Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMMMT-IF: A Challenging Multimodal Multi-Turn Instruction Following Benchmark
Evaluating instruction following capabilities for multimodal, multi-turn dialogue is challenging. With potentially multiple instructions in the input model context, the task is time-consuming for human raters and we show LLM based judges are biased towards answers from the same model. We propose MMMT-IF, an image based multi-turn Q&A evaluation set with added global instructions between questions, constraining the answer format. This challenges models to retrieve instructions dispersed across long dialogues and reason under instruction constraints. All instructions are objectively verifiable through code execution. We introduce the Programmatic Instruction Following (PIF) metric to measure the fraction of the instructions that are correctly followed while performing a reasoning task. The PIF-N-K set of metrics further evaluates robustness by measuring the fraction of samples in a corpus where, for each sample, at least K out of N generated model responses achieve a PIF score of one. The PIF metric aligns with human instruction following ratings, showing 60 percent correlation. Experiments show Gemini 1.5 Pro, GPT-4o, and Claude 3.5 Sonnet, have a PIF metric that drops from 0.81 on average at turn 1 across the models, to 0.64 at turn 20. Across all turns, when each response is repeated 4 times (PIF-4-4), GPT-4o and Gemini successfully follow all instructions only 11% of the time. When all the instructions are also appended to the end of the model input context, the PIF metric improves by 22.3 points on average, showing that the challenge with the task lies not only in following the instructions, but also in retrieving the instructions spread out in the model context. We plan to open source the MMMT-IF dataset and metric computation code.
NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking
Benchmarking vision-based driving policies is challenging. On one hand, open-loop evaluation with real data is easy, but these results do not reflect closed-loop performance. On the other, closed-loop evaluation is possible in simulation, but is hard to scale due to its significant computational demands. Further, the simulators available today exhibit a large domain gap to real data. This has resulted in an inability to draw clear conclusions from the rapidly growing body of research on end-to-end autonomous driving. In this paper, we present NAVSIM, a middle ground between these evaluation paradigms, where we use large datasets in combination with a non-reactive simulator to enable large-scale real-world benchmarking. Specifically, we gather simulation-based metrics, such as progress and time to collision, by unrolling bird's eye view abstractions of the test scenes for a short simulation horizon. Our simulation is non-reactive, i.e., the evaluated policy and environment do not influence each other. As we demonstrate empirically, this decoupling allows open-loop metric computation while being better aligned with closed-loop evaluations than traditional displacement errors. NAVSIM enabled a new competition held at CVPR 2024, where 143 teams submitted 463 entries, resulting in several new insights. On a large set of challenging scenarios, we observe that simple methods with moderate compute requirements such as TransFuser can match recent large-scale end-to-end driving architectures such as UniAD. Our modular framework can potentially be extended with new datasets, data curation strategies, and metrics, and will be continually maintained to host future challenges. Our code is available at https://github.com/autonomousvision/navsim.
HERO: Hierarchical Extrapolation and Refresh for Efficient World Models
Generation-driven world models create immersive virtual environments but suffer slow inference due to the iterative nature of diffusion models. While recent advances have improved diffusion model efficiency, directly applying these techniques to world models introduces limitations such as quality degradation. In this paper, we present HERO, a training-free hierarchical acceleration framework tailored for efficient world models. Owing to the multi-modal nature of world models, we identify a feature coupling phenomenon, wherein shallow layers exhibit high temporal variability, while deeper layers yield more stable feature representations. Motivated by this, HERO adopts hierarchical strategies to accelerate inference: (i) In shallow layers, a patch-wise refresh mechanism efficiently selects tokens for recomputation. With patch-wise sampling and frequency-aware tracking, it avoids extra metric computation and remain compatible with FlashAttention. (ii) In deeper layers, a linear extrapolation scheme directly estimates intermediate features. This completely bypasses the computations in attention modules and feed-forward networks. Our experiments show that HERO achieves a 1.73times speedup with minimal quality degradation, significantly outperforming existing diffusion acceleration methods.
On Speeding Up Language Model Evaluation
Large language models (LLMs) currently dominate the field of natural language processing (NLP), representing the state-of-the-art across a diverse array of tasks. Developing a model of this nature, from training to inference, requires making numerous decisions which define a combinatorial search problem. For example, selecting the optimal pre-trained LLM, prompt, or hyperparameters to attain the best performance for a task often requires evaluating multiple candidates on an entire test set. This exhaustive evaluation can be time-consuming and costly, as both inference and metric computation with LLMs are resource-intensive. In this paper, we address the challenge of identifying the best method within a limited budget for evaluating methods on test examples. By leveraging the well-studied multi-armed bandit framework, which sequentially selects the next method-example pair to evaluate, our approach, combining multi-armed bandit algorithms with low-rank factorization, significantly reduces the required resources. Experiments show that our algorithms can identify the top-performing method using only 5-15\% of the typically needed resources, resulting in an 85-95\% reduction in cost.
First Hallucination Tokens Are Different from Conditional Ones
Hallucination, the generation of untruthful content, is one of the major concerns regarding foundational models. Detecting hallucinations at the token level is vital for real-time filtering and targeted correction, yet the variation of hallucination signals within token sequences is not fully understood. Leveraging the RAGTruth corpus with token-level annotations and reproduced logits, we analyse how these signals depend on a token's position within hallucinated spans, contributing to an improved understanding of token-level hallucination. Our results show that the first hallucinated token carries a stronger signal and is more detectable than conditional tokens. We release our analysis framework, along with code for logit reproduction and metric computation at https://github.com/jakobsnl/RAGTruth_Xtended.
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
Currently, the neural network architecture design is mostly guided by the indirect metric of computation complexity, i.e., FLOPs. However, the direct metric, e.g., speed, also depends on the other factors such as memory access cost and platform characterics. Thus, this work proposes to evaluate the direct metric on the target platform, beyond only considering FLOPs. Based on a series of controlled experiments, this work derives several practical guidelines for efficient network design. Accordingly, a new architecture is presented, called ShuffleNet V2. Comprehensive ablation experiments verify that our model is the state-of-the-art in terms of speed and accuracy tradeoff.
CCNeXt: An Effective Self-Supervised Stereo Depth Estimation Approach
Depth Estimation plays a crucial role in recent applications in robotics, autonomous vehicles, and augmented reality. These scenarios commonly operate under constraints imposed by computational power. Stereo image pairs offer an effective solution for depth estimation since it only needs to estimate the disparity of pixels in image pairs to determine the depth in a known rectified system. Due to the difficulty in acquiring reliable ground-truth depth data across diverse scenarios, self-supervised techniques emerge as a solution, particularly when large unlabeled datasets are available. We propose a novel self-supervised convolutional approach that outperforms existing state-of-the-art Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) while balancing computational cost. The proposed CCNeXt architecture employs a modern CNN feature extractor with a novel windowed epipolar cross-attention module in the encoder, complemented by a comprehensive redesign of the depth estimation decoder. Our experiments demonstrate that CCNeXt achieves competitive metrics on the KITTI Eigen Split test data while being 10.18times faster than the current best model and achieves state-of-the-art results in all metrics in the KITTI Eigen Split Improved Ground Truth and Driving Stereo datasets when compared to recently proposed techniques. To ensure complete reproducibility, our project is accessible at https://github.com/alelopes/CCNext{https://github.com/alelopes/CCNext}.
Towards Exact Computation of Inductive Bias
Much research in machine learning involves finding appropriate inductive biases (e.g. convolutional neural networks, momentum-based optimizers, transformers) to promote generalization on tasks. However, quantification of the amount of inductive bias associated with these architectures and hyperparameters has been limited. We propose a novel method for efficiently computing the inductive bias required for generalization on a task with a fixed training data budget; formally, this corresponds to the amount of information required to specify well-generalizing models within a specific hypothesis space of models. Our approach involves modeling the loss distribution of random hypotheses drawn from a hypothesis space to estimate the required inductive bias for a task relative to these hypotheses. Unlike prior work, our method provides a direct estimate of inductive bias without using bounds and is applicable to diverse hypothesis spaces. Moreover, we derive approximation error bounds for our estimation approach in terms of the number of sampled hypotheses. Consistent with prior results, our empirical results demonstrate that higher dimensional tasks require greater inductive bias. We show that relative to other expressive model classes, neural networks as a model class encode large amounts of inductive bias. Furthermore, our measure quantifies the relative difference in inductive bias between different neural network architectures. Our proposed inductive bias metric provides an information-theoretic interpretation of the benefits of specific model architectures for certain tasks and provides a quantitative guide to developing tasks requiring greater inductive bias, thereby encouraging the development of more powerful inductive biases.
Video2Layout: Recall and Reconstruct Metric-Grounded Cognitive Map for Spatial Reasoning
Spatial intelligence is a critical frontier for Multimodal Large Language Models (MLLMs), empowering them to comprehend the physical world. Drawing inspiration from human perception mechanisms, existing studies attempt to construct a coherent spatial understanding via grid-based cognitive maps from multi-frame visual inputs. However, current grid-based map methods rely on discretized raster representations, which limit the model's ability in fine-grained spatial reasoning. To overcome this limitation, we propose Video2Layout, a framework for reconstructing metric-grounded spatial layouts from video. The framework employs continuous object boundary coordinates to quantify inter-object physical distances and object size. This empowers the model with quantitative spatial computation capabilities, effectively alleviating the inherent ambiguity when describing spatial relationships in natural language. Specifically, our method comprises two core stages. First, in supervised fine-tuning stage, we construct a high-quality dataset from the AI2THOR simulator, which enables the model to learn the mapping from visual inputs to precise boundary coordinates. Subsequently, a reinforcement fine-tuning stage further enhances the model's real-world generalization capabilities. To systematically evaluate the correlation between cognitive map accuracy and image quantity, as well as how the quantity of image inputs affects spatial reasoning accuracy, we introduce QVS-Bench, a diagnostic benchmark designed to analyze the relevant mechanisms. Evaluated on QVS-Bench and mainstream spatial reasoning benchmarks, our model, V2LO-7B achieves an average improvement of 4.92% over the model trained on grid maps, validating the superiority of our method. Our code is available at https://github.com/ybrrraway/Video2Layout.
EffEval: A Comprehensive Evaluation of Efficiency for MT Evaluation Metrics
Efficiency is a key property to foster inclusiveness and reduce environmental costs, especially in an era of LLMs. In this work, we provide a comprehensive evaluation of efficiency for MT evaluation metrics. Our approach involves replacing computation-intensive transformers with lighter alternatives and employing linear and quadratic approximations for alignment algorithms on top of LLM representations. We evaluate six (reference-free and reference-based) metrics across three MT datasets and examine 16 lightweight transformers. In addition, we look into the training efficiency of metrics like COMET by utilizing adapters. Our results indicate that (a) TinyBERT provides the optimal balance between quality and efficiency, (b) CPU speed-ups are more substantial than those on GPU; (c) WMD approximations yield no efficiency gains while reducing quality and (d) adapters enhance training efficiency (regarding backward pass speed and memory requirements) as well as, in some cases, metric quality. These findings can help to strike a balance between evaluation speed and quality, which is essential for effective NLG systems. Furthermore, our research contributes to the ongoing efforts to optimize NLG evaluation metrics with minimal impact on performance. To our knowledge, ours is the most comprehensive analysis of different aspects of efficiency for MT metrics conducted so far.
