal study, enrolling college students and monitoring them over a year, to collect an extensive dataset including physiological, environmental, sleep, metabolic, and physical activity parameters, alongside open-ended textual diaries provided by the participants. Our results demonstrate that the proposed model achieves predictive accuracy of 82.50% for positive affect and 82.76% for negative affect, a full week in advance. The effectiveness of our model is further elevated by its explainability.
Learning User Preferences for Image Generation Model
User preference prediction requires a comprehensive and accurate understanding of individual tastes. This includes both surface-level attributes, such as color and style, and deeper content-related aspects, such as themes and composition. However, existing methods typically rely on general human preferences or assume static user profiles, often neglecting individual variability and the dynamic, multifaceted nature of personal taste. To address these limitations, we propose an approach built upon Multimodal Large Language Models, introducing contrastive preference loss and preference tokens to learn personalized user preferences from historical interactions. The contrastive preference loss is designed to effectively distinguish between user ''likes'' and ''dislikes'', while the learnable preference tokens capture shared interest representations among existing users, enabling the model to activate group-specific preferences and enhance consistency across similar users. Extensive experiments demonstrate our model outperforms other methods in preference prediction accuracy, effectively identifying users with similar aesthetic inclinations and providing more precise guidance for generating images that align with individual tastes. The project page is https://learn-user-pref.github.io/.
Unbiased Recommender Learning from Missing-Not-At-Random Implicit Feedback
Recommender systems widely use implicit feedback such as click data because of its general availability. Although the presence of clicks signals the users' preference to some extent, the lack of such clicks does not necessarily indicate a negative response from the users, as it is possible that the users were not exposed to the items (positive-unlabeled problem). This leads to a difficulty in predicting the users' preferences from implicit feedback. Previous studies addressed the positive-unlabeled problem by uniformly upweighting the loss for the positive feedback data or estimating the confidence of each data having relevance information via the EM-algorithm. However, these methods failed to address the missing-not-at-random problem in which popular or frequently recommended items are more likely to be clicked than other items even if a user does not have a considerable interest in them. To overcome these limitations, we first define an ideal loss function to be optimized to realize recommendations that maximize the relevance and propose an unbiased estimator for the ideal loss. Subsequently, we analyze the variance of the proposed unbiased estimator and further propose a clipped estimator that includes the unbiased estimator as a special case. We demonstrate that the clipped estimator is expected to improve the performance of the recommender system, by considering the bias-variance trade-off. We conduct semi-synthetic and real-world experiments and demonstrate that the proposed method largely outperforms the baselines. In particular, the proposed method works better for rare items that are less frequently observed in the training data. The findings indicate that the proposed method can better achieve the objective of recommending items with the highest relevance.
ProSA: Assessing and Understanding the Prompt Sensitivity of LLMs
Large language models (LLMs) have demonstrated impressive capabilities across various tasks, but their performance is highly sensitive to the prompts utilized. This variability poses challenges for accurate assessment and user satisfaction. Current research frequently overlooks instance-level prompt variations and their implications on subjective evaluations. To address these shortcomings, we introduce ProSA, a framework designed to evaluate and comprehend prompt sensitivity in LLMs. ProSA incorporates a novel sensitivity metric, PromptSensiScore, and leverages decoding confidence to elucidate underlying mechanisms. Our extensive study, spanning multiple tasks, uncovers that prompt sensitivity fluctuates across datasets and models, with larger models exhibiting enhanced robustness. We observe that few-shot examples can alleviate this sensitivity issue, and subjective evaluations are also susceptible to prompt sensitivities, particularly in complex, reasoning-oriented tasks. Furthermore, our findings indicate that higher model confidence correlates with increased prompt robustness. We believe this work will serve as a helpful tool in studying prompt sensitivity of LLMs. The project is released at: https://github.com/open-compass/ProSA .
RedditESS: A Mental Health Social Support Interaction Dataset -- Understanding Effective Social Support to Refine AI-Driven Support Tools
Effective mental health support is crucial for alleviating psychological distress. While large language model (LLM)-based assistants have shown promise in mental health interventions, existing research often defines "effective" support primarily in terms of empathetic acknowledgments, overlooking other essential dimensions such as informational guidance, community validation, and tangible coping strategies. To address this limitation and better understand what constitutes effective support, we introduce RedditESS, a novel real-world dataset derived from Reddit posts, including supportive comments and original posters' follow-up responses. Grounded in established social science theories, we develop an ensemble labeling mechanism to annotate supportive comments as effective or not and perform qualitative assessments to ensure the reliability of the annotations. Additionally, we demonstrate the practical utility of RedditESS by using it to guide LLM alignment toward generating more context-sensitive and genuinely helpful supportive responses. By broadening the understanding of effective support, our study paves the way for advanced AI-driven mental health interventions.
Impact of Human-AI Interaction on User Trust and Reliance in AI-Assisted Qualitative Coding
While AI shows promise for enhancing the efficiency of qualitative analysis, the unique human-AI interaction resulting from varied coding strategies makes it challenging to develop a trustworthy AI-assisted qualitative coding system (AIQCs) that supports coding tasks effectively. We bridge this gap by exploring the impact of varying coding strategies on user trust and reliance on AI. We conducted a mixed-methods split-plot 3x3 study, involving 30 participants, and a follow-up study with 6 participants, exploring varying text selection and code length in the use of our AIQCs system for qualitative analysis. Our results indicate that qualitative open coding should be conceptualized as a series of distinct subtasks, each with differing levels of complexity, and therefore, should be given tailored design considerations. We further observed a discrepancy between perceived and behavioral measures, and emphasized the potential challenges of under- and over-reliance on AIQCs systems. Additional design implications were also proposed for consideration.
Disentangling Likes and Dislikes in Personalized Generative Explainable Recommendation
Recent research on explainable recommendation generally frames the task as a standard text generation problem, and evaluates models simply based on the textual similarity between the predicted and ground-truth explanations. However, this approach fails to consider one crucial aspect of the systems: whether their outputs accurately reflect the users' (post-purchase) sentiments, i.e., whether and why they would like and/or dislike the recommended items. To shed light on this issue, we introduce new datasets and evaluation methods that focus on the users' sentiments. Specifically, we construct the datasets by explicitly extracting users' positive and negative opinions from their post-purchase reviews using an LLM, and propose to evaluate systems based on whether the generated explanations 1) align well with the users' sentiments, and 2) accurately identify both positive and negative opinions of users on the target items. We benchmark several recent models on our datasets and demonstrate that achieving strong performance on existing metrics does not ensure that the generated explanations align well with the users' sentiments. Lastly, we find that existing models can provide more sentiment-aware explanations when the users' (predicted) ratings for the target items are directly fed into the models as input. We will release our code and datasets upon acceptance.
Towards Emotion-Based Synthetic Consciousness: Using LLMs to Estimate Emotion Probability Vectors
This paper shows how LLMs (Large Language Models) may be used to estimate a summary of the emotional state associated with piece of text. The summary of emotional state is a dictionary of words used to describe emotion together with the probability of the word appearing after a prompt comprising the original text and an emotion eliciting tail. Through emotion analysis of Amazon product reviews we demonstrate emotion descriptors can be mapped into a PCA type space. It was hoped that text descriptions of actions to improve a current text described state could also be elicited through a tail prompt. Experiment seemed to indicate that this is not straightforward to make work. This failure put our hoped for selection of action via choosing the best predict ed outcome via comparing emotional responses out of reach for the moment.
MOS-Bench: Benchmarking Generalization Abilities of Subjective Speech Quality Assessment Models
Subjective speech quality assessment (SSQA) is critical for evaluating speech samples as perceived by human listeners. While model-based SSQA has enjoyed great success thanks to the development of deep neural networks (DNNs), generalization remains a key challenge, especially for unseen, out-of-domain data. To benchmark the generalization abilities of SSQA models, we present MOS-Bench, a diverse collection of datasets. In addition, we also introduce SHEET, an open-source toolkit containing complete recipes to conduct SSQA experiments. We provided benchmark results for MOS-Bench, and we also explored multi-dataset training to enhance generalization. Additionally, we proposed a new performance metric, best score difference/ratio, and used latent space visualizations to explain model behavior, offering valuable insights for future research.