Accurate Computation of the Logarithm of Modified Bessel Functions on GPUs
Bessel functions are critical in scientific computing for applications such as machine learning, protein structure modeling, and robotics. However, currently, available routines lack precision or fail for certain input ranges, such as when the order v is large, and GPU-specific implementations are limited. We address the precision limitations of current numerical implementations while dramatically improving the runtime. We propose two novel algorithms for computing the logarithm of modified Bessel functions of the first and second kinds by computing intermediate values on a logarithmic scale. Our algorithms are robust and never have issues with underflows or overflows while having relative errors on the order of machine precision, even for inputs where existing libraries fail. In C++/CUDA, our algorithms have median and maximum speedups of 45x and 6150x for GPU and 17x and 3403x for CPU, respectively, over the ranges of inputs and third-party libraries tested. Compared to SciPy, the algorithms have median and maximum speedups of 77x and 300x for GPU and 35x and 98x for CPU, respectively, over the tested inputs. The ability to robustly compute a solution and the low relative errors allow us to fit von Mises-Fisher, vMF, distributions to high-dimensional neural network features. This is, e.g., relevant for uncertainty quantification in metric learning. We obtain image feature data by processing CIFAR10 training images with the convolutional layers of a pre-trained ResNet50. We successfully fit vMF distributions to 2048-, 8192-, and 32768-dimensional image feature data using our algorithms. Our approach provides fast and accurate results while existing implementations in SciPy and mpmath fail to fit successfully. Our approach is readily implementable on GPUs, and we provide a fast open-source implementation alongside this paper.
Deformable Surface Reconstruction via Riemannian Metric Preservation
Estimating the pose of an object from a monocular image is an inverse problem fundamental in computer vision. The ill-posed nature of this problem requires incorporating deformation priors to solve it. In practice, many materials do not perceptibly shrink or extend when manipulated, constituting a powerful and well-known prior. Mathematically, this translates to the preservation of the Riemannian metric. Neural networks offer the perfect playground to solve the surface reconstruction problem as they can approximate surfaces with arbitrary precision and allow the computation of differential geometry quantities. This paper presents an approach to inferring continuous deformable surfaces from a sequence of images, which is benchmarked against several techniques and obtains state-of-the-art performance without the need for offline training.
Multi-Similarity Loss with General Pair Weighting for Deep Metric Learning
A family of loss functions built on pair-based computation have been proposed in the literature which provide a myriad of solutions for deep metric learning. In this paper, we provide a general weighting framework for understanding recent pair-based loss functions. Our contributions are three-fold: (1) we establish a General Pair Weighting (GPW) framework, which casts the sampling problem of deep metric learning into a unified view of pair weighting through gradient analysis, providing a powerful tool for understanding recent pair-based loss functions; (2) we show that with GPW, various existing pair-based methods can be compared and discussed comprehensively, with clear differences and key limitations identified; (3) we propose a new loss called multi-similarity loss (MS loss) under the GPW, which is implemented in two iterative steps (i.e., mining and weighting). This allows it to fully consider three similarities for pair weighting, providing a more principled approach for collecting and weighting informative pairs. Finally, the proposed MS loss obtains new state-of-the-art performance on four image retrieval benchmarks, where it outperforms the most recent approaches, such as ABEKim_2018_ECCV and HTL by a large margin: 60.6% to 65.7% on CUB200, and 80.9% to 88.0% on In-Shop Clothes Retrieval dataset at Recall@1. Code is available at https://github.com/MalongTech/research-ms-loss.
GeoJSEval: An Automated Evaluation Framework for Large Language Models on JavaScript-Based Geospatial Computation and Visualization Code Generation
With the widespread adoption of large language models (LLMs) in code generation tasks, geospatial code generation has emerged as a critical frontier in the integration of artificial intelligence and geoscientific analysis. This trend underscores the urgent need for systematic evaluation methodologies to assess LLMs generation capabilities in geospatial contexts. In particular, geospatial computation and visualization tasks in JavaScript environments rely heavily on orchestrating diverse frontend libraries and ecosystems, placing elevated demands on a model's semantic understanding and code synthesis abilities. To address this challenge, we propose GeoJSEval--the first multimodal, function-level automatic evaluation framework for LLMs in JavaScript-based geospatial code generation. GeoJSEval comprises three core components: a standardized test suite (GeoJSEval-Bench), a code submission engine, and an evaluation module. It includes 432 function-level tasks and 2,071 structured test cases spanning five widely used JavaScript geospatial libraries and 25 mainstream geospatial data types. GeoJSEval enables multidimensional quantitative evaluation across metrics such as accuracy, output stability, execution efficiency, resource consumption, and error type distribution, and integrates boundary testing mechanisms to enhance robustness and coverage. We conduct a comprehensive evaluation of 18 state-of-the-art LLMs using GeoJSEval, revealing significant performance disparities and bottlenecks in spatial semantic understanding, code reliability, and function invocation accuracy. GeoJSEval provides a foundational methodology, evaluation resource, and practical toolkit for the standardized assessment and optimization of geospatial code generation models, with strong extensibility and applicability in real-world scenarios.
ARISE: An Adaptive Resolution-Aware Metric for Test-Time Scaling Evaluation in Large Reasoning Models
Test-time scaling has emerged as a transformative paradigm for enhancing the performance of large reasoning models, enabling dynamic allocation of computational resources during inference. However, as the landscape of reasoning models rapidly expands, a critical question remains: how can we systematically compare and evaluate the test-time scaling capabilities across different models? In this paper, we introduce ARISE (Adaptive Resolution-aware Scaling Evaluation), a novel metric specifically designed to assess the test-time scaling effectiveness of large reasoning models. Unlike existing evaluation approaches, ARISE incorporates two key innovations: (1) sample-level awareness that effectively penalizes negative scaling behaviors where increased computation leads to performance degradation, and (2) a dynamic sampling mechanism that mitigates the impact of accuracy fluctuations and token count instability on the final assessment. We conduct comprehensive experiments evaluating state-of-the-art reasoning models across diverse domains including mathematical reasoning, code generation, and agentic tasks. Our results demonstrate that ARISE provides a reliable and fine-grained measurement of test-time scaling capabilities, revealing significant variations in scaling efficiency across models. Notably, our evaluation identifies Claude Opus as exhibiting superior scaling characteristics compared to other contemporary reasoning models.
Theoretical analysis and computation of the sample Frechet mean for sets of large graphs based on spectral information
To characterize the location (mean, median) of a set of graphs, one needs a notion of centrality that is adapted to metric spaces, since graph sets are not Euclidean spaces. A standard approach is to consider the Frechet mean. In this work, we equip a set of graphs with the pseudometric defined by the norm between the eigenvalues of their respective adjacency matrix. Unlike the edit distance, this pseudometric reveals structural changes at multiple scales, and is well adapted to studying various statistical problems for graph-valued data. We describe an algorithm to compute an approximation to the sample Frechet mean of a set of undirected unweighted graphs with a fixed size using this pseudometric.
MultiDepth: Multi-Sample Priors for Refining Monocular Metric Depth Estimations in Indoor Scenes
Monocular metric depth estimation (MMDE) is a crucial task to solve for indoor scene reconstruction on edge devices. Despite this importance, existing models are sensitive to factors such as boundary frequency of objects in the scene and scene complexity, failing to fully capture many indoor scenes. In this work, we propose to close this gap through the task of monocular metric depth refinement (MMDR) by leveraging state-of-the-art MMDE models. MultiDepth proposes a solution by taking samples of the image along with the initial depth map prediction made by a pre-trained MMDE model. Compared to existing iterative depth refinement techniques, MultiDepth does not employ normal map prediction as part of its architecture, effectively lowering the model size and computation overhead while outputting impactful changes from refining iterations. MultiDepth implements a lightweight encoder-decoder architecture for the refinement network, processing multiple samples from the given image, including segmentation masking. We evaluate MultiDepth on four datasets and compare them to state-of-the-art methods to demonstrate its effective refinement with minimal overhead, displaying accuracy improvement upward of 45%.
Quantifying Spatial Audio Quality Impairment
Spatial audio quality is a highly multifaceted concept, with many interactions between environmental, geometrical, anatomical, psychological, and contextual considerations. Methods for characterization or evaluation of the geometrical components of spatial audio quality, however, remain scarce, despite being perhaps the least subjective aspect of spatial audio quality to quantify. By considering interchannel time and level differences relative to a reference signal, it is possible to construct a signal model to isolate some of the spatial distortion. By using a combination of least-square optimization and heuristics, we propose a signal decomposition method to isolate the spatial error from a processed signal, in terms of interchannel gain leakages and changes in relative delays. This allows the computation of simple energy-ratio metrics, providing objective measures of spatial and non-spatial signal qualities, with minimal assumptions and no dataset dependency. Experiments demonstrate the robustness of the method against common spatial signal degradation introduced by, e.g., audio compression and music source separation. Implementation is available at https://github.com/karnwatcharasupat/spauq.
Levenshtein Distance Embedding with Poisson Regression for DNA Storage
Efficient computation or approximation of Levenshtein distance, a widely-used metric for evaluating sequence similarity, has attracted significant attention with the emergence of DNA storage and other biological applications. Sequence embedding, which maps Levenshtein distance to a conventional distance between embedding vectors, has emerged as a promising solution. In this paper, a novel neural network-based sequence embedding technique using Poisson regression is proposed. We first provide a theoretical analysis of the impact of embedding dimension on model performance and present a criterion for selecting an appropriate embedding dimension. Under this embedding dimension, the Poisson regression is introduced by assuming the Levenshtein distance between sequences of fixed length following a Poisson distribution, which naturally aligns with the definition of Levenshtein distance. Moreover, from the perspective of the distribution of embedding distances, Poisson regression approximates the negative log likelihood of the chi-squared distribution and offers advancements in removing the skewness. Through comprehensive experiments on real DNA storage data, we demonstrate the superior performance of the proposed method compared to state-of-the-art approaches.
PreNAS: Preferred One-Shot Learning Towards Efficient Neural Architecture Search
The wide application of pre-trained models is driving the trend of once-for-all training in one-shot neural architecture search (NAS). However, training within a huge sample space damages the performance of individual subnets and requires much computation to search for an optimal model. In this paper, we present PreNAS, a search-free NAS approach that accentuates target models in one-shot training. Specifically, the sample space is dramatically reduced in advance by a zero-cost selector, and weight-sharing one-shot training is performed on the preferred architectures to alleviate update conflicts. Extensive experiments have demonstrated that PreNAS consistently outperforms state-of-the-art one-shot NAS competitors for both Vision Transformer and convolutional architectures, and importantly, enables instant specialization with zero search cost. Our code is available at https://github.com/tinyvision/PreNAS.
SC2 Benchmark: Supervised Compression for Split Computing
With the increasing demand for deep learning models on mobile devices, splitting neural network computation between the device and a more powerful edge server has become an attractive solution. However, existing split computing approaches often underperform compared to a naive baseline of remote computation on compressed data. Recent studies propose learning compressed representations that contain more relevant information for supervised downstream tasks, showing improved tradeoffs between compressed data size and supervised performance. However, existing evaluation metrics only provide an incomplete picture of split computing. This study introduces supervised compression for split computing (SC2) and proposes new evaluation criteria: minimizing computation on the mobile device, minimizing transmitted data size, and maximizing model accuracy. We conduct a comprehensive benchmark study using 10 baseline methods, three computer vision tasks, and over 180 trained models, and discuss various aspects of SC2. We also release sc2bench, a Python package for future research on SC2. Our proposed metrics and package will help researchers better understand the tradeoffs of supervised compression in split computing.
Nonlinear Sufficient Dimension Reduction for Distribution-on-Distribution Regression
We introduce a new approach to nonlinear sufficient dimension reduction in cases where both the predictor and the response are distributional data, modeled as members of a metric space. Our key step is to build universal kernels (cc-universal) on the metric spaces, which results in reproducing kernel Hilbert spaces for the predictor and response that are rich enough to characterize the conditional independence that determines sufficient dimension reduction. For univariate distributions, we construct the universal kernel using the Wasserstein distance, while for multivariate distributions, we resort to the sliced Wasserstein distance. The sliced Wasserstein distance ensures that the metric space possesses similar topological properties to the Wasserstein space while also offering significant computation benefits. Numerical results based on synthetic data show that our method outperforms possible competing methods. The method is also applied to several data sets, including fertility and mortality data and Calgary temperature data.
Value-Driven Mixed-Precision Quantization for Patch-Based Inference on Microcontrollers
Deploying neural networks on microcontroller units (MCUs) presents substantial challenges due to their constrained computation and memory resources. Previous researches have explored patch-based inference as a strategy to conserve memory without sacrificing model accuracy. However, this technique suffers from severe redundant computation overhead, leading to a substantial increase in execution latency. A feasible solution to address this issue is mixed-precision quantization, but it faces the challenges of accuracy degradation and a time-consuming search time. In this paper, we propose QuantMCU, a novel patch-based inference method that utilizes value-driven mixed-precision quantization to reduce redundant computation. We first utilize value-driven patch classification (VDPC) to maintain the model accuracy. VDPC classifies patches into two classes based on whether they contain outlier values. For patches containing outlier values, we apply 8-bit quantization to the feature maps on the dataflow branches that follow. In addition, for patches without outlier values, we utilize value-driven quantization search (VDQS) on the feature maps of their following dataflow branches to reduce search time. Specifically, VDQS introduces a novel quantization search metric that takes into account both computation and accuracy, and it employs entropy as an accuracy representation to avoid additional training. VDQS also adopts an iterative approach to determine the bitwidth of each feature map to further accelerate the search process. Experimental results on real-world MCU devices show that QuantMCU can reduce computation by 2.2x on average while maintaining comparable model accuracy compared to the state-of-the-art patch-based inference methods.
Saliency-Guided Deep Learning Network for Automatic Tumor Bed Volume Delineation in Post-operative Breast Irradiation
Efficient, reliable and reproducible target volume delineation is a key step in the effective planning of breast radiotherapy. However, post-operative breast target delineation is challenging as the contrast between the tumor bed volume (TBV) and normal breast tissue is relatively low in CT images. In this study, we propose to mimic the marker-guidance procedure in manual target delineation. We developed a saliency-based deep learning segmentation (SDL-Seg) algorithm for accurate TBV segmentation in post-operative breast irradiation. The SDL-Seg algorithm incorporates saliency information in the form of markers' location cues into a U-Net model. The design forces the model to encode the location-related features, which underscores regions with high saliency levels and suppresses low saliency regions. The saliency maps were generated by identifying markers on CT images. Markers' locations were then converted to probability maps using a distance-transformation coupled with a Gaussian filter. Subsequently, the CT images and the corresponding saliency maps formed a multi-channel input for the SDL-Seg network. Our in-house dataset was comprised of 145 prone CT images from 29 post-operative breast cancer patients, who received 5-fraction partial breast irradiation (PBI) regimen on GammaPod. The performance of the proposed method was compared against basic U-Net. Our model achieved mean (standard deviation) of 76.4 %, 6.76 mm, and 1.9 mm for DSC, HD95, and ASD respectively on the test set with computation time of below 11 seconds per one CT volume. SDL-Seg showed superior performance relative to basic U-Net for all the evaluation metrics while preserving low computation cost. The findings demonstrate that SDL-Seg is a promising approach for improving the efficiency and accuracy of the on-line treatment planning procedure of PBI, such as GammaPod based PBI.
Principal subbundles for dimension reduction
In this paper we demonstrate how sub-Riemannian geometry can be used for manifold learning and surface reconstruction by combining local linear approximations of a point cloud to obtain lower dimensional bundles. Local approximations obtained by local PCAs are collected into a rank k tangent subbundle on R^d, k<d, which we call a principal subbundle. This determines a sub-Riemannian metric on R^d. We show that sub-Riemannian geodesics with respect to this metric can successfully be applied to a number of important problems, such as: explicit construction of an approximating submanifold M, construction of a representation of the point-cloud in R^k, and computation of distances between observations, taking the learned geometry into account. The reconstruction is guaranteed to equal the true submanifold in the limit case where tangent spaces are estimated exactly. Via simulations, we show that the framework is robust when applied to noisy data. Furthermore, the framework generalizes to observations on an a priori known Riemannian manifold.
PokeBNN: A Binary Pursuit of Lightweight Accuracy
Optimization of Top-1 ImageNet promotes enormous networks that may be impractical in inference settings. Binary neural networks (BNNs) have the potential to significantly lower the compute intensity but existing models suffer from low quality. To overcome this deficiency, we propose PokeConv, a binary convolution block which improves quality of BNNs by techniques such as adding multiple residual paths, and tuning the activation function. We apply it to ResNet-50 and optimize ResNet's initial convolutional layer which is hard to binarize. We name the resulting network family PokeBNN. These techniques are chosen to yield favorable improvements in both top-1 accuracy and the network's cost. In order to enable joint optimization of the cost together with accuracy, we define arithmetic computation effort (ACE), a hardware- and energy-inspired cost metric for quantized and binarized networks. We also identify a need to optimize an under-explored hyper-parameter controlling the binarization gradient approximation. We establish a new, strong state-of-the-art (SOTA) on top-1 accuracy together with commonly-used CPU64 cost, ACE cost and network size metrics. ReActNet-Adam, the previous SOTA in BNNs, achieved a 70.5% top-1 accuracy with 7.9 ACE. A small variant of PokeBNN achieves 70.5% top-1 with 2.6 ACE, more than 3x reduction in cost; a larger PokeBNN achieves 75.6% top-1 with 7.8 ACE, more than 5% improvement in accuracy without increasing the cost. PokeBNN implementation in JAX/Flax and reproduction instructions are available in AQT repository: https://github.com/google/aqt
One RL to See Them All: Visual Triple Unified Reinforcement Learning
Reinforcement learning (RL) has significantly advanced the reasoning capabilities of vision-language models (VLMs). However, the use of RL beyond reasoning tasks remains largely unexplored, especially for perceptionintensive tasks like object detection and grounding. We propose V-Triune, a Visual Triple Unified Reinforcement Learning system that enables VLMs to jointly learn visual reasoning and perception tasks within a single training pipeline. V-Triune comprises triple complementary components: Sample-Level Data Formatting (to unify diverse task inputs), Verifier-Level Reward Computation (to deliver custom rewards via specialized verifiers) , and Source-Level Metric Monitoring (to diagnose problems at the data-source level). We further introduce a novel Dynamic IoU reward, which provides adaptive, progressive, and definite feedback for perception tasks handled by V-Triune. Our approach is instantiated within off-the-shelf RL training framework using open-source 7B and 32B backbone models. The resulting model, dubbed Orsta (One RL to See Them All), demonstrates consistent improvements across both reasoning and perception tasks. This broad capability is significantly shaped by its training on a diverse dataset, constructed around four representative visual reasoning tasks (Math, Puzzle, Chart, and Science) and four visual perception tasks (Grounding, Detection, Counting, and OCR). Subsequently, Orsta achieves substantial gains on MEGA-Bench Core, with improvements ranging from +2.1 to an impressive +14.1 across its various 7B and 32B model variants, with performance benefits extending to a wide range of downstream tasks. These results highlight the effectiveness and scalability of our unified RL approach for VLMs. The V-Triune system, along with the Orsta models, is publicly available at https://github.com/MiniMax-AI.
CodePrompt: Improving Source Code-Related Classification with Knowledge Features through Prompt Learning
Researchers have explored the potential of utilizing pre-trained language models, such as CodeBERT, to improve source code-related tasks. Previous studies have mainly relied on CodeBERT's text embedding capability and the `[CLS]' sentence embedding information as semantic representations for fine-tuning downstream source code-related tasks. However, these methods require additional neural network layers to extract effective features, resulting in higher computational costs. Furthermore, existing approaches have not leveraged the rich knowledge contained in both source code and related text, which can lead to lower accuracy. This paper presents a novel approach, CodePrompt, which utilizes rich knowledge recalled from a pre-trained model by prompt learning and an attention mechanism to improve source code-related classification tasks. Our approach initially motivates the language model with prompt information to retrieve abundant knowledge associated with the input as representative features, thus avoiding the need for additional neural network layers and reducing computational costs. Subsequently, we employ an attention mechanism to aggregate multiple layers of related knowledge for each task as final features to boost their accuracy. We conducted extensive experiments on four downstream source code-related tasks to evaluate our approach and our results demonstrate that CodePrompt achieves new state-of-the-art performance on the accuracy metric while also exhibiting computation cost-saving capabilities.
Language Complexity Measurement as a Noisy Zero-Shot Proxy for Evaluating LLM Performance
Large Language Models (LLMs) have made significant strides in natural language generation but often face challenges in tasks requiring precise calculations and structural analysis. This paper investigates the performance of state-of-the-art LLMs on language complexity measurement tasks, through the computation of the LIX readability metric and Average Dependency Distance (ADD). Using Swedish high school and university-level essays, we evaluate the models' abilities to compute LIX scores and perform dependency parsing, comparing their results to established ground truths. Our findings reveal that while all models demonstrate some capacity for these tasks, ChatGPT-o1-mini performs most consistently, achieving the highest accuracy in both LIX computation and dependency parsing. Additionally, we observe a strong significant correlation -0.875 p 0.026 (N=6) between the models' accuracy in computing LIX and their overall performance on the Massive Multitask Language Understanding (MMLU) benchmark. These results suggest that language complexity measurement abilities can serve as a noisy zero-shot proxies for assessing the general capabilities of LLMs, providing a practical method for model evaluation without the need for extensive benchmarking datasets.
Equiangular Basis Vectors
We propose Equiangular Basis Vectors (EBVs) for classification tasks. In deep neural networks, models usually end with a k-way fully connected layer with softmax to handle different classification tasks. The learning objective of these methods can be summarized as mapping the learned feature representations to the samples' label space. While in metric learning approaches, the main objective is to learn a transformation function that maps training data points from the original space to a new space where similar points are closer while dissimilar points become farther apart. Different from previous methods, our EBVs generate normalized vector embeddings as "predefined classifiers" which are required to not only be with the equal status between each other, but also be as orthogonal as possible. By minimizing the spherical distance of the embedding of an input between its categorical EBV in training, the predictions can be obtained by identifying the categorical EBV with the smallest distance during inference. Various experiments on the ImageNet-1K dataset and other downstream tasks demonstrate that our method outperforms the general fully connected classifier while it does not introduce huge additional computation compared with classical metric learning methods. Our EBVs won the first place in the 2022 DIGIX Global AI Challenge, and our code is open-source and available at https://github.com/NJUST-VIPGroup/Equiangular-Basis-Vectors.
Scale-wise Distillation of Diffusion Models
We present SwD, a scale-wise distillation framework for diffusion models (DMs), which effectively employs next-scale prediction ideas for diffusion-based few-step generators. In more detail, SwD is inspired by the recent insights relating diffusion processes to the implicit spectral autoregression. We suppose that DMs can initiate generation at lower data resolutions and gradually upscale the samples at each denoising step without loss in performance while significantly reducing computational costs. SwD naturally integrates this idea into existing diffusion distillation methods based on distribution matching. Also, we enrich the family of distribution matching approaches by introducing a novel patch loss enforcing finer-grained similarity to the target distribution. When applied to state-of-the-art text-to-image diffusion models, SwD approaches the inference times of two full resolution steps and significantly outperforms the counterparts under the same computation budget, as evidenced by automated metrics and human preference studies.