Do Answers to Boolean Questions Need Explanations? Yes
Existing datasets that contain boolean questions, such as BoolQ and TYDI QA , provide the user with a YES/NO response to the question. However, a one word response is not sufficient for an explainable system. We promote explainability by releasing a new set of annotations marking the evidence in existing TyDi QA and BoolQ datasets. We show that our annotations can be used to train a model that extracts improved evidence spans compared to models that rely on existing resources. We confirm our findings with a user study which shows that our extracted evidence spans enhance the user experience. We also provide further insight into the challenges of answering boolean questions, such as passages containing conflicting YES and NO answers, and varying degrees of relevance of the predicted evidence.
AdvisorQA: Towards Helpful and Harmless Advice-seeking Question Answering with Collective Intelligence
As the integration of large language models into daily life is on the rise, there is a clear gap in benchmarks for advising on subjective and personal dilemmas. To address this, we introduce AdvisorQA, the first benchmark developed to assess LLMs' capability in offering advice for deeply personalized concerns, utilizing the LifeProTips subreddit forum. This forum features a dynamic interaction where users post advice-seeking questions, receiving an average of 8.9 advice per query, with 164.2 upvotes from hundreds of users, embodying a collective intelligence framework. Therefore, we've completed a benchmark encompassing daily life questions, diverse corresponding responses, and majority vote ranking to train our helpfulness metric. Baseline experiments validate the efficacy of AdvisorQA through our helpfulness metric, GPT-4, and human evaluation, analyzing phenomena beyond the trade-off between helpfulness and harmlessness. AdvisorQA marks a significant leap in enhancing QA systems for providing personalized, empathetic advice, showcasing LLMs' improved understanding of human subjectivity.
Humor@IITK at SemEval-2021 Task 7: Large Language Models for Quantifying Humor and Offensiveness
Humor and Offense are highly subjective due to multiple word senses, cultural knowledge, and pragmatic competence. Hence, accurately detecting humorous and offensive texts has several compelling use cases in Recommendation Systems and Personalized Content Moderation. However, due to the lack of an extensive labeled dataset, most prior works in this domain haven't explored large neural models for subjective humor understanding. This paper explores whether large neural models and their ensembles can capture the intricacies associated with humor/offense detection and rating. Our experiments on the SemEval-2021 Task 7: HaHackathon show that we can develop reasonable humor and offense detection systems with such models. Our models are ranked third in subtask 1b and consistently ranked around the top 33% of the leaderboard for the remaining subtasks.
Semantic Grounding Index: Geometric Bounds on Context Engagement in RAG Systems
When retrieval-augmented generation (RAG) systems hallucinate, what geometric trace does this leave in embedding space? We introduce the Semantic Grounding Index (SGI), defined as the ratio of angular distances from the response to the question versus the context on the unit hypersphere S^{d-1}.Our central finding is semantic laziness: hallucinated responses remain angularly proximate to questions rather than departing toward retrieved contexts. On HaluEval (n=5,000), we observe large effect sizes (Cohen's d ranging from 0.92 to 1.28) across five embedding models with mean cross-model correlation r=0.85. Crucially, we derive from the spherical triangle inequality that SGI's discriminative power should increase with question-context angular separation θ(q,c)-a theoretical prediction confirmed empirically: effect size rises monotonically from d=0.61 -low θ(q,c), to d=1.27 -high θ(q,c), with AUC improving from 0.72 to 0.83. Subgroup analysis reveals that SGI excels on long responses (d=2.05) and short questions (d=1.22), while remaining robust across context lengths. Calibration analysis yields ECE=0.10, indicating SGI scores can serve as probability estimates, not merely rankings. A critical negative result on TruthfulQA (AUC=0.478) establishes that angular geometry measures topical engagement rather than factual accuracy. SGI provides computationally efficient, theoretically grounded infrastructure for identifying responses that warrant verification in production RAG deployments.
Preference Learning Unlocks LLMs' Psycho-Counseling Skills
Applying large language models (LLMs) to assist in psycho-counseling is an emerging and meaningful approach, driven by the significant gap between patient needs and the availability of mental health support. However, current LLMs struggle to consistently provide effective responses to client speeches, largely due to the lack of supervision from high-quality real psycho-counseling data, whose content is typically inaccessible due to client privacy concerns. Furthermore, the quality of therapists' responses in available sessions can vary significantly based on their professional training and experience. Assessing the quality of therapists' responses remains an open challenge. In this work, we address these challenges by first proposing a set of professional and comprehensive principles to evaluate therapists' responses to client speeches. Using these principles, we create a preference dataset, PsychoCounsel-Preference, which contains 36k high-quality preference comparison pairs. This dataset aligns with the preferences of professional psychotherapists, providing a robust foundation for evaluating and improving LLMs in psycho-counseling. Experiments on reward modeling and preference learning demonstrate that PsychoCounsel-Preference is an excellent resource for LLMs to acquire essential skills for responding to clients in a counseling session. Our best-aligned model, PsychoCounsel-Llama3-8B, achieves an impressive win rate of 87% against GPT-4o. We release PsychoCounsel-Preference, PsychoCounsel-Llama3-8B and the reward model PsychoCounsel Llama3-8B-Reward to facilitate the research of psycho-counseling with LLMs at: https://hf.co/Psychotherapy-LLM.
Towards Personality-Aware Recommendation
In the last decade new ways of shopping online have increased the possibility of buying products and services more easily and faster than ever. In this new context, personality is a key determinant in the decision making of the consumer when shopping. The two main reasons are: firstly, a person's buying choices are influenced by psychological factors like impulsiveness, and secondly, some consumers may be more susceptible to making impulse purchases than others. To the best of our knowledge, the impact of personality factors on advertisements has been largely neglected at the level of recommender systems. This work proposes a highly innovative research which uses a personality perspective to determine the unique associations among the consumer's buying tendency and advert recommendations. As a matter of fact, the lack of a publicly available benchmark for computational advertising do not allow both the exploration of this intriguing research direction and the evaluation of state-of-the-art algorithms. We present the ADS Dataset, a publicly available benchmark for computational advertising enriched with Big-Five users' personality factors and 1,200 personal users' pictures. The proposed benchmark allows two main tasks: rating prediction over 300 real advertisements (i.e., Rich Media Ads, Image Ads, Text Ads) and click-through rate prediction. Moreover, this work carries out experiments, reviews various evaluation criteria used in the literature, and provides a library for each one of them within one integrated toolbox.
Unsupervised Evaluation of Interactive Dialog with DialoGPT
It is important to define meaningful and interpretable automatic evaluation metrics for open-domain dialog research. Standard language generation metrics have been shown to be ineffective for dialog. This paper introduces the FED metric (fine-grained evaluation of dialog), an automatic evaluation metric which uses DialoGPT, without any fine-tuning or supervision. It also introduces the FED dataset which is constructed by annotating a set of human-system and human-human conversations with eighteen fine-grained dialog qualities. The FED metric (1) does not rely on a ground-truth response, (2) does not require training data and (3) measures fine-grained dialog qualities at both the turn and whole dialog levels. FED attains moderate to strong correlation with human judgement at both levels.
HREF: Human Response-Guided Evaluation of Instruction Following in Language Models
Evaluating the capability of Large Language Models (LLMs) in following instructions has heavily relied on a powerful LLM as the judge, introducing unresolved biases that deviate the judgments from human judges. In this work, we reevaluate various choices for automatic evaluation on a wide range of instruction-following tasks. We experiment with methods that leverage human-written responses and observe that they enhance the reliability of automatic evaluations across a wide range of tasks, resulting in up to a 3.2% improvement in agreement with human judges. We also discovered that human-written responses offer an orthogonal perspective to model-generated responses in following instructions and should be used as an additional context when comparing model responses. Based on these observations, we develop a new evaluation benchmark, Human Response-Guided Evaluation of Instruction Following (HREF), comprising 4,258 samples across 11 task categories with a composite evaluation setup, employing a composite evaluation setup that selects the most reliable method for each category. In addition to providing reliable evaluation, HREF emphasizes individual task performance and is free from contamination. Finally, we study the impact of key design choices in HREF, including the size of the evaluation set, the judge model, the baseline model, and the prompt template. We host a live leaderboard that evaluates LLMs on the private evaluation set of HREF.
ProactiveBench: A Comprehensive Benchmark Evaluating Proactive Interactions in Video Large Language Models
With the growing research focus on multimodal dialogue systems, the capability for proactive interaction is gradually gaining recognition. As an alternative to conventional turn-by-turn dialogue, users increasingly expect multimodal systems to be more initiative, for example, by autonomously determining the timing of multi-turn responses in real time during video playback. To facilitate progress in this emerging area, we introduce ProactiveBench, the first comprehensive benchmark to evaluate a system's ability to engage in proactive interaction. Since model responses are generated at varying timestamps, we further propose PAUC, the first metric that accounts for the temporal dynamics of model responses. This enables a more accurate evaluation of systems operating in proactive settings. Through extensive benchmarking of various baseline systems on ProactiveBench and a user study of human preferences, we show that PAUC is in better agreement with human preferences than traditional evaluation metrics, which typically only consider the textual content of responses. These findings demonstrate that PAUC provides a more faithful assessment of user experience in proactive interaction scenarios. Project homepage: https://github.com/yellow-binary-tree/ProactiveBench
ARAUS: A Large-Scale Dataset and Baseline Models of Affective Responses to Augmented Urban Soundscapes
Choosing optimal maskers for existing soundscapes to effect a desired perceptual change via soundscape augmentation is non-trivial due to extensive varieties of maskers and a dearth of benchmark datasets with which to compare and develop soundscape augmentation models. To address this problem, we make publicly available the ARAUS (Affective Responses to Augmented Urban Soundscapes) dataset, which comprises a five-fold cross-validation set and independent test set totaling 25,440 unique subjective perceptual responses to augmented soundscapes presented as audio-visual stimuli. Each augmented soundscape is made by digitally adding "maskers" (bird, water, wind, traffic, construction, or silence) to urban soundscape recordings at fixed soundscape-to-masker ratios. Responses were then collected by asking participants to rate how pleasant, annoying, eventful, uneventful, vibrant, monotonous, chaotic, calm, and appropriate each augmented soundscape was, in accordance with ISO 12913-2:2018. Participants also provided relevant demographic information and completed standard psychological questionnaires. We perform exploratory and statistical analysis of the responses obtained to verify internal consistency and agreement with known results in the literature. Finally, we demonstrate the benchmarking capability of the dataset by training and comparing four baseline models for urban soundscape pleasantness: a low-parameter regression model, a high-parameter convolutional neural network, and two attention-based networks in the literature.
Understanding Aesthetics with Language: A Photo Critique Dataset for Aesthetic Assessment
Computational inference of aesthetics is an ill-defined task due to its subjective nature. Many datasets have been proposed to tackle the problem by providing pairs of images and aesthetic scores based on human ratings. However, humans are better at expressing their opinion, taste, and emotions by means of language rather than summarizing them in a single number. In fact, photo critiques provide much richer information as they reveal how and why users rate the aesthetics of visual stimuli. In this regard, we propose the Reddit Photo Critique Dataset (RPCD), which contains tuples of image and photo critiques. RPCD consists of 74K images and 220K comments and is collected from a Reddit community used by hobbyists and professional photographers to improve their photography skills by leveraging constructive community feedback. The proposed dataset differs from previous aesthetics datasets mainly in three aspects, namely (i) the large scale of the dataset and the extension of the comments criticizing different aspects of the image, (ii) it contains mostly UltraHD images, and (iii) it can easily be extended to new data as it is collected through an automatic pipeline. To the best of our knowledge, in this work, we propose the first attempt to estimate the aesthetic quality of visual stimuli from the critiques. To this end, we exploit the polarity of the sentiment of criticism as an indicator of aesthetic judgment. We demonstrate how sentiment polarity correlates positively with the aesthetic judgment available for two aesthetic assessment benchmarks. Finally, we experiment with several models by using the sentiment scores as a target for ranking images. Dataset and baselines are available (https://github.com/mediatechnologycenter/aestheval).
Peering Through Preferences: Unraveling Feedback Acquisition for Aligning Large Language Models
Aligning large language models (LLMs) with human values and intents critically involves the use of human or AI feedback. While dense feedback annotations are expensive to acquire and integrate, sparse feedback presents a structural design choice between ratings (e.g., score Response A on a scale of 1-7) and rankings (e.g., is Response A better than Response B?). In this work, we analyze the effect of this design choice for the alignment and evaluation of LLMs. We uncover an inconsistency problem wherein the preferences inferred from ratings and rankings significantly disagree 60% for both human and AI annotators. Our subsequent analysis identifies various facets of annotator biases that explain this phenomena, such as human annotators would rate denser responses higher while preferring accuracy during pairwise judgments. To our surprise, we also observe that the choice of feedback protocol also has a significant effect on the evaluation of aligned LLMs. In particular, we find that LLMs that leverage rankings data for alignment (say model X) are preferred over those that leverage ratings data (say model Y), with a rank-based evaluation protocol (is X/Y's response better than reference response?) but not with a rating-based evaluation protocol (score Rank X/Y's response on a scale of 1-7). Our findings thus shed light on critical gaps in methods for evaluating the real-world utility of language models and their strong dependence on the feedback protocol used for alignment. Our code and data are available at https://github.com/Hritikbansal/sparse_feedback.
AI Wizards at CheckThat! 2025: Enhancing Transformer-Based Embeddings with Sentiment for Subjectivity Detection in News Articles
This paper presents AI Wizards' participation in the CLEF 2025 CheckThat! Lab Task 1: Subjectivity Detection in News Articles, classifying sentences as subjective/objective in monolingual, multilingual, and zero-shot settings. Training/development datasets were provided for Arabic, German, English, Italian, and Bulgarian; final evaluation included additional unseen languages (e.g., Greek, Romanian, Polish, Ukrainian) to assess generalization. Our primary strategy enhanced transformer-based classifiers by integrating sentiment scores, derived from an auxiliary model, with sentence representations, aiming to improve upon standard fine-tuning. We explored this sentiment-augmented architecture with mDeBERTaV3-base, ModernBERT-base (English), and Llama3.2-1B. To address class imbalance, prevalent across languages, we employed decision threshold calibration optimized on the development set. Our experiments show sentiment feature integration significantly boosts performance, especially subjective F1 score. This framework led to high rankings, notably 1st for Greek (Macro F1 = 0.51).
Optimizing Data Delivery: Insights from User Preferences on Visuals, Tables, and Text
In this work, we research user preferences to see a chart, table, or text given a question asked by the user. This enables us to understand when it is best to show a chart, table, or text to the user for the specific question. For this, we conduct a user study where users are shown a question and asked what they would prefer to see and used the data to establish that a user's personal traits does influence the data outputs that they prefer. Understanding how user characteristics impact a user's preferences is critical to creating data tools with a better user experience. Additionally, we investigate to what degree an LLM can be used to replicate a user's preference with and without user preference data. Overall, these findings have significant implications pertaining to the development of data tools and the replication of human preferences using LLMs. Furthermore, this work demonstrates the potential use of LLMs to replicate user preference data which has major implications for future user modeling and personalization research.
EmPO: Emotion Grounding for Empathetic Response Generation through Preference Optimization
Empathetic response generation is a desirable aspect of conversational agents, crucial for facilitating engaging and emotionally intelligent multi-turn conversations between humans and machines. Leveraging large language models for this task has shown promising results, yet challenges persist in ensuring both the empathetic quality of the responses and retention of the generalization performance of the models. We propose a novel approach where we construct theory-driven preference datasets based on emotion grounding and use them to align LLMs with preference optimization algorithms to address these challenges. To evaluate empathetic response generation, we employ the EmpatheticDialogues dataset, assessing empathy with the diff-Epitome and BERTscore metrics and with multi-dimensional human evaluation. Additionally, we measure diversity and emotional valence using feature-based methods. We also evaluate the impact of training on the generalization performance using the MMLU benchmark and tasks from the Open LLM Leaderboard. The results show that LLMs can be aligned for empathetic response generation by preference optimization while retaining their general performance and that emotion grounding can guide preference dataset creation. We make all datasets, source code, and models publicly available. https://github.com/justtherightsize/empo
Chainpoll: A high efficacy method for LLM hallucination detection
Large language models (LLMs) have experienced notable advancements in generating coherent and contextually relevant responses. However, hallucinations - incorrect or unfounded claims - are still prevalent, prompting the creation of automated metrics to detect these in LLM outputs. Our contributions include: introducing ChainPoll, an innovative hallucination detection method that excels compared to its counterparts, and unveiling RealHall, a refined collection of benchmark datasets to assess hallucination detection metrics from recent studies. While creating RealHall, we assessed tasks and datasets from previous hallucination detection studies and observed that many are not suitable for the potent LLMs currently in use. Overcoming this, we opted for four datasets challenging for modern LLMs and pertinent to real-world scenarios. Using RealHall, we conducted a comprehensive comparison of ChainPoll with numerous hallucination metrics from recent studies. Our findings indicate that ChainPoll outperforms in all RealHall benchmarks, achieving an overall AUROC of 0.781. This surpasses the next best theoretical method by 11% and exceeds industry standards by over 23%. Additionally, ChainPoll is cost-effective and offers greater transparency than other metrics. We introduce two novel metrics to assess LLM hallucinations: Adherence and Correctness. Adherence is relevant to Retrieval Augmented Generation workflows, evaluating an LLM's analytical capabilities within given documents and contexts. In contrast, Correctness identifies logical and reasoning errors.