Diffusion-RWKV: Scaling RWKV-Like Architectures for Diffusion Models
Transformers have catalyzed advancements in computer vision and natural language processing (NLP) fields. However, substantial computational complexity poses limitations for their application in long-context tasks, such as high-resolution image generation. This paper introduces a series of architectures adapted from the RWKV model used in the NLP, with requisite modifications tailored for diffusion model applied to image generation tasks, referred to as Diffusion-RWKV. Similar to the diffusion with Transformers, our model is designed to efficiently handle patchnified inputs in a sequence with extra conditions, while also scaling up effectively, accommodating both large-scale parameters and extensive datasets. Its distinctive advantage manifests in its reduced spatial aggregation complexity, rendering it exceptionally adept at processing high-resolution images, thereby eliminating the necessity for windowing or group cached operations. Experimental results on both condition and unconditional image generation tasks demonstrate that Diffison-RWKV achieves performance on par with or surpasses existing CNN or Transformer-based diffusion models in FID and IS metrics while significantly reducing total computation FLOP usage.
MonoNav: MAV Navigation via Monocular Depth Estimation and Reconstruction
A major challenge in deploying the smallest of Micro Aerial Vehicle (MAV) platforms (< 100 g) is their inability to carry sensors that provide high-resolution metric depth information (e.g., LiDAR or stereo cameras). Current systems rely on end-to-end learning or heuristic approaches that directly map images to control inputs, and struggle to fly fast in unknown environments. In this work, we ask the following question: using only a monocular camera, optical odometry, and offboard computation, can we create metrically accurate maps to leverage the powerful path planning and navigation approaches employed by larger state-of-the-art robotic systems to achieve robust autonomy in unknown environments? We present MonoNav: a fast 3D reconstruction and navigation stack for MAVs that leverages recent advances in depth prediction neural networks to enable metrically accurate 3D scene reconstruction from a stream of monocular images and poses. MonoNav uses off-the-shelf pre-trained monocular depth estimation and fusion techniques to construct a map, then searches over motion primitives to plan a collision-free trajectory to the goal. In extensive hardware experiments, we demonstrate how MonoNav enables the Crazyflie (a 37 g MAV) to navigate fast (0.5 m/s) in cluttered indoor environments. We evaluate MonoNav against a state-of-the-art end-to-end approach, and find that the collision rate in navigation is significantly reduced (by a factor of 4). This increased safety comes at the cost of conservatism in terms of a 22% reduction in goal completion.
Neural Architecture Search: Two Constant Shared Weights Initialisations
In the last decade, zero-cost metrics have gained prominence in neural architecture search (NAS) due to their ability to evaluate architectures without training. These metrics are significantly faster and less computationally expensive than traditional NAS methods and provide insights into neural architectures' internal workings. This paper introduces epsinas, a novel zero-cost NAS metric that assesses architecture potential using two constant shared weight initialisations and the statistics of their outputs. We show that the dispersion of raw outputs, normalised by their average magnitude, strongly correlates with trained accuracy. This effect holds across image classification and language tasks on NAS-Bench-101, NAS-Bench-201, and NAS-Bench-NLP. Our method requires no data labels, operates on a single minibatch, and eliminates the need for gradient computation, making it independent of training hyperparameters, loss metrics, and human annotations. It evaluates a network in a fraction of a GPU second and integrates seamlessly into existing NAS frameworks. The code supporting this study can be found on GitHub at https://github.com/egracheva/epsinas.
The magnitude vector of images
The magnitude of a finite metric space has recently emerged as a novel invariant quantity, allowing to measure the effective size of a metric space. Despite encouraging first results demonstrating the descriptive abilities of the magnitude, such as being able to detect the boundary of a metric space, the potential use cases of magnitude remain under-explored. In this work, we investigate the properties of the magnitude on images, an important data modality in many machine learning applications. By endowing each individual images with its own metric space, we are able to define the concept of magnitude on images and analyse the individual contribution of each pixel with the magnitude vector. In particular, we theoretically show that the previously known properties of boundary detection translate to edge detection abilities in images. Furthermore, we demonstrate practical use cases of magnitude for machine learning applications and propose a novel magnitude model that consists of a computationally efficient magnitude computation and a learnable metric. By doing so, we address the computational hurdle that used to make magnitude impractical for many applications and open the way for the adoption of magnitude in machine learning research.
Plan and Budget: Effective and Efficient Test-Time Scaling on Large Language Model Reasoning
Large Language Models (LLMs) have achieved remarkable success in complex reasoning tasks, but their inference remains computationally inefficient. We observe a common failure mode in many prevalent LLMs, overthinking, where models generate verbose and tangential reasoning traces even for simple queries. Recent works have tried to mitigate this by enforcing fixed token budgets, however, this can lead to underthinking, especially on harder problems. Through empirical analysis, we identify that this inefficiency often stems from unclear problem-solving strategies. To formalize this, we develop a theoretical model, BBAM (Bayesian Budget Allocation Model), which models reasoning as a sequence of sub-questions with varying uncertainty, and introduce the E^3 metric to capture the trade-off between correctness and computation efficiency. Building on theoretical results from BBAM, we propose Plan-and-Budget, a model-agnostic, test-time framework that decomposes complex queries into sub-questions and allocates token budgets based on estimated complexity using adaptive scheduling. Plan-and-Budget improves reasoning efficiency across a range of tasks and models, achieving up to +70% accuracy gains, -39% token reduction, and +187.5% improvement in E^3. Notably, it elevates a smaller model (DS-Qwen-32B) to match the efficiency of a larger model (DS-LLaMA-70B)-demonstrating Plan-and-Budget's ability to close performance gaps without retraining. Our code is available at anonymous.4open.science/r/P-and-B-6513/.
COFFE: A Code Efficiency Benchmark for Code Generation
Code generation has largely improved development efficiency in the era of large language models (LLMs). With the ability to follow instructions, current LLMs can be prompted to generate code solutions given detailed descriptions in natural language. Many research efforts are being devoted to improving the correctness of LLM-generated code, and many benchmarks are proposed to evaluate the correctness comprehensively. Despite the focus on correctness, the time efficiency of LLM-generated code solutions is under-explored. Current correctness benchmarks are not suitable for time efficiency evaluation since their test cases cannot well distinguish the time efficiency of different code solutions. Besides, the current execution time measurement is not stable and comprehensive, threatening the validity of the time efficiency evaluation. To address the challenges in the time efficiency evaluation of code generation, we propose COFFE, a code generation benchmark for evaluating the time efficiency of LLM-generated code solutions. COFFE contains 398 and 358 problems for function-level and file-level code generation, respectively. To improve the distinguishability, we design a novel stressful test case generation approach with contracts and two new formats of test cases to improve the accuracy of generation. For the time evaluation metric, we propose efficienct@k based on CPU instruction count to ensure a stable and solid comparison between different solutions. We evaluate 14 popular LLMs on COFFE and identify four findings. Based on the findings, we draw some implications for LLM researchers and software practitioners to facilitate future research and usage of LLMs in code generation.
How Efficient is LLM-Generated Code? A Rigorous & High-Standard Benchmark
The emergence of large language models (LLMs) has significantly pushed the frontiers of program synthesis. Advancement of LLM-based program synthesis calls for a thorough evaluation of LLM-generated code. Most evaluation frameworks focus on the (functional) correctness of generated code; efficiency, as an important measure of code quality, has been overlooked in existing evaluations. In this work, we develop ENAMEL (EfficeNcy AutoMatic EvaLuator), a rigorous and high-standard benchmark for evaluating the capability of LLMs in generating efficient code. Firstly, we propose a new efficiency metric called eff@k, which generalizes the pass@k metric from correctness to efficiency and appropriately handles right-censored execution time. Furthermore, we derive an unbiased and variance-reduced estimator of eff@k via Rao--Blackwellization; we also provide a numerically stable implementation for the new estimator. Secondly, to set a high-standard for efficiency evaluation, we employ a human expert to design best algorithms and implementations as our reference solutions of efficiency, many of which are much more efficient than existing canonical solutions in HumanEval and HumanEval+. Moreover, to ensure a rigorous evaluation, we employ a human expert to curate strong test case generators to filter out wrong code and differentiate suboptimal algorithms. An extensive study across 30 popular LLMs using our benchmark ENAMEL shows that LLMs still fall short of generating expert-level efficient code. Using two subsets of our problem set, we demonstrate that such deficiency is because current LLMs struggle in designing advanced algorithms and are barely aware of implementation optimization. Our benchmark is publicly available at https://github.com/q-rz/enamel .
Leveraging Reinforcement Learning and Large Language Models for Code Optimization
Code optimization is a daunting task that requires a significant level of expertise from experienced programmers. This level of expertise is not sufficient when compared to the rapid development of new hardware architectures. Towards advancing the whole code optimization process, recent approaches rely on machine learning and artificial intelligence techniques. This paper introduces a new framework to decrease the complexity of code optimization. The proposed framework builds on large language models (LLMs) and reinforcement learning (RL) and enables LLMs to receive feedback from their environment (i.e., unit tests) during the fine-tuning process. We compare our framework with existing state-of-the-art models and show that it is more efficient with respect to speed and computational usage, as a result of the decrement in training steps and its applicability to models with fewer parameters. Additionally, our framework reduces the possibility of logical and syntactical errors. Toward evaluating our approach, we run several experiments on the PIE dataset using a CodeT5 language model and RRHF, a new reinforcement learning algorithm. We adopt a variety of evaluation metrics with regards to optimization quality, and speedup. The evaluation results demonstrate that the proposed framework has similar results in comparison with existing models using shorter training times and smaller pre-trained models. In particular, we accomplish an increase of 5.6% and 2.2 over the baseline models concerning the %OP T and SP metrics.
Evaluation of OpenAI Codex for HPC Parallel Programming Models Kernel Generation
We evaluate AI-assisted generative capabilities on fundamental numerical kernels in high-performance computing (HPC), including AXPY, GEMV, GEMM, SpMV, Jacobi Stencil, and CG. We test the generated kernel codes for a variety of language-supported programming models, including (1) C++ (e.g., OpenMP [including offload], OpenACC, Kokkos, SyCL, CUDA, and HIP), (2) Fortran (e.g., OpenMP [including offload] and OpenACC), (3) Python (e.g., numba, Numba, cuPy, and pyCUDA), and (4) Julia (e.g., Threads, CUDA.jl, AMDGPU.jl, and KernelAbstractions.jl). We use the GitHub Copilot capabilities powered by OpenAI Codex available in Visual Studio Code as of April 2023 to generate a vast amount of implementations given simple <kernel> + <programming model> + <optional hints> prompt variants. To quantify and compare the results, we propose a proficiency metric around the initial 10 suggestions given for each prompt. Results suggest that the OpenAI Codex outputs for C++ correlate with the adoption and maturity of programming models. For example, OpenMP and CUDA score really high, whereas HIP is still lacking. We found that prompts from either a targeted language such as Fortran or the more general-purpose Python can benefit from adding code keywords, while Julia prompts perform acceptably well for its mature programming models (e.g., Threads and CUDA.jl). We expect for these benchmarks to provide a point of reference for each programming model's community. Overall, understanding the convergence of large language models, AI, and HPC is crucial due to its rapidly evolving nature and how it is redefining human-computer interactions.
Mercury: An Efficiency Benchmark for LLM Code Synthesis
Despite advancements in evaluating Large Language Models (LLMs) for code synthesis, benchmarks have predominantly focused on functional correctness, overlooking the importance of code efficiency. We present Mercury, the first benchmark designated for assessing the code efficiency of LLM code synthesis tasks. Mercury consists of 1,889 programming tasks covering diverse difficulty levels alongside test case generators generating unlimited cases for comprehensive evaluation. Unlike existing benchmarks, Mercury integrates a novel metric Beyond@K to measure normalized code efficiency based on historical submissions, leading to a new evaluation indicator for code synthesis, which encourages generating functionally correct and computationally efficient code, mirroring the real-world software development standard. Our findings reveal that while LLMs demonstrate the remarkable capability to generate functionally correct code, there still exists a substantial gap in their efficiency output, underscoring a new frontier for LLM research and development.