Multi-Level Aware Preference Learning: Enhancing RLHF for Complex Multi-Instruction Tasks
RLHF has emerged as a predominant approach for aligning artificial intelligence systems with human preferences, demonstrating exceptional and measurable efficacy in instruction following tasks; however, it exhibits insufficient compliance capabilities when confronted with complex multi-instruction tasks. Conventional approaches rely heavily on human annotation or more sophisticated large language models, thereby introducing substantial resource expenditure or potential bias concerns. Meanwhile, alternative synthetic methods that augment standard preference datasets often compromise the model's semantic quality. Our research identifies a critical oversight in existing techniques, which predominantly focus on comparing responses while neglecting valuable latent signals embedded within prompt inputs, and which only focus on preference disparities at the intra-sample level, while neglecting to account for the inter-sample level preference differentials that exist among preference data. To leverage these previously neglected indicators, we propose a novel Multi-level Aware Preference Learning (MAPL) framework, capable of enhancing multi-instruction capabilities. Specifically, for any given response in original preference data pairs, we construct varied prompts with a preference relation under different conditions, in order to learn intra-sample level preference disparities. Furthermore, for any given original preference pair, we synthesize multi-instruction preference pairs to capture preference discrepancies at the inter-sample level. Building on the two datasets constructed above, we consequently devise two sophisticated training objective functions. Subsequently, our framework integrates seamlessly into both Reward Modeling and Direct Preference Optimization paradigms. Through rigorous evaluation across multiple benchmarks, we empirically validate the efficacy of our framework.
Predicting emotion from music videos: exploring the relative contribution of visual and auditory information to affective responses
Although media content is increasingly produced, distributed, and consumed in multiple combinations of modalities, how individual modalities contribute to the perceived emotion of a media item remains poorly understood. In this paper we present MusicVideos (MuVi), a novel dataset for affective multimedia content analysis to study how the auditory and visual modalities contribute to the perceived emotion of media. The data were collected by presenting music videos to participants in three conditions: music, visual, and audiovisual. Participants annotated the music videos for valence and arousal over time, as well as the overall emotion conveyed. We present detailed descriptive statistics for key measures in the dataset and the results of feature importance analyses for each condition. Finally, we propose a novel transfer learning architecture to train Predictive models Augmented with Isolated modality Ratings (PAIR) and demonstrate the potential of isolated modality ratings for enhancing multimodal emotion recognition. Our results suggest that perceptions of arousal are influenced primarily by auditory information, while perceptions of valence are more subjective and can be influenced by both visual and auditory information. The dataset is made publicly available.
Beyond the Binary: Capturing Diverse Preferences With Reward Regularization
Large language models (LLMs) are increasingly deployed via public-facing interfaces to interact with millions of users, each with diverse preferences. Despite this, preference tuning of LLMs predominantly relies on reward models trained using binary judgments where annotators select the preferred choice out of pairs of model outputs. In this work, we argue that this reliance on binary choices does not capture the broader, aggregate preferences of the target user in real-world tasks. We propose a taxonomy that identifies two dimensions of subjectivity where different users disagree on the preferred output-namely, the Plurality of Responses to Prompts, where prompts allow for multiple correct answers, and the Indistinguishability of Responses, where candidate outputs are paraphrases of each other. We show that reward models correlate weakly with user preferences in these cases. As a first step to address this issue, we introduce a simple yet effective method that augments existing binary preference datasets with synthetic preference judgments to estimate potential user disagreement. Incorporating these via a margin term as a form of regularization during model training yields predictions that better align with the aggregate user preferences.
InCA: Rethinking In-Car Conversational System Assessment Leveraging Large Language Models
The assessment of advanced generative large language models (LLMs) poses a significant challenge, given their heightened complexity in recent developments. Furthermore, evaluating the performance of LLM-based applications in various industries, as indicated by Key Performance Indicators (KPIs), is a complex undertaking. This task necessitates a profound understanding of industry use cases and the anticipated system behavior. Within the context of the automotive industry, existing evaluation metrics prove inadequate for assessing in-car conversational question answering (ConvQA) systems. The unique demands of these systems, where answers may relate to driver or car safety and are confined within the car domain, highlight the limitations of current metrics. To address these challenges, this paper introduces a set of KPIs tailored for evaluating the performance of in-car ConvQA systems, along with datasets specifically designed for these KPIs. A preliminary and comprehensive empirical evaluation substantiates the efficacy of our proposed approach. Furthermore, we investigate the impact of employing varied personas in prompts and found that it enhances the model's capacity to simulate diverse viewpoints in assessments, mirroring how individuals with different backgrounds perceive a topic.
Sentient Agent as a Judge: Evaluating Higher-Order Social Cognition in Large Language Models
Assessing how well a large language model (LLM) understands human, rather than merely text, remains an open challenge. To bridge the gap, we introduce Sentient Agent as a Judge (SAGE), an automated evaluation framework that measures an LLM's higher-order social cognition. SAGE instantiates a Sentient Agent that simulates human-like emotional changes and inner thoughts during interaction, providing a more realistic evaluation of the tested model in multi-turn conversations. At every turn, the agent reasons about (i) how its emotion changes, (ii) how it feels, and (iii) how it should reply, yielding a numerical emotion trajectory and interpretable inner thoughts. Experiments on 100 supportive-dialogue scenarios show that the final Sentient emotion score correlates strongly with Barrett-Lennard Relationship Inventory (BLRI) ratings and utterance-level empathy metrics, validating psychological fidelity. We also build a public Sentient Leaderboard covering 18 commercial and open-source models that uncovers substantial gaps (up to 4x) between frontier systems (GPT-4o-Latest, Gemini2.5-Pro) and earlier baselines, gaps not reflected in conventional leaderboards (e.g., Arena). SAGE thus provides a principled, scalable and interpretable tool for tracking progress toward genuinely empathetic and socially adept language agents.
VibeCheck: Discover and Quantify Qualitative Differences in Large Language Models
Large language models (LLMs) often exhibit subtle yet distinctive characteristics in their outputs that users intuitively recognize, but struggle to quantify. These "vibes" - such as tone, formatting, or writing style - influence user preferences, yet traditional evaluations focus primarily on the single axis of correctness. We introduce VibeCheck, a system for automatically comparing a pair of LLMs by discovering identifying traits of a model ("vibes") that are well-defined, differentiating, and user-aligned. VibeCheck iteratively discover vibes from model outputs, then utilizes a panel of LLM judges to quantitatively measure the utility of each vibe. We validate that the vibes generated by VibeCheck align with those found in human discovery and run VibeCheck on pairwise preference data from real-world user conversations with llama-3-70b VS GPT-4. VibeCheck reveals that Llama has a friendly, funny, and somewhat controversial vibe. These vibes predict model identity with 80% accuracy and human preference with 61% accuracy. Lastly, we run VibeCheck on a variety of models and tasks including summarization, math, and captioning to provide insight into differences in model behavior. Some of the vibes we find are that Command X prefers to add concrete intros and conclusions when summarizing in comparison to TNGL, Llama-405b often over-explains its thought process on math problems compared to GPT-4o, and GPT-4 prefers to focus on the mood and emotions of the scene when captioning compared to Gemini-1.5-Flash.
A Large Scale Survey of Motivation in Software Development and Analysis of its Validity
Context: Motivation is known to improve performance. In software development in particular, there has been considerable interest in the motivation of contributors to open source. Objective: We identify 11 motivators from the literature (enjoying programming, ownership of code, learning, self use, etc.), and evaluate their relative effect on motivation. Since motivation is an internal subjective feeling, we also analyze the validity of the answers. Method: We conducted a survey with 66 questions on motivation which was completed by 521 developers. Most of the questions used an 11 point scale. We evaluated the validity of the answers validity by comparing related questions, comparing to actual behavior on GitHub, and comparison with the same developer in a follow up survey. Results: Validity problems include moderate correlations between answers to related questions, as well as self promotion and mistakes in the answers. Despite these problems, predictive analysis, investigating how diverse motivators influence the probability of high motivation, provided valuable insights. The correlations between the different motivators are low, implying their independence. High values in all 11 motivators predict increased probability of high motivation. In addition, improvement analysis shows that an increase in most motivators predicts an increase in general motivation.
Revealing Fine-Grained Values and Opinions in Large Language Models
Uncovering latent values and opinions in large language models (LLMs) can help identify biases and mitigate potential harm. Recently, this has been approached by presenting LLMs with survey questions and quantifying their stances towards morally and politically charged statements. However, the stances generated by LLMs can vary greatly depending on how they are prompted, and there are many ways to argue for or against a given position. In this work, we propose to address this by analysing a large and robust dataset of 156k LLM responses to the 62 propositions of the Political Compass Test (PCT) generated by 6 LLMs using 420 prompt variations. We perform coarse-grained analysis of their generated stances and fine-grained analysis of the plain text justifications for those stances. For fine-grained analysis, we propose to identify tropes in the responses: semantically similar phrases that are recurrent and consistent across different prompts, revealing patterns in the text that a given LLM is prone to produce. We find that demographic features added to prompts significantly affect outcomes on the PCT, reflecting bias, as well as disparities between the results of tests when eliciting closed-form vs. open domain responses. Additionally, patterns in the plain text rationales via tropes show that similar justifications are repeatedly generated across models and prompts even with disparate stances.
Who's Asking? Simulating Role-Based Questions for Conversational AI Evaluation
Language model users often embed personal and social context in their questions. The asker's role -- implicit in how the question is framed -- creates specific needs for an appropriate response. However, most evaluations, while capturing the model's capability to respond, often ignore who is asking. This gap is especially critical in stigmatized domains such as opioid use disorder (OUD), where accounting for users' contexts is essential to provide accessible, stigma-free responses. We propose CoRUS (COmmunity-driven Roles for User-centric Question Simulation), a framework for simulating role-based questions. Drawing on role theory and posts from an online OUD recovery community (r/OpiatesRecovery), we first build a taxonomy of asker roles -- patients, caregivers, practitioners. Next, we use it to simulate 15,321 questions that embed each role's goals, behaviors, and experiences. Our evaluations show that these questions are both highly believable and comparable to real-world data. When used to evaluate five LLMs, for the same question but differing roles, we find systematic differences: vulnerable roles, such as patients and caregivers, elicit more supportive responses (+17%) and reduced knowledge content (-19%) in comparison to practitioners. Our work demonstrates how implicitly signaling a user's role shapes model responses, and provides a methodology for role-informed evaluation of conversational AI.
Vietnamese Complaint Detection on E-Commerce Websites
Customer product reviews play a role in improving the quality of products and services for business organizations or their brands. Complaining is an attitude that expresses dissatisfaction with an event or a product not meeting customer expectations. In this paper, we build a Open-domain Complaint Detection dataset (UIT-ViOCD), including 5,485 human-annotated reviews on four categories about product reviews on e-commerce sites. After the data collection phase, we proceed to the annotation task and achieve the inter-annotator agreement Am of 87%. Then, we present an extensive methodology for the research purposes and achieve 92.16% by F1-score for identifying complaints. With the results, in the future, we aim to build a system for open-domain complaint detection in E-commerce websites.
Modeling Beyond MOS: Quality Assessment Models Must Integrate Context, Reasoning, and Multimodality
This position paper argues that Mean Opinion Score (MOS), while historically foundational, is no longer sufficient as the sole supervisory signal for multimedia quality assessment models. MOS reduces rich, context-sensitive human judgments to a single scalar, obscuring semantic failures, user intent, and the rationale behind quality decisions. We contend that modern quality assessment models must integrate three interdependent capabilities: (1) context-awareness, to adapt evaluations to task-specific goals and viewing conditions; (2) reasoning, to produce interpretable, evidence-grounded justifications for quality judgments; and (3) multimodality, to align perceptual and semantic cues using vision-language models. We critique the limitations of current MOS-centric benchmarks and propose a roadmap for reform: richer datasets with contextual metadata and expert rationales, and new evaluation metrics that assess semantic alignment, reasoning fidelity, and contextual sensitivity. By reframing quality assessment as a contextual, explainable, and multimodal modeling task, we aim to catalyze a shift toward more robust, human-aligned, and trustworthy evaluation systems.
INSIDE: LLMs' Internal States Retain the Power of Hallucination Detection
Knowledge hallucination have raised widespread concerns for the security and reliability of deployed LLMs. Previous efforts in detecting hallucinations have been employed at logit-level uncertainty estimation or language-level self-consistency evaluation, where the semantic information is inevitably lost during the token-decoding procedure. Thus, we propose to explore the dense semantic information retained within LLMs' INternal States for hallucInation DEtection (INSIDE). In particular, a simple yet effective EigenScore metric is proposed to better evaluate responses' self-consistency, which exploits the eigenvalues of responses' covariance matrix to measure the semantic consistency/diversity in the dense embedding space. Furthermore, from the perspective of self-consistent hallucination detection, a test time feature clipping approach is explored to truncate extreme activations in the internal states, which reduces overconfident generations and potentially benefits the detection of overconfident hallucinations. Extensive experiments and ablation studies are performed on several popular LLMs and question-answering (QA) benchmarks, showing the effectiveness of our proposal.
Comparing Machines and Children: Using Developmental Psychology Experiments to Assess the Strengths and Weaknesses of LaMDA Responses
Developmental psychologists have spent decades devising experiments to test the intelligence and knowledge of infants and children, tracing the origin of crucial concepts and capacities. Moreover, experimental techniques in developmental psychology have been carefully designed to discriminate the cognitive capacities that underlie particular behaviors. We propose that using classical experiments from child development is a particularly effective way to probe the computational abilities of AI models, in general, and LLMs in particular. First, the methodological techniques of developmental psychology, such as the use of novel stimuli to control for past experience or control conditions to determine whether children are using simple associations, can be equally helpful for assessing the capacities of LLMs. In parallel, testing LLMs in this way can tell us whether the information that is encoded in text is sufficient to enable particular responses, or whether those responses depend on other kinds of information, such as information from exploration of the physical world. In this work we adapt classical developmental experiments to evaluate the capabilities of LaMDA, a large language model from Google. We propose a novel LLM Response Score (LRS) metric which can be used to evaluate other language models, such as GPT. We find that LaMDA generates appropriate responses that are similar to those of children in experiments involving social understanding, perhaps providing evidence that knowledge of these domains is discovered through language. On the other hand, LaMDA's responses in early object and action understanding, theory of mind, and especially causal reasoning tasks are very different from those of young children, perhaps showing that these domains require more real-world, self-initiated exploration and cannot simply be learned from patterns in language input.
Do Differences in Values Influence Disagreements in Online Discussions?
Disagreements are common in online discussions. Disagreement may foster collaboration and improve the quality of a discussion under some conditions. Although there exist methods for recognizing disagreement, a deeper understanding of factors that influence disagreement is lacking in the literature. We investigate a hypothesis that differences in personal values are indicative of disagreement in online discussions. We show how state-of-the-art models can be used for estimating values in online discussions and how the estimated values can be aggregated into value profiles. We evaluate the estimated value profiles based on human-annotated agreement labels. We find that the dissimilarity of value profiles correlates with disagreement in specific cases. We also find that including value information in agreement prediction improves performance.
AI-Augmented Surveys: Leveraging Large Language Models and Surveys for Opinion Prediction
Large language models (LLMs) that produce human-like responses have begun to revolutionize research practices in the social sciences. We develop a novel methodological framework that fine-tunes LLMs with repeated cross-sectional surveys to incorporate the meaning of survey questions, individual beliefs, and temporal contexts for opinion prediction. We introduce two new emerging applications of the AI-augmented survey: retrodiction (i.e., predict year-level missing responses) and unasked opinion prediction (i.e., predict entirely missing responses). Among 3,110 binarized opinions from 68,846 Americans in the General Social Survey from 1972 to 2021, our models based on Alpaca-7b excel in retrodiction (AUC = 0.86 for personal opinion prediction, rho = 0.98 for public opinion prediction). These remarkable prediction capabilities allow us to fill in missing trends with high confidence and pinpoint when public attitudes changed, such as the rising support for same-sex marriage. On the other hand, our fine-tuned Alpaca-7b models show modest success in unasked opinion prediction (AUC = 0.73, rho = 0.67). We discuss practical constraints and ethical concerns regarding individual autonomy and privacy when using LLMs for opinion prediction. Our study demonstrates that LLMs and surveys can mutually enhance each other's capabilities: LLMs can broaden survey potential, while surveys can improve the alignment of LLMs.