Can Large Language Models Write Parallel Code?
Large Language Models are becoming an increasingly popular tool for software development. Their ability to model and generate source code has been demonstrated in a variety of contexts, including code completion, summarization, translation, and lookup. However, they often struggle to generate code for more complex tasks. In this paper, we explore the ability of state-of-the-art language models to generate parallel code. We propose a benchmark, PCGBench, consisting of a set of 420 tasks for evaluating the ability of language models to generate parallel code, and we evaluate the performance of several state-of-the-art open- and closed-source language models on these tasks. We introduce novel metrics for comparing parallel code generation performance and use them to explore how well each LLM performs on various parallel programming models and computational problem types.
Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs
The remarkable performance of models like the OpenAI o1 can be attributed to their ability to emulate human-like long-time thinking during inference. These models employ extended chain-of-thought (CoT) processes, exploring multiple strategies to enhance problem-solving capabilities. However, a critical question remains: How to intelligently and efficiently scale computational resources during testing. This paper presents the first comprehensive study on the prevalent issue of overthinking in these models, where excessive computational resources are allocated for simple problems with minimal benefit. We introduce novel efficiency metrics from both outcome and process perspectives to evaluate the rational use of computational resources by o1-like models. Using a self-training paradigm, we propose strategies to mitigate overthinking, streamlining reasoning processes without compromising accuracy. Experimental results show that our approach successfully reduces computational overhead while preserving model performance across a range of testsets with varying difficulty levels, such as GSM8K, MATH500, GPQA, and AIME.
GraphNet: A Large-Scale Computational Graph Dataset for Tensor Compiler Research
We introduce GraphNet, a dataset of 2.7K real-world deep learning computational graphs with rich metadata, spanning six major task categories across multiple deep learning frameworks. To evaluate tensor compiler performance on these samples, we propose the benchmark metric Speedup Score S(t), which jointly considers runtime speedup and execution correctness under tunable tolerance levels, offering a reliable measure of general optimization capability. Furthermore, we extend S(t) to the Error-aware Speedup Score ES(t), which incorporates error information and helps compiler developers identify key performance bottlenecks. In this report, we benchmark the default tensor compilers, CINN for PaddlePaddle and TorchInductor for PyTorch, on computer vision (CV) and natural language processing (NLP) samples to demonstrate the practicality of GraphNet. The full construction pipeline with graph extraction and compiler evaluation tools is available at https://github.com/PaddlePaddle/GraphNet .
The CAP Principle for LLM Serving: A Survey of Long-Context Large Language Model Serving
We survey the large language model (LLM) serving area to understand the intricate dynamics between cost-efficiency and accuracy, which is magnified by the growing need for longer contextual understanding when deploying models at a massive scale. Our findings reveal that works in this space optimize along three distinct but conflicting goals: improving serving context length (C), improving serving accuracy (A), and improving serving performance (P). Drawing inspiration from the CAP theorem in databases, we propose a CAP principle for LLM serving, which suggests that any optimization can improve at most two of these three goals simultaneously. Our survey categorizes existing works within this framework. We find the definition and continuity of user-perceived measurement metrics are crucial in determining whether a goal has been met, akin to prior CAP databases in the wild. We recognize the CAP principle for LLM serving as a guiding principle, rather than a formal theorem, to inform designers of the inherent and dynamic trade-offs in serving models. As serving accuracy and performance have been extensively studied, this survey focuses on works that extend serving context length and address the resulting challenges.
A Comprehensive Survey of Evaluation Techniques for Recommendation Systems
The effectiveness of recommendation systems is pivotal to user engagement and satisfaction in online platforms. As these recommendation systems increasingly influence user choices, their evaluation transcends mere technical performance and becomes central to business success. This paper addresses the multifaceted nature of recommendations system evaluation by introducing a comprehensive suite of metrics, each tailored to capture a distinct aspect of system performance. We discuss * Similarity Metrics: to quantify the precision of content-based filtering mechanisms and assess the accuracy of collaborative filtering techniques. * Candidate Generation Metrics: to evaluate how effectively the system identifies a broad yet relevant range of items. * Predictive Metrics: to assess the accuracy of forecasted user preferences. * Ranking Metrics: to evaluate the effectiveness of the order in which recommendations are presented. * Business Metrics: to align the performance of the recommendation system with economic objectives. Our approach emphasizes the contextual application of these metrics and their interdependencies. In this paper, we identify the strengths and limitations of current evaluation practices and highlight the nuanced trade-offs that emerge when optimizing recommendation systems across different metrics. The paper concludes by proposing a framework for selecting and interpreting these metrics to not only improve system performance but also to advance business goals. This work is to aid researchers and practitioners in critically assessing recommendation systems and fosters the development of more nuanced, effective, and economically viable personalization strategies. Our code is available at GitHub - https://github.com/aryan-jadon/Evaluation-Metrics-for-Recommendation-Systems.
Cheaply Evaluating Inference Efficiency Metrics for Autoregressive Transformer APIs
Large language models (LLMs) power many state-of-the-art systems in natural language processing. However, these models are extremely computationally expensive, even at inference time, raising the natural question: when is the extra cost of deploying a larger model worth the anticipated boost in capabilities? Better understanding this tradeoff fundamentally could benefit from an inference efficiency metric that is both (i) easily comparable across models from different providers, and (ii) representative of the true cost of running queries in an isolated performance environment. Unfortunately, access to LLMs today is largely restricted to black-box text generation APIs and raw runtimes measured through this interface do not satisfy these desiderata: model providers can apply various software and hardware optimizations orthogonal to the model, and models served on shared infrastructure are susceptible to performance contention. To circumvent these problems, we propose a new metric for comparing inference efficiency across models. This metric puts models on equal footing as though they were served (i) on uniform hardware and software, and (ii) without performance contention. We call this metric the idealized runtime, and we propose a methodology to efficiently estimate this metric for autoregressive Transformer models. We also propose cost-aware variants that incorporate the number of accelerators needed to serve the model. Using these metrics, we compare ten state-of-the-art LLMs to provide the first analysis of inference efficiency-capability tradeoffs; we make several observations from this analysis, including the fact that the superior inference runtime performance of certain APIs is often a byproduct of optimizations within the API rather than the underlying model. Our methodology also facilitates the efficient comparison of different software and hardware stacks.
Revisiting Code Similarity Evaluation with Abstract Syntax Tree Edit Distance
This paper revisits recent code similarity evaluation metrics, particularly focusing on the application of Abstract Syntax Tree (AST) editing distance in diverse programming languages. In particular, we explore the usefulness of these metrics and compare them to traditional sequence similarity metrics. Our experiments showcase the effectiveness of AST editing distance in capturing intricate code structures, revealing a high correlation with established metrics. Furthermore, we explore the strengths and weaknesses of AST editing distance and prompt-based GPT similarity scores in comparison to BLEU score, execution match, and Jaccard Similarity. We propose, optimize, and publish an adaptable metric that demonstrates effectiveness across all tested languages, representing an enhanced version of Tree Similarity of Edit Distance (TSED).
CodeBLEU: a Method for Automatic Evaluation of Code Synthesis
Evaluation metrics play a vital role in the growth of an area as it defines the standard of distinguishing between good and bad models. In the area of code synthesis, the commonly used evaluation metric is BLEU or perfect accuracy, but they are not suitable enough to evaluate codes, because BLEU is originally designed to evaluate the natural language, neglecting important syntactic and semantic features of codes, and perfect accuracy is too strict thus it underestimates different outputs with the same semantic logic. To remedy this, we introduce a new automatic evaluation metric, dubbed CodeBLEU. It absorbs the strength of BLEU in the n-gram match and further injects code syntax via abstract syntax trees (AST) and code semantics via data-flow. We conduct experiments by evaluating the correlation coefficient between CodeBLEU and quality scores assigned by the programmers on three code synthesis tasks, i.e., text-to-code, code translation, and code refinement. Experimental results show that our proposed CodeBLEU can achieve a better correlation with programmer assigned scores compared with BLEU and accuracy.
Regression Language Models for Code
We study code-to-metric regression: predicting numeric outcomes of code executions, a challenging task due to the open-ended nature of programming languages. While prior methods have resorted to heavy and domain-specific feature engineering, we show that a single unified Regression Language Model (RLM) can simultaneously predict directly from text, (i) the memory footprint of code across multiple high-level languages such as Python and C++, (ii) the latency of Triton GPU kernels, and (iii) the accuracy and speed of trained neural networks represented in ONNX. In particular, a relatively small 300M parameter RLM initialized from T5Gemma, obtains > 0.9 Spearman-rank on competitive programming submissions from APPS, and a single unified model achieves > 0.5 average Spearman-rank across 17 separate languages from CodeNet. Furthermore, the RLM can obtain the highest average Kendall-Tau of 0.46 on five classic NAS design spaces previously dominated by graph neural networks, and simultaneously predict architecture latencies on numerous hardware platforms.
Evaluating Language Models for Efficient Code Generation
We introduce Differential Performance Evaluation (DPE), a framework designed to reliably evaluate Large Language Models (LLMs) for efficient code generation. Traditional coding benchmarks often fail to provide reliable insights into code efficiency, due to their reliance on simplistic test inputs and the absence of effective compound metrics. DPE addresses these issues by focusing on efficiency-demanding programming tasks and establishing an insightful compound metric for performance evaluation. DPE operates in two phases: To curate efficiency datasets, it selects efficiency-demanding tasks from existing coding benchmarks and generates computationally expensive inputs to stress the efficiency of LLM solutions. To assess the code efficiency, DPE profiles the new solution and compares it globally against a set of reference solutions that exhibit distinct efficiency levels, where the matched level defines its efficiency score. As a proof of concept, we use DPE to create EvalPerf, a benchmark with 121 performance-challenging coding tasks. Our comprehensive evaluation draws interesting findings on the efficiency impact of model sizes, instruction tuning, and prompting. For example, while the scaling law fails to account for code efficiency, general instruction tuning benefits both code correctness and efficiency. We also evaluate the evaluation by examining the effectiveness of DPE, showing that EvalPerf is reliable and convenient to use even across platforms.
CodeScore: Evaluating Code Generation by Learning Code Execution
A proper code evaluation metric (CEM) profoundly impacts the evolution of code generation, which is an important research field in NLP and software engineering. Prevailing match-based CEMs (e.g., BLEU, Accuracy, and CodeBLEU) suffer from two significant drawbacks. 1. They primarily measure the surface differences between codes without considering their functional equivalence. However, functional equivalence is pivotal in evaluating the effectiveness of code generation, as different codes can perform identical operations. 2. They are predominantly designed for the Ref-only input format. However, code evaluation necessitates versatility in input formats. Aside from Ref-only, there are NL-only and Ref\&NL formats, which existing match-based CEMs cannot effectively accommodate. In this paper, we propose CodeScore, a large language model (LLM)-based CEM, which estimates the functional correctness of generated code on three input types. To acquire CodeScore, we present UniCE, a unified code generation learning framework, for LLMs to learn code execution (i.e., learning PassRatio and Executability of generated code) with unified input. Extensive experimental results on multiple code evaluation datasets demonstrate that CodeScore absolutely improves up to 58.87% correlation with functional correctness compared to other CEMs, achieves state-of-the-art performance, and effectively handles three input formats.
SWE-fficiency: Can Language Models Optimize Real-World Repositories on Real Workloads?