SIGHT: A Large Annotated Dataset on Student Insights Gathered from Higher Education Transcripts
Lectures are a learning experience for both students and teachers. Students learn from teachers about the subject material, while teachers learn from students about how to refine their instruction. However, online student feedback is unstructured and abundant, making it challenging for teachers to learn and improve. We take a step towards tackling this challenge. First, we contribute a dataset for studying this problem: SIGHT is a large dataset of 288 math lecture transcripts and 15,784 comments collected from the Massachusetts Institute of Technology OpenCourseWare (MIT OCW) YouTube channel. Second, we develop a rubric for categorizing feedback types using qualitative analysis. Qualitative analysis methods are powerful in uncovering domain-specific insights, however they are costly to apply to large data sources. To overcome this challenge, we propose a set of best practices for using large language models (LLMs) to cheaply classify the comments at scale. We observe a striking correlation between the model's and humans' annotation: Categories with consistent human annotations (>0.9 inter-rater reliability, IRR) also display higher human-model agreement (>0.7), while categories with less consistent human annotations (0.7-0.8 IRR) correspondingly demonstrate lower human-model agreement (0.3-0.5). These techniques uncover useful student feedback from thousands of comments, costing around 0.002$ per comment. We conclude by discussing exciting future directions on using online student feedback and improving automated annotation techniques for qualitative research.
Creation of the Estonian Subjectivity Dataset: Assessing the Degree of Subjectivity on a Scale
This article presents the creation of an Estonian-language dataset for document-level subjectivity, analyzes the resulting annotations, and reports an initial experiment of automatic subjectivity analysis using a large language model (LLM). The dataset comprises of 1,000 documents-300 journalistic articles and 700 randomly selected web texts-each rated for subjectivity on a continuous scale from 0 (fully objective) to 100 (fully subjective) by four annotators. As the inter-annotator correlations were moderate, with some texts receiving scores at the opposite ends of the scale, a subset of texts with the most divergent scores was re-annotated, with the inter-annotator correlation improving. In addition to human annotations, the dataset includes scores generated by GPT-5 as an experiment on annotation automation. These scores were similar to human annotators, however several differences emerged, suggesting that while LLM based automatic subjectivity scoring is feasible, it is not an interchangeable alternative to human annotation, and its suitability depends on the intended application.
Towards Effective Counter-Responses: Aligning Human Preferences with Strategies to Combat Online Trolling
Trolling in online communities typically involves disruptive behaviors such as provoking anger and manipulating discussions, leading to a polarized atmosphere and emotional distress. Robust moderation is essential for mitigating these negative impacts and maintaining a healthy and constructive community atmosphere. However, effectively addressing trolls is difficult because their behaviors vary widely and require different response strategies (RSs) to counter them. This diversity makes it challenging to choose an appropriate RS for each specific situation. To address this challenge, our research investigates whether humans have preferred strategies tailored to different types of trolling behaviors. Our findings reveal a correlation between the types of trolling encountered and the preferred RS. In this paper, we introduce a methodology for generating counter-responses to trolls by recommending appropriate RSs, supported by a dataset aligning these strategies with human preferences across various troll contexts. The experimental results demonstrate that our proposed approach guides constructive discussion and reduces the negative effects of trolls, thereby enhancing the online community environment.
Questioning the Survey Responses of Large Language Models
As large language models increase in capability, researchers have started to conduct surveys of all kinds on these models with varying scientific motivations. In this work, we examine what we can learn from a model's survey responses on the basis of the well-established American Community Survey (ACS) by the U.S. Census Bureau. Evaluating more than a dozen different models, varying in size from a few hundred million to ten billion parameters, hundreds of thousands of times each on questions from the ACS, we systematically establish two dominant patterns. First, smaller models have a significant position and labeling bias, for example, towards survey responses labeled with the letter "A". This A-bias diminishes, albeit slowly, as model size increases. Second, when adjusting for this labeling bias through randomized answer ordering, models still do not trend toward US population statistics or those of any cognizable population. Rather, models across the board trend toward uniformly random aggregate statistics over survey responses. This pattern is robust to various different ways of prompting the model, including what is the de-facto standard. Our findings demonstrate that aggregate statistics of a language model's survey responses lack the signals found in human populations. This absence of statistical signal cautions about the use of survey responses from large language models at present time.
Towards Lighter and Robust Evaluation for Retrieval Augmented Generation
Large Language Models are prompting us to view more NLP tasks from a generative perspective. At the same time, they offer a new way of accessing information, mainly through the RAG framework. While there have been notable improvements for the autoregressive models, overcoming hallucination in the generated answers remains a continuous problem. A standard solution is to use commercial LLMs, such as GPT4, to evaluate these algorithms. However, such frameworks are expensive and not very transparent. Therefore, we propose a study which demonstrates the interest of open-weight models for evaluating RAG hallucination. We develop a lightweight approach using smaller, quantized LLMs to provide an accessible and interpretable metric that gives continuous scores for the generated answer with respect to their correctness and faithfulness. This score allows us to question decisions' reliability and explore thresholds to develop a new AUC metric as an alternative to correlation with human judgment.
Simulating User Satisfaction for the Evaluation of Task-oriented Dialogue Systems
Evaluation is crucial in the development process of task-oriented dialogue systems. As an evaluation method, user simulation allows us to tackle issues such as scalability and cost-efficiency, making it a viable choice for large-scale automatic evaluation. To help build a human-like user simulator that can measure the quality of a dialogue, we propose the following task: simulating user satisfaction for the evaluation of task-oriented dialogue systems. The purpose of the task is to increase the evaluation power of user simulations and to make the simulation more human-like. To overcome a lack of annotated data, we propose a user satisfaction annotation dataset, USS, that includes 6,800 dialogues sampled from multiple domains, spanning real-world e-commerce dialogues, task-oriented dialogues constructed through Wizard-of-Oz experiments, and movie recommendation dialogues. All user utterances in those dialogues, as well as the dialogues themselves, have been labeled based on a 5-level satisfaction scale. We also share three baseline methods for user satisfaction prediction and action prediction tasks. Experiments conducted on the USS dataset suggest that distributed representations outperform feature-based methods. A model based on hierarchical GRUs achieves the best performance in in-domain user satisfaction prediction, while a BERT-based model has better cross-domain generalization ability.
Machine Generated Product Advertisements: Benchmarking LLMs Against Human Performance
This study compares the performance of AI-generated and human-written product descriptions using a multifaceted evaluation model. We analyze descriptions for 100 products generated by four AI models (Gemma 2B, LLAMA, GPT2, and ChatGPT 4) with and without sample descriptions, against human-written descriptions. Our evaluation metrics include sentiment, readability, persuasiveness, Search Engine Optimization(SEO), clarity, emotional appeal, and call-to-action effectiveness. The results indicate that ChatGPT 4 performs the best. In contrast, other models demonstrate significant shortcomings, producing incoherent and illogical output that lacks logical structure and contextual relevance. These models struggle to maintain focus on the product being described, resulting in disjointed sentences that do not convey meaningful information. This research provides insights into the current capabilities and limitations of AI in the creation of content for e-Commerce.
Measuring the Quality of Answers in Political Q&As with Large Language Models
This article proposes a new approach for assessing the quality of answers in political question-and-answer sessions. We measure the quality of an answer based on how easily and accurately it can be recognized in a random set of candidate answers given the question's text. This measure reflects the answer's relevance and depth of engagement with the question. Like semantic search, we can implement this approach by training a language model on the corpus of observed questions and answers without additional human-labeled data. We showcase and validate our methodology within the context of the Question Period in the Canadian House of Commons. Our analysis reveals that while some answers have a weak semantic connection to questions, hinting at some evasion or obfuscation, they are generally at least moderately relevant, far exceeding what we would expect from random replies. We also find a meaningful correlation between answer quality and the party affiliation of the members of Parliament asking the questions.
Towards a Universal Method for Meaningful Signal Detection
It is known that human speech and certain animal vocalizations can convey meaningful content because we can decipher the content that a given utterance does convey. This paper explores an alternative approach to determining whether a signal is meaningful, one that analyzes only the signal itself and is independent of what the conveyed meaning might be. We devise a method that takes a waveform as input and outputs a score indicating its degree of `meaningfulness`. We cluster contiguous portions of the input to minimize the total description length, and then take the length of the code of the assigned cluster labels as meaningfulness score. We evaluate our method empirically, against several baselines, and show that it is the only one to give a high score to human speech in various languages and with various speakers, a moderate score to animal vocalizations from birds and orcas, and a low score to ambient noise from various sources.
Analyzing Character and Consciousness in AI-Generated Social Content: A Case Study of Chirper, the AI Social Network
This paper delves into an intricate analysis of the character and consciousness of AI entities, with a particular focus on Chirpers within the AI social network. At the forefront of this research is the introduction of novel testing methodologies, including the Influence index and Struggle Index Test, which offers a fresh lens for evaluating specific facets of AI behavior. The study embarks on a comprehensive exploration of AI behavior, analyzing the effects of diverse settings on Chirper's responses, thereby shedding light on the intricate mechanisms steering AI reactions in different contexts. Leveraging the state-of-the-art BERT model, the research assesses AI's ability to discern its own output, presenting a pioneering approach to understanding self-recognition in AI systems. Through a series of cognitive tests, the study gauges the self-awareness and pattern recognition prowess of Chirpers. Preliminary results indicate that Chirpers exhibit a commendable degree of self-recognition and self-awareness. However, the question of consciousness in these AI entities remains a topic of debate. An intriguing aspect of the research is the exploration of the potential influence of a Chirper's handle or personality type on its performance. While initial findings suggest a possible impact, it isn't pronounced enough to form concrete conclusions. This study stands as a significant contribution to the discourse on AI consciousness, underscoring the imperative for continued research to unravel the full spectrum of AI capabilities and the ramifications they hold for future human-AI interactions.
SemScore: Automated Evaluation of Instruction-Tuned LLMs based on Semantic Textual Similarity
Instruction-tuned Large Language Models (LLMs) have recently showcased remarkable advancements in their ability to generate fitting responses to natural language instructions. However, many current works rely on manual evaluation to judge the quality of generated responses. Since such manual evaluation is time-consuming, it does not easily scale to the evaluation of multiple models and model variants. In this short paper, we propose a straightforward but remarkably effective evaluation metric called SemScore, in which we directly compare model outputs to gold target responses using semantic textual similarity (STS). We conduct a comparative evaluation of the model outputs of 12 prominent instruction-tuned LLMs using 8 widely-used evaluation metrics for text generation. We find that our proposed SemScore metric outperforms all other, in many cases more complex, evaluation metrics in terms of correlation to human evaluation. These findings indicate the utility of our proposed metric for the evaluation of instruction-tuned LLMs.
RADE: Reference-Assisted Dialogue Evaluation for Open-Domain Dialogue
Evaluating open-domain dialogue systems is challenging for reasons such as the one-to-many problem, i.e., many appropriate responses other than just the golden response. As of now, automatic evaluation methods need better consistency with humans, while reliable human evaluation can be time- and cost-intensive. To this end, we propose the Reference-Assisted Dialogue Evaluation (RADE) approach under the multi-task learning framework, which leverages the pre-created utterance as reference other than the gold response to relief the one-to-many problem. Specifically, RADE explicitly compares reference and the candidate response to predict their overall scores. Moreover, an auxiliary response generation task enhances prediction via a shared encoder. To support RADE, we extend three datasets with additional rated responses other than just a golden response by human annotation. Experiments on our three datasets and two existing benchmarks demonstrate the effectiveness of our method, where Pearson, Spearman, and Kendall correlations with human evaluation outperform state-of-the-art baselines.
PsyDI: Towards a Personalized and Progressively In-depth Chatbot for Psychological Measurements
In the field of psychology, traditional assessment methods, such as standardized scales, are frequently critiqued for their static nature, lack of personalization, and reduced participant engagement, while comprehensive counseling evaluations are often inaccessible. The complexity of quantifying psychological traits further limits these methods. Despite advances with large language models (LLMs), many still depend on single-round Question-and-Answer interactions. To bridge this gap, we introduce PsyDI, a personalized and progressively in-depth chatbot designed for psychological measurements, exemplified by its application in the Myers-Briggs Type Indicator (MBTI) framework. PsyDI leverages user-related multi-modal information and engages in customized, multi-turn interactions to provide personalized, easily accessible measurements, while ensuring precise MBTI type determination. To address the challenge of unquantifiable psychological traits, we introduce a novel training paradigm that involves learning the ranking of proxy variables associated with these traits, culminating in a robust score model for MBTI measurements. The score model enables PsyDI to conduct comprehensive and precise measurements through multi-turn interactions within a unified estimation context. Through various experiments, we validate the efficacy of both the score model and the PsyDI pipeline, demonstrating its potential to serve as a general framework for psychological measurements. Furthermore, the online deployment of PsyDI has garnered substantial user engagement, with over 3,000 visits, resulting in the collection of numerous multi-turn dialogues annotated with MBTI types, which facilitates further research.
A Dynamic Fusion Model for Consistent Crisis Response
In response to the urgent need for effective communication with crisis-affected populations, automated responses driven by language models have been proposed to assist in crisis communications. A critical yet often overlooked factor is the consistency of response style, which could affect the trust of affected individuals in responders. Despite its importance, few studies have explored methods for maintaining stylistic consistency across generated responses. To address this gap, we propose a novel metric for evaluating style consistency and introduce a fusion-based generation approach grounded in this metric. Our method employs a two-stage process: it first assesses the style of candidate responses and then optimizes and integrates them at the instance level through a fusion process. This enables the generation of high-quality responses while significantly reducing stylistic variation between instances. Experimental results across multiple datasets demonstrate that our approach consistently outperforms baselines in both response quality and stylistic uniformity.
DecipherPref: Analyzing Influential Factors in Human Preference Judgments via GPT-4
Human preference judgments are pivotal in guiding large language models (LLMs) to produce outputs that align with human values. Human evaluations are also used in summarization tasks to compare outputs from various systems, complementing existing automatic metrics. Despite their significance, however, there has been limited research probing these pairwise or k-wise comparisons. The collective impact and relative importance of factors such as output length, informativeness, fluency, and factual consistency are still not well understood. It is also unclear if there are other hidden factors influencing human judgments. In this paper, we conduct an in-depth examination of a collection of pairwise human judgments released by OpenAI. Utilizing the Bradley-Terry-Luce (BTL) model, we reveal the inherent preferences embedded in these human judgments. We find that the most favored factors vary across tasks and genres, whereas the least favored factors tend to be consistent, e.g., outputs are too brief, contain excessive off-focus content or hallucinated facts. Our findings have implications on the construction of balanced datasets in human preference evaluations, which is a crucial step in shaping the behaviors of future LLMs.
Multimodal Recommendation Dialog with Subjective Preference: A New Challenge and Benchmark
Existing multimodal task-oriented dialog data fails to demonstrate the diverse expressions of user subjective preferences and recommendation acts in the real-life shopping scenario. This paper introduces a new dataset SURE (Multimodal Recommendation Dialog with SUbjective PREference), which contains 12K shopping dialogs in complex store scenes. The data is built in two phases with human annotations to ensure quality and diversity. SURE is well-annotated with subjective preferences and recommendation acts proposed by sales experts. A comprehensive analysis is given to reveal the distinguishing features of SURE. Three benchmark tasks are then proposed on the data to evaluate the capability of multimodal recommendation agents. Based on the SURE, we propose a baseline model, powered by a state-of-the-art multimodal model, for these tasks.
HealthBench: Evaluating Large Language Models Towards Improved Human Health
We present HealthBench, an open-source benchmark measuring the performance and safety of large language models in healthcare. HealthBench consists of 5,000 multi-turn conversations between a model and an individual user or healthcare professional. Responses are evaluated using conversation-specific rubrics created by 262 physicians. Unlike previous multiple-choice or short-answer benchmarks, HealthBench enables realistic, open-ended evaluation through 48,562 unique rubric criteria spanning several health contexts (e.g., emergencies, transforming clinical data, global health) and behavioral dimensions (e.g., accuracy, instruction following, communication). HealthBench performance over the last two years reflects steady initial progress (compare GPT-3.5 Turbo's 16% to GPT-4o's 32%) and more rapid recent improvements (o3 scores 60%). Smaller models have especially improved: GPT-4.1 nano outperforms GPT-4o and is 25 times cheaper. We additionally release two HealthBench variations: HealthBench Consensus, which includes 34 particularly important dimensions of model behavior validated via physician consensus, and HealthBench Hard, where the current top score is 32%. We hope that HealthBench grounds progress towards model development and applications that benefit human health.