Optimizing the performance of large-scale software repositories demands expertise in code reasoning and software engineering (SWE) to reduce runtime while preserving program correctness. However, most benchmarks emphasize what to fix rather than how to fix code. We introduce SWE-fficiency, a benchmark for evaluating repository-level performance optimization on real workloads. Our suite contains 498 tasks across nine widely used data-science, machine-learning, and HPC repositories (e.g., numpy, pandas, scipy): given a complete codebase and a slow workload, an agent must investigate code semantics, localize bottlenecks and relevant tests, and produce a patch that matches or exceeds expert speedup while passing the same unit tests. To enable this how-to-fix evaluation, our automated pipeline scrapes GitHub pull requests for performance-improving edits, combining keyword filtering, static analysis, coverage tooling, and execution validation to both confirm expert speedup baselines and identify relevant repository unit tests. Empirical evaluation of state-of-the-art agents reveals significant underperformance. On average, agents achieve less than 0.15x the expert speedup: agents struggle in localizing optimization opportunities, reasoning about execution across functions, and maintaining correctness in proposed edits. We release the benchmark and accompanying data pipeline to facilitate research on automated performance engineering and long-horizon software reasoning.
STEPWISE-CODEX-Bench: Evaluating Complex Multi-Function Comprehension and Fine-Grained Execution Reasoning
In recent years, large language models (LLMs) have made significant progress in code intelligence, yet systematically evaluating their code understanding and reasoning abilities remains challenging. Mainstream benchmarks such as HumanEval and MBPP primarily assess functional correctness, while reasoning benchmarks like CRUXEVAL are limited to single-function, low-complexity scenarios. As a result, advanced models achieve nearly saturated scores, limiting their discriminative power. To address this, we present STEPWISE-CODEX-Bench (SX-Bench), a novel benchmark designed for complex multi-function understanding and fine-grained execution reasoning. SX-Bench features tasks involving collaboration among multiple sub-functions (e.g., chained calls, nested loops), shifting evaluation towards overall control and data flow modeling. It defines "computation steps" as the minimal execution unit and requires models to predict the total number of steps in reasoning tasks, thereby assessing a model's in-depth understanding of dynamic execution beyond simple I/O matching. Evaluation on over 20 mainstream models (including 14 reasoning-enhanced models) demonstrates that SX-Bench is highly discriminative: even the state-of-the-art OpenAI-O3 achieves only 78.37 percent accuracy on Hard-Reasoning tasks, much lower than its saturated scores on previous benchmarks, thereby revealing bottlenecks in complex and fine-grained reasoning. We also release an automated pipeline combining program synthesis, symbolic execution, and LLM-aided validation for efficient benchmark generation and quality assurance. SX-Bench advances code evaluation from "single-function verification" to "multi-function dynamic reasoning," providing a key tool for the in-depth assessment of advanced code intelligence models.
The RealHumanEval: Evaluating Large Language Models' Abilities to Support Programmers
Evaluation of large language models (LLMs) for code has primarily relied on static benchmarks, including HumanEval (Chen et al., 2021), which measure the ability of LLMs to generate complete code that passes unit tests. As LLMs are increasingly used as programmer assistants, we study whether gains on existing benchmarks translate to gains in programmer productivity when coding with LLMs, including time spent coding. In addition to static benchmarks, we investigate the utility of preference metrics that might be used as proxies to measure LLM helpfulness, such as code acceptance or copy rates. To do so, we introduce RealHumanEval, a web interface to measure the ability of LLMs to assist programmers, through either autocomplete or chat support. We conducted a user study (N=213) using RealHumanEval in which users interacted with six LLMs of varying base model performance. Despite static benchmarks not incorporating humans-in-the-loop, we find that improvements in benchmark performance lead to increased programmer productivity; however gaps in benchmark versus human performance are not proportional -- a trend that holds across both forms of LLM support. In contrast, we find that programmer preferences do not correlate with their actual performance, motivating the need for better, human-centric proxy signals. We also open-source RealHumanEval to enable human-centric evaluation of new models and the study data to facilitate efforts to improve code models.
AixBench: A Code Generation Benchmark Dataset
We present a benchmark dataset for evaluating method-level code generation task. The benchmark contains a dataset of 175 samples for automated evaluation and a dataset of 161 samples for manual evaluation. We also present a new metric for automatically evaluating the correctness of the generated code, and a set of criteria to manually evaluating the overall quality of the generated code.
Out of the BLEU: how should we assess quality of the Code Generation models?
In recent years, researchers have created and introduced a significant number of various code generation models. As human evaluation of every new model version is unfeasible, the community adopted automatic evaluation metrics such as BLEU to approximate the results of human judgement. These metrics originate from the machine translation domain and it is unclear whether they are applicable for the code generation tasks and how well they agree with the human evaluation on this task. There are also other metrics, CodeBLEU and RUBY, developed to estimate the similarity of code, that take into account the properties of source code. However, for these metrics there are hardly any studies on their agreement with the human evaluation. Despite all that, minimal differences in the metric scores have been used in recent papers to claim superiority of some code generation models over the others. In this paper, we present a study on the applicability of six metrics -- BLEU, ROUGE-L, METEOR, ChrF, CodeBLEU, and RUBY -- for evaluation of code generation models. We conduct a study on two different code generation datasets and use human annotators to assess the quality of all models run on these datasets. The results indicate that for the CoNaLa dataset of Python one-liners, none of the metrics can correctly emulate human judgement on which model is better with >95% certainty if the difference in model scores is less than 5 points. For the HearthStone dataset, which consists of classes of a particular structure, a difference in model scores of at least 2 points is enough to claim the superiority of one model over the other. Our findings suggest that the ChrF metric is a better fit for the evaluation of code generation models than the commonly used BLEU and CodeBLEU. Yet, finding a metric for code generation that closely agrees with humans requires additional work.
Enhancing Text-to-SQL Translation for Financial System Design
Text-to-SQL, the task of translating natural language questions into SQL queries, is part of various business processes. Its automation, which is an emerging challenge, will empower software practitioners to seamlessly interact with relational databases using natural language, thereby bridging the gap between business needs and software capabilities. In this paper, we consider Large Language Models (LLMs), which have achieved state of the art for various NLP tasks. Specifically, we benchmark Text-to-SQL performance, the evaluation methodologies, as well as input optimization (e.g., prompting). In light of the empirical observations that we have made, we propose two novel metrics that were designed to adequately measure the similarity between SQL queries. Overall, we share with the community various findings, notably on how to select the right LLM on Text-to-SQL tasks. We further demonstrate that a tree-based edit distance constitutes a reliable metric for assessing the similarity between generated SQL queries and the oracle for benchmarking Text2SQL approaches. This metric is important as it relieves researchers from the need to perform computationally expensive experiments such as executing generated queries as done in prior works. Our work implements financial domain use cases and, therefore contributes to the advancement of Text2SQL systems and their practical adoption in this domain.
Beyond Correlation: Interpretable Evaluation of Machine Translation Metrics
Machine Translation (MT) evaluation metrics assess translation quality automatically. Recently, researchers have employed MT metrics for various new use cases, such as data filtering and translation re-ranking. However, most MT metrics return assessments as scalar scores that are difficult to interpret, posing a challenge to making informed design choices. Moreover, MT metrics' capabilities have historically been evaluated using correlation with human judgment, which, despite its efficacy, falls short of providing intuitive insights into metric performance, especially in terms of new metric use cases. To address these issues, we introduce an interpretable evaluation framework for MT metrics. Within this framework, we evaluate metrics in two scenarios that serve as proxies for the data filtering and translation re-ranking use cases. Furthermore, by measuring the performance of MT metrics using Precision, Recall, and F-score, we offer clearer insights into their capabilities than correlation with human judgments. Finally, we raise concerns regarding the reliability of manually curated data following the Direct Assessments+Scalar Quality Metrics (DA+SQM) guidelines, reporting a notably low agreement with Multidimensional Quality Metrics (MQM) annotations.
Efficiency-Effectiveness Reranking FLOPs for LLM-based Rerankers
Large Language Models (LLMs) have recently been applied to reranking tasks in information retrieval, achieving strong performance. However, their high computational demands often hinder practical deployment. Existing studies evaluate the efficiency of LLM-based rerankers using proxy metrics such as latency, the number of forward passes, input tokens, and output tokens. However, these metrics depend on hardware and running-time choices (\eg parallel or not, batch size, etc), and often fail to account for model size, making it difficult to interpret and obscuring the evaluation of the efficiency-effectiveness tradeoff. To address this issue, we propose E2R-FLOPs, for LLM-based rerankers: ranking metrics per PetaFLOP (RPP) for relevance per compute and queries per PetaFLOP (QPP) for hardware-agnostic throughput. Companied with the new metrics, an interpretable FLOPs estimator is built to estimate the FLOPs of an LLM-based reranker even without running any experiments. Based on the proposed metrics, we conduct comprehensive experiments to evaluate a wide range of LLM-based rerankers with different architecture, studying the efficiency-effectiveness trade-off and bringing this issue to the attention of the research community.
CodeCompose: A Large-Scale Industrial Deployment of AI-assisted Code Authoring
The rise of large language models (LLMs) has unlocked various applications of this technology in software development. In particular, generative LLMs have been shown to effectively power AI-based code authoring tools that can suggest entire statements or blocks of code during code authoring. In this paper we present CodeCompose, an AI-assisted code authoring tool developed and deployed at Meta internally. CodeCompose is based on the InCoder LLM that merges generative capabilities with bi-directionality. We have scaled up CodeCompose to serve tens of thousands of developers at Meta, across 10+ programming languages and several coding surfaces. We discuss unique challenges in terms of user experience and metrics that arise when deploying such tools in large-scale industrial settings. We present our experience in making design decisions about the model and system architecture for CodeCompose that addresses these challenges. Finally, we present metrics from our large-scale deployment of CodeCompose that shows its impact on Meta's internal code authoring experience over a 15-day time window, where 4.5 million suggestions were made by CodeCompose. Quantitative metrics reveal that (i) CodeCompose has an acceptance rate of 22% across several languages, and (ii) 8% of the code typed by users of CodeCompose is through accepting code suggestions from CodeCompose. Qualitative feedback indicates an overwhelming 91.5% positive reception for CodeCompose. In addition to assisting with code authoring, CodeCompose is also introducing other positive side effects such as encouraging developers to generate more in-code documentation, helping them with the discovery of new APIs, etc.
SciReplicate-Bench: Benchmarking LLMs in Agent-driven Algorithmic Reproduction from Research Papers
This study evaluates large language models (LLMs) in generating code from algorithm descriptions from recent NLP papers. The task requires two key competencies: (1) algorithm comprehension: synthesizing information from papers and academic literature to understand implementation logic, and (2) coding expertise: identifying dependencies and correctly implementing necessary APIs. To facilitate rigorous evaluation, we introduce SciReplicate-Bench, a benchmark of 100 tasks from 36 NLP papers published in 2024, featuring detailed annotations and comprehensive test cases. Building on SciReplicate-Bench, we propose Sci-Reproducer, a multi-agent framework consisting of a Paper Agent that interprets algorithmic concepts from literature and a Code Agent that retrieves dependencies from repositories and implement solutions. To assess algorithm understanding, we introduce reasoning graph accuracy, which quantifies similarity between generated and reference reasoning graphs derived from code comments and structure. For evaluating implementation quality, we employ execution accuracy, CodeBLEU, and repository dependency/API recall metrics. In our experiments, we evaluate various powerful Non-Reasoning LLMs and Reasoning LLMs as foundational models. The best-performing LLM using Sci-Reproducer achieves only 39% execution accuracy, highlighting the benchmark's difficulty.Our analysis identifies missing or inconsistent algorithm descriptions as key barriers to successful reproduction. We will open-source our benchmark, and code at https://github.com/xyzCS/SciReplicate-Bench.