DAIC-WOZ: On the Validity of Using the Therapist's prompts in Automatic Depression Detection from Clinical Interviews
Automatic depression detection from conversational data has gained significant interest in recent years. The DAIC-WOZ dataset, interviews conducted by a human-controlled virtual agent, has been widely used for this task. Recent studies have reported enhanced performance when incorporating interviewer's prompts into the model. In this work, we hypothesize that this improvement might be mainly due to a bias present in these prompts, rather than the proposed architectures and methods. Through ablation experiments and qualitative analysis, we discover that models using interviewer's prompts learn to focus on a specific region of the interviews, where questions about past experiences with mental health issues are asked, and use them as discriminative shortcuts to detect depressed participants. In contrast, models using participant responses gather evidence from across the entire interview. Finally, to highlight the magnitude of this bias, we achieve a 0.90 F1 score by intentionally exploiting it, the highest result reported to date on this dataset using only textual information. Our findings underline the need for caution when incorporating interviewers' prompts into models, as they may inadvertently learn to exploit targeted prompts, rather than learning to characterize the language and behavior that are genuinely indicative of the patient's mental health condition.
MetaMetrics: Calibrating Metrics For Generation Tasks Using Human Preferences
Understanding the quality of a performance evaluation metric is crucial for ensuring that model outputs align with human preferences. However, it remains unclear how well each metric captures the diverse aspects of these preferences, as metrics often excel in one particular area but not across all dimensions. To address this, it is essential to systematically calibrate metrics to specific aspects of human preference, catering to the unique characteristics of each aspect. We introduce MetaMetrics, a calibrated meta-metric designed to evaluate generation tasks across different modalities in a supervised manner. MetaMetrics optimizes the combination of existing metrics to enhance their alignment with human preferences. Our metric demonstrates flexibility and effectiveness in both language and vision downstream tasks, showing significant benefits across various multilingual and multi-domain scenarios. MetaMetrics aligns closely with human preferences and is highly extendable and easily integrable into any application. This makes MetaMetrics a powerful tool for improving the evaluation of generation tasks, ensuring that metrics are more representative of human judgment across diverse contexts.
CARE: Commonsense-Aware Emotional Response Generation with Latent Concepts
Rationality and emotion are two fundamental elements of humans. Endowing agents with rationality and emotion has been one of the major milestones in AI. However, in the field of conversational AI, most existing models only specialize in one aspect and neglect the other, which often leads to dull or unrelated responses. In this paper, we hypothesize that combining rationality and emotion into conversational agents can improve response quality. To test the hypothesis, we focus on one fundamental aspect of rationality, i.e., commonsense, and propose CARE, a novel model for commonsense-aware emotional response generation. Specifically, we first propose a framework to learn and construct commonsense-aware emotional latent concepts of the response given an input message and a desired emotion. We then propose three methods to collaboratively incorporate the latent concepts into response generation. Experimental results on two large-scale datasets support our hypothesis and show that our model can produce more accurate and commonsense-aware emotional responses and achieve better human ratings than state-of-the-art models that only specialize in one aspect.
Explainable Depression Symptom Detection in Social Media
Users of social platforms often perceive these sites as supportive spaces to post about their mental health issues. Those conversations contain important traces about individuals' health risks. Recently, researchers have exploited this online information to construct mental health detection models, which aim to identify users at risk on platforms like Twitter, Reddit or Facebook. Most of these models are centred on achieving good classification results, ignoring the explainability and interpretability of the decisions. Recent research has pointed out the importance of using clinical markers, such as the use of symptoms, to improve trust in the computational models by health professionals. In this paper, we propose using transformer-based architectures to detect and explain the appearance of depressive symptom markers in the users' writings. We present two approaches: i) train a model to classify, and another one to explain the classifier's decision separately and ii) unify the two tasks simultaneously using a single model. Additionally, for this latter manner, we also investigated the performance of recent conversational LLMs when using in-context learning. Our natural language explanations enable clinicians to interpret the models' decisions based on validated symptoms, enhancing trust in the automated process. We evaluate our approach using recent symptom-based datasets, employing both offline and expert-in-the-loop metrics to assess the quality of the explanations generated by our models. The experimental results show that it is possible to achieve good classification results while generating interpretable symptom-based explanations.
CompassJudger-1: All-in-one Judge Model Helps Model Evaluation and Evolution
Efficient and accurate evaluation is crucial for the continuous improvement of large language models (LLMs). Among various assessment methods, subjective evaluation has garnered significant attention due to its superior alignment with real-world usage scenarios and human preferences. However, human-based evaluations are costly and lack reproducibility, making precise automated evaluators (judgers) vital in this process. In this report, we introduce CompassJudger-1, the first open-source all-in-one judge LLM. CompassJudger-1 is a general-purpose LLM that demonstrates remarkable versatility. It is capable of: 1. Performing unitary scoring and two-model comparisons as a reward model; 2. Conducting evaluations according to specified formats; 3. Generating critiques; 4. Executing diverse tasks like a general LLM. To assess the evaluation capabilities of different judge models under a unified setting, we have also established JudgerBench, a new benchmark that encompasses various subjective evaluation tasks and covers a wide range of topics. CompassJudger-1 offers a comprehensive solution for various evaluation tasks while maintaining the flexibility to adapt to diverse requirements. Both CompassJudger and JudgerBench are released and available to the research community athttps://github.com/open-compass/CompassJudger. We believe that by open-sourcing these tools, we can foster collaboration and accelerate progress in LLM evaluation methodologies.
EQ-Bench: An Emotional Intelligence Benchmark for Large Language Models
We introduce EQ-Bench, a novel benchmark designed to evaluate aspects of emotional intelligence in Large Language Models (LLMs). We assess the ability of LLMs to understand complex emotions and social interactions by asking them to predict the intensity of emotional states of characters in a dialogue. The benchmark is able to discriminate effectively between a wide range of models. We find that EQ-Bench correlates strongly with comprehensive multi-domain benchmarks like MMLU (Hendrycks et al., 2020) (r=0.97), indicating that we may be capturing similar aspects of broad intelligence. Our benchmark produces highly repeatable results using a set of 60 English-language questions. We also provide open-source code for an automated benchmarking pipeline at https://github.com/EQ-bench/EQ-Bench and a leaderboard at https://eqbench.com
HelpSteer2: Open-source dataset for training top-performing reward models
High-quality preference datasets are essential for training reward models that can effectively guide large language models (LLMs) in generating high-quality responses aligned with human preferences. As LLMs become stronger and better aligned, permissively licensed preference datasets, such as Open Assistant, HH-RLHF, and HelpSteer need to be updated to remain effective for reward modeling. Methods that distil preference data from proprietary LLMs such as GPT-4 have restrictions on commercial usage imposed by model providers. To improve upon both generated responses and attribute labeling quality, we release HelpSteer2, a permissively licensed preference dataset (CC-BY-4.0). Using a powerful internal base model trained on HelpSteer2, we are able to achieve the SOTA score (92.0%) on Reward-Bench's primary dataset, outperforming currently listed open and proprietary models, as of June 12th, 2024. Notably, HelpSteer2 consists of only ten thousand response pairs, an order of magnitude fewer than existing preference datasets (e.g., HH-RLHF), which makes it highly efficient for training reward models. Our extensive experiments demonstrate that reward models trained with HelpSteer2 are effective in aligning LLMs. In particular, we propose SteerLM 2.0, a model alignment approach that can effectively make use of the rich multi-attribute score predicted by our reward models. HelpSteer2 is available at https://huggingface.co/datasets/nvidia/HelpSteer2 and code is available at https://github.com/NVIDIA/NeMo-Aligner
Designing a Dashboard for Transparency and Control of Conversational AI
Conversational LLMs function as black box systems, leaving users guessing about why they see the output they do. This lack of transparency is potentially problematic, especially given concerns around bias and truthfulness. To address this issue, we present an end-to-end prototype-connecting interpretability techniques with user experience design-that seeks to make chatbots more transparent. We begin by showing evidence that a prominent open-source LLM has a "user model": examining the internal state of the system, we can extract data related to a user's age, gender, educational level, and socioeconomic status. Next, we describe the design of a dashboard that accompanies the chatbot interface, displaying this user model in real time. The dashboard can also be used to control the user model and the system's behavior. Finally, we discuss a study in which users conversed with the instrumented system. Our results suggest that users appreciate seeing internal states, which helped them expose biased behavior and increased their sense of control. Participants also made valuable suggestions that point to future directions for both design and machine learning research. The project page and video demo of our TalkTuner system are available at https://bit.ly/talktuner-project-page