CRUXEval: A Benchmark for Code Reasoning, Understanding and Execution
We present CRUXEval (Code Reasoning, Understanding, and eXecution Evaluation), a benchmark consisting of 800 Python functions (3-13 lines). Each function comes with an input-output pair, leading to two natural tasks: input prediction and output prediction. First, we propose a generic recipe for generating our execution benchmark which can be used to create future variation of the benchmark. Second, we evaluate twenty code models on our benchmark and discover that many recent high-scoring models on HumanEval do not show the same improvements on our benchmark. Third, we show that simple CoT and fine-tuning schemes can improve performance on our benchmark but remain far from solving it. The best setup, GPT-4 with chain of thought (CoT), achieves a pass@1 of 75% and 81% on input and output prediction, respectively. In contrast, Code Llama 34B achieves a pass@1 of 50% and 46% on input and output prediction, highlighting the gap between open and closed source models. As no model is close to acing CRUXEval, we provide examples of consistent GPT-4 failures on simple programs as a lens into its code reasoning capabilities and areas for improvement.
Large Language Models Are State-of-the-Art Evaluators of Code Generation
Recent advancements in the field of natural language generation have facilitated the use of large language models to assess the quality of generated text. Although these models have shown promising results in tasks such as machine translation and summarization, their applicability in code generation tasks remains limited without human involvement. The complexity of programming concepts required for such tasks makes it difficult to develop evaluation metrics that align with human judgment. Token-matching-based metrics, such as BLEU, have demonstrated weak correlations with human practitioners in code generation tasks. Moreover, the utilization of human-written test suites to evaluate functional correctness can be challenging in domains with low resources. To overcome these obstacles, we propose a new evaluation framework based on the GPT-3.5 (GPT-3.5-turbo), for code generation assessments. Our framework addresses the limitations of existing approaches by achieving superior correlations with functional correctness and human preferences, without the need for test oracles or references. We evaluate the efficacy of our framework on two different tasks and four programming languages, comparing its performance with the state-of-the-art CodeBERTScore metric, which relies on a pre-trained model. Our results demonstrate that our framework surpasses CodeBERTScore, delivering high levels of accuracy and consistency across various programming languages and tasks. We also make our evaluation framework and datasets available to the public at https://github.com/terryyz/llm-code-eval, encouraging further research in the evaluation of code generation.
LLM Interactive Optimization of Open Source Python Libraries -- Case Studies and Generalization
With the advent of large language models (LLMs) like GPT-3, a natural question is the extent to which these models can be utilized for source code optimization. This paper presents methodologically stringent case studies applied to well-known open source python libraries pillow and numpy. We find that contemporary LLM ChatGPT-4 (state September and October 2023) is surprisingly adept at optimizing energy and compute efficiency. However, this is only the case in interactive use, with a human expert in the loop. Aware of experimenter bias, we document our qualitative approach in detail, and provide transcript and source code. We start by providing a detailed description of our approach in conversing with the LLM to optimize the _getextrema function in the pillow library, and a quantitative evaluation of the performance improvement. To demonstrate qualitative replicability, we report further attempts on another locus in the pillow library, and one code locus in the numpy library, to demonstrate generalization within and beyond a library. In all attempts, the performance improvement is significant (factor up to 38). We have also not omitted reporting of failed attempts (there were none). We conclude that LLMs are a promising tool for code optimization in open source libraries, but that the human expert in the loop is essential for success. Nonetheless, we were surprised by how few iterations were required to achieve substantial performance improvements that were not obvious to the expert in the loop. We would like bring attention to the qualitative nature of this study, more robust quantitative studies would need to introduce a layer of selecting experts in a representative sample -- we invite the community to collaborate.
Adaptive Machine Learning for Resource-Constrained Environments
The Internet of Things is an example domain where data is perpetually generated in ever-increasing quantities, reflecting the proliferation of connected devices and the formation of continuous data streams over time. Consequently, the demand for ad-hoc, cost-effective machine learning solutions must adapt to this evolving data influx. This study tackles the task of offloading in small gateways, exacerbated by their dynamic availability over time. An approach leveraging CPU utilization metrics using online and continual machine learning techniques is proposed to predict gateway availability. These methods are compared to popular machine learning algorithms and a recent time-series foundation model, Lag-Llama, for fine-tuned and zero-shot setups. Their performance is benchmarked on a dataset of CPU utilization measurements over time from an IoT gateway and focuses on model metrics such as prediction errors, training and inference times, and memory consumption. Our primary objective is to study new efficient ways to predict CPU performance in IoT environments. Across various scenarios, our findings highlight that ensemble and online methods offer promising results for this task in terms of accuracy while maintaining a low resource footprint.
Sleep-time Compute: Beyond Inference Scaling at Test-time
Scaling test-time compute has emerged as a key ingredient for enabling large language models (LLMs) to solve difficult problems, but comes with high latency and inference cost. We introduce sleep-time compute, which allows models to "think" offline about contexts before queries are presented: by anticipating what queries users might ask and pre-computing useful quantities, we can significantly reduce the compute requirements at test-time. To demonstrate the efficacy of our method, we create modified versions of two reasoning tasks - Stateful GSM-Symbolic and Stateful AIME. We find that sleep-time compute can reduce the amount of test-time compute needed to achieve the same accuracy by ~ 5x on Stateful GSM-Symbolic and Stateful AIME and that by scaling sleep-time compute we can further increase accuracy by up to 13% on Stateful GSM-Symbolic and 18% on Stateful AIME. Furthermore, we introduce Multi-Query GSM-Symbolic, which extends GSM-Symbolic by including multiple related queries per context. By amortizing sleep-time compute across related queries about the same context using Multi-Query GSM-Symbolic, we can decrease the average cost per query by 2.5x. We then conduct additional analysis to understand when sleep-time compute is most effective, finding the predictability of the user query to be well correlated with the efficacy of sleep-time compute. Finally, we conduct a case-study of applying sleep-time compute to a realistic agentic SWE task.
Safurai 001: New Qualitative Approach for Code LLM Evaluation
This paper presents Safurai-001, a new Large Language Model (LLM) with significant potential in the domain of coding assistance. Driven by recent advancements in coding LLMs, Safurai-001 competes in performance with the latest models like WizardCoder [Xu et al., 2023], PanguCoder [Shen et al., 2023] and Phi-1 [Gunasekar et al., 2023] but aims to deliver a more conversational interaction. By capitalizing on the progress in data engineering (including latest techniques of data transformation and prompt engineering) and instruction tuning, this new model promises to stand toe-to-toe with recent closed and open source developments. Recognizing the need for an efficacious evaluation metric for coding LLMs, this paper also introduces GPT4-based MultiParameters, an evaluation benchmark that harnesses varied parameters to present a comprehensive insight into the models functioning and performance. Our assessment shows that Safurai-001 can outperform GPT-3.5 by 1.58% and WizardCoder by 18.78% in the Code Readability parameter and more.
Project and Forget: Solving Large-Scale Metric Constrained Problems
Given a set of dissimilarity measurements amongst data points, determining what metric representation is most "consistent" with the input measurements or the metric that best captures the relevant geometric features of the data is a key step in many machine learning algorithms. Existing methods are restricted to specific kinds of metrics or small problem sizes because of the large number of metric constraints in such problems. In this paper, we provide an active set algorithm, Project and Forget, that uses Bregman projections, to solve metric constrained problems with many (possibly exponentially) inequality constraints. We provide a theoretical analysis of Project and Forget and prove that our algorithm converges to the global optimal solution and that the L_2 distance of the current iterate to the optimal solution decays asymptotically at an exponential rate. We demonstrate that using our method we can solve large problem instances of three types of metric constrained problems: general weight correlation clustering, metric nearness, and metric learning; in each case, out-performing the state of the art methods with respect to CPU times and problem sizes.
EfficientLLM: Efficiency in Large Language Models
Large Language Models (LLMs) have driven significant progress, yet their growing parameter counts and context windows incur prohibitive compute, energy, and monetary costs. We introduce EfficientLLM, a novel benchmark and the first comprehensive empirical study evaluating efficiency techniques for LLMs at scale. Conducted on a production-class cluster (48xGH200, 8xH200 GPUs), our study systematically explores three key axes: (1) architecture pretraining (efficient attention variants: MQA, GQA, MLA, NSA; sparse Mixture-of-Experts (MoE)), (2) fine-tuning (parameter-efficient methods: LoRA, RSLoRA, DoRA), and (3) inference (quantization methods: int4, float16). We define six fine-grained metrics (Memory Utilization, Compute Utilization, Latency, Throughput, Energy Consumption, Compression Rate) to capture hardware saturation, latency-throughput balance, and carbon cost. Evaluating over 100 model-technique pairs (0.5B-72B parameters), we derive three core insights: (i) Efficiency involves quantifiable trade-offs: no single method is universally optimal; e.g., MoE reduces FLOPs and improves accuracy but increases VRAM by 40%, while int4 quantization cuts memory/energy by up to 3.9x at a 3-5% accuracy drop. (ii) Optima are task- and scale-dependent: MQA offers optimal memory-latency trade-offs for constrained devices, MLA achieves lowest perplexity for quality-critical tasks, and RSLoRA surpasses LoRA efficiency only beyond 14B parameters. (iii) Techniques generalize across modalities: we extend evaluations to Large Vision Models (Stable Diffusion 3.5, Wan 2.1) and Vision-Language Models (Qwen2.5-VL), confirming effective transferability. By open-sourcing datasets, evaluation pipelines, and leaderboards, EfficientLLM provides essential guidance for researchers and engineers navigating the efficiency-performance landscape of next-generation foundation models.
A quantitative framework for evaluating architectural patterns in ML systems
Contemporary intelligent systems incorporate software components, including machine learning components. As they grow in complexity and data volume such machine learning systems face unique quality challenges like scalability and performance. To overcome them, engineers may often use specific architectural patterns, however their impact on ML systems is difficult to quantify. The effect of software architecture on traditional systems is well studied, however more work is needed in the area of machine learning systems. This study proposes a framework for quantitative assessment of architectural patterns in ML systems, focusing on scalability and performance metrics for cost-effective CPU-based inference. We integrate these metrics into a systematic evaluation process for selection of architectural patterns and demonstrate its application through a case study. The approach shown in the paper should enable software architects to objectively analyze and select optimal patterns, addressing key challenges in ML system design.
Huxley-Gödel Machine: Human-Level Coding Agent Development by an Approximation of the Optimal Self-Improving Machine
Recent studies operationalize self-improvement through coding agents that edit their own codebases. They grow a tree of self-modifications through expansion strategies that favor higher software engineering benchmark performance, assuming that this implies more promising subsequent self-modifications. However, we identify a mismatch between the agent's self-improvement potential (metaproductivity) and its coding benchmark performance, namely the Metaproductivity-Performance Mismatch. Inspired by Huxley's concept of clade, we propose a metric (CMP) that aggregates the benchmark performances of the descendants of an agent as an indicator of its potential for self-improvement. We show that, in our self-improving coding agent development setting, access to the true CMP is sufficient to simulate how the G\"odel Machine would behave under certain assumptions. We introduce the Huxley-G\"odel Machine (HGM), which, by estimating CMP and using it as guidance, searches the tree of self-modifications. On SWE-bench Verified and Polyglot, HGM outperforms prior self-improving coding agent development methods while using less wall-clock time. Last but not least, HGM demonstrates strong transfer to other coding datasets and large language models. The agent optimized by HGM on SWE-bench Verified with GPT-5-mini and evaluated on SWE-bench Lite with GPT-5 achieves human-level performance, matching the best officially checked results of human-engineered coding agents. Our code is available at https://github.com/metauto-ai/HGM.
ECCO: Can We Improve Model-Generated Code Efficiency Without Sacrificing Functional Correctness?
Although large language models (LLMs) have been largely successful in generating functionally correct programs, conditioning models to produce efficient solutions while ensuring correctness remains a challenge. Further, unreliability in benchmarking code efficiency is a hurdle across varying hardware specifications for popular interpreted languages such as Python. In this paper, we present ECCO, a reproducible benchmark for evaluating program efficiency via two paradigms: natural language (NL) based code generation and history-based code editing. On ECCO, we adapt and thoroughly investigate the three most promising existing LLM-based approaches: in-context learning, iterative refinement with execution or NL feedback, and fine-tuning conditioned on execution and editing history. While most methods degrade functional correctness and moderately increase program efficiency, we find that adding execution information often helps maintain functional correctness, and NL feedback enhances more on efficiency. We release our benchmark to support future work on LLM-based generation of efficient code.
Performance Prediction for Large Systems via Text-to-Text Regression
In many industries, predicting metric outcomes of large systems is a fundamental problem, driven largely by traditional tabular regression. However, such methods struggle on complex systems data in the wild such as configuration files or system logs, where feature engineering is often infeasible. We propose text-to-text regression as a general, scalable alternative. For predicting resource efficiency on Borg, Google's massive compute cluster scheduling system, a 60M parameter encoder-decoder, trained from random initialization, achieves up to a near perfect 0.99 (0.9 average) rank correlation across the entire fleet, and 100x lower MSE than tabular approaches. The model also easily adapts to new tasks in only 500 few-shot examples and captures the densities of complex outcome distributions. Ablation studies highlight the importance of using encoders, increasing sequence length, and the model's inherent uncertainty quantification. These findings pave the way for universal simulators of real-world outcomes.
Learning How Hard to Think: Input-Adaptive Allocation of LM Computation
Computationally intensive decoding procedures--including search, reranking, and self-critique--can improve the quality of language model (LM) outputs in problems spanning code generation, numerical reasoning, and dialog. Existing work typically applies the same decoding procedure for every input to an LM. But not all inputs require the same amount of computation to process. Can we allocate decoding computation adaptively, using more resources to answer questions whose answers will be harder to compute? We present an approach that predicts the distribution of rewards given an input and computation budget, then allocates additional computation to inputs for which it is predicted to be most useful. We apply this approach in two decoding procedures: first, an adaptive best-of-k procedure that dynamically selects the number of samples to generate as input to a reranker; second, a routing procedure that dynamically responds to a query using a decoding procedure that is expensive but accurate, or one that is cheaper but less capable. Across a suite of programming, mathematics, and dialog tasks, we show that accurate computation-allocation procedures can be learned, and reduce computation by up to 50% at no cost to response quality, or improve quality by up to 10% at a fixed computational budget.
Energy-Aware Code Generation with LLMs: Benchmarking Small vs. Large Language Models for Sustainable AI Programming
Large Language Models (LLMs) are widely used for code generation. However, commercial models like ChatGPT require significant computing power, which leads to high energy use and carbon emissions. This has raised concerns about their environmental impact. In this study, we evaluate open-source Small Language Models (SLMs) trained explicitly for code generation and compare their performance and energy efficiency against large LLMs and efficient human-written Python code. The goal is to investigate whether SLMs can match the performance of LLMs on certain types of programming problems while producing more energy-efficient code. We evaluate 150 coding problems from LeetCode, evenly distributed across three difficulty levels: easy, medium, and hard. Our comparison includes three small open-source models, StableCode-3B, StarCoderBase-3B, and Qwen2.5-Coder-3B-Instruct, and two large commercial models, GPT-4.0 and DeepSeek-Reasoner. The generated code is evaluated using four key metrics: run-time, memory usage, energy consumption, and correctness. We use human-written solutions as a baseline to assess the quality and efficiency of the model-generated code. Results indicate that LLMs achieve the highest correctness across all difficulty levels, but SLMs are often more energy-efficient when their outputs are correct. In over 52% of the evaluated problems, SLMs consumed the same or less energy than LLMs.
arXiVeri: Automatic table verification with GPT
Without accurate transcription of numerical data in scientific documents, a scientist cannot draw accurate conclusions. Unfortunately, the process of copying numerical data from one paper to another is prone to human error. In this paper, we propose to meet this challenge through the novel task of automatic table verification (AutoTV), in which the objective is to verify the accuracy of numerical data in tables by cross-referencing cited sources. To support this task, we propose a new benchmark, arXiVeri, which comprises tabular data drawn from open-access academic papers on arXiv. We introduce metrics to evaluate the performance of a table verifier in two key areas: (i) table matching, which aims to identify the source table in a cited document that corresponds to a target table, and (ii) cell matching, which aims to locate shared cells between a target and source table and identify their row and column indices accurately. By leveraging the flexible capabilities of modern large language models (LLMs), we propose simple baselines for table verification. Our findings highlight the complexity of this task, even for state-of-the-art LLMs like OpenAI's GPT-4. The code and benchmark will be made publicly available.
Beyond Correctness: Benchmarking Multi-dimensional Code Generation for Large Language Models
In recent years, researchers have proposed numerous benchmarks to evaluate the impressive coding capabilities of large language models (LLMs). However, existing benchmarks primarily focus on assessing the correctness of code generated by LLMs, while neglecting other critical dimensions that also significantly impact code quality. Therefore, this paper proposes the RACE benchmark, which comprehensively evaluates the quality of code generated by LLMs across 4 dimensions: Readability, mAintainability, Correctness, and Efficiency. Specifically, considering the demand-dependent nature of dimensions beyond correctness, we design various types of user requirements for each dimension to assess the model's ability to generate correct code that also meets user demands. We evaluate 18 representative LLMs on RACE and find that: 1) the current LLMs' ability to generate high-quality code on demand does not yet meet the requirements of software development; 2) readability serves as a critical indicator of the overall quality of generated code; 3) most LLMs exhibit an inherent preference for specific coding style. These findings can help researchers gain a deeper understanding of the coding capabilities of current LLMs and shed light on future directions for model improvement.
MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth Mover Distance
A robust evaluation metric has a profound impact on the development of text generation systems. A desirable metric compares system output against references based on their semantics rather than surface forms. In this paper we investigate strategies to encode system and reference texts to devise a metric that shows a high correlation with human judgment of text quality. We validate our new metric, namely MoverScore, on a number of text generation tasks including summarization, machine translation, image captioning, and data-to-text generation, where the outputs are produced by a variety of neural and non-neural systems. Our findings suggest that metrics combining contextualized representations with a distance measure perform the best. Such metrics also demonstrate strong generalization capability across tasks. For ease-of-use we make our metrics available as web service.
PPM: Automated Generation of Diverse Programming Problems for Benchmarking Code Generation Models
In recent times, a plethora of Large Code Generation Models (LCGMs) have been proposed, showcasing significant potential in assisting developers with complex programming tasks. Benchmarking LCGMs necessitates the creation of a set of diverse programming problems, and each problem comprises the prompt (including the task description), canonical solution, and test inputs. The existing methods for constructing such a problem set can be categorized into two main types: manual methods and perturbation-based methods. However, manual methods demand high effort and lack scalability, while also risking data integrity due to LCGMs' potentially contaminated data collection, and perturbation-based approaches mainly generate semantically homogeneous problems with the same canonical solutions and introduce typos that can be easily auto-corrected by IDE, making them ineffective and unrealistic. In this work, we propose the idea of programming problem merging (PPM) and provide two implementation of this idea, we utilize our tool on two widely-used datasets and compare it against nine baseline methods using eight code generation models. The results demonstrate the effectiveness of our tool in generating more challenging, diverse, and natural programming problems, comparing to the baselines.
LaajMeter: A Framework for LaaJ Evaluation
Large Language Models (LLMs) are increasingly used as evaluators in natural language processing tasks, a paradigm known as LLM-as-a-Judge (LaaJ). While effective in general domains, LaaJs pose significant challenges in domain-specific contexts, where annotated data is scarce and expert evaluation is costly. In such cases, meta-evaluation is often performed using metrics that have not been validated for the specific domain in which they are applied. As a result, it becomes difficult to determine which metrics effectively identify LaaJ quality, and further, what threshold indicates sufficient evaluator performance. In this work, we introduce LaaJMeter, a simulation-based framework for controlled meta-evaluation of LaaJs. LaaJMeter enables engineers to generate synthetic data representing virtual models and judges, allowing systematic analysis of evaluation metrics under realistic conditions. This helps practitioners validate and refine LaaJs for specific evaluation tasks: they can test whether their metrics correctly distinguish between better and worse (virtual) LaaJs, and estimate appropriate thresholds for evaluator adequacy. We demonstrate the utility of LaaJMeter in a code translation task involving a legacy programming language, showing how different metrics vary in sensitivity to evaluator quality. Our results highlight the limitations of common metrics and the importance of principled metric selection. LaaJMeter provides a scalable and extensible solution for assessing LaaJs in low-resource settings, contributing to the broader effort to ensure trustworthy and reproducible evaluation in NLP.
HeuriGym: An Agentic Benchmark for LLM-Crafted Heuristics in Combinatorial Optimization
While Large Language Models (LLMs) have demonstrated significant advancements in reasoning and agent-based problem-solving, current evaluation methodologies fail to adequately assess their capabilities: existing benchmarks either rely on closed-ended questions prone to saturation and memorization, or subjective comparisons that lack consistency and rigor. In this work, we introduce HeuriGym, an agentic framework designed for evaluating heuristic algorithms generated by LLMs for combinatorial optimization problems, characterized by clearly defined objectives and expansive solution spaces. HeuriGym empowers LLMs to propose heuristics, receive evaluative feedback via code execution, and iteratively refine their solutions. We evaluate nine state-of-the-art models on nine problems across domains such as computer systems, logistics, and biology, exposing persistent limitations in tool use, planning, and adaptive reasoning. To quantify performance, we propose the Quality-Yield Index (QYI), a metric that captures both solution pass rate and quality. Even top models like GPT-o4-mini-high and Gemini-2.5-Pro attain QYI scores of only 0.6, well below the expert baseline of 1. Our open-source benchmark aims to guide the development of LLMs toward more effective and realistic problem-solving in scientific and engineering domains.
Modeling Performance of Data Collection Systems for High-Energy Physics
Exponential increases in scientific experimental data are outstripping the rate of progress in silicon technology. As a result, heterogeneous combinations of architectures and process or device technologies are increasingly important to meet the computing demands of future scientific experiments. However, the complexity of heterogeneous computing systems requires systematic modeling to understand performance. We present a model which addresses this need by framing key aspects of data collection pipelines and constraints, and combines them with the important vectors of technology that shape alternatives, computing metrics that allow complex alternatives to be compared. For instance, a data collection pipeline may be characterized by parameters such as sensor sampling rates, amount of data collected, and the overall relevancy of retrieved samples. Alternatives to this pipeline are enabled by hardware development vectors including advancing CMOS, GPUs, neuromorphic computing, and edge computing. By calculating metrics for each alternative such as overall F1 score, power, hardware cost, and energy expended per relevant sample, this model allows alternate data collection systems to be rigorously compared. To demonstrate this model's capability, we apply it to the CMS experiment (and planned HL-LHC upgrade) to evaluate and compare the application of novel technologies in the data acquisition system (DAQ). We demonstrate that improvements to early stages in the DAQ are highly beneficial, greatly reducing the resources required at later stages of processing (such as a 60% power reduction) and increasing the amount of relevant data retrieved from the experiment per unit power (improving from 0.065 to 0.31 samples/kJ) However, we predict further advances will be required in order to meet overall power and cost constraints for the DAQ.
BigO(Bench) -- Can LLMs Generate Code with Controlled Time and Space Complexity?
We introduce BigO(Bench), a novel coding benchmark designed to evaluate the capabilities of generative language models in understanding and generating code with specified time and space complexities. This benchmark addresses the gap in current evaluations that often overlook the ability of models to comprehend and produce code constrained by computational complexity. BigO(Bench) includes tooling to infer the algorithmic complexity of any Python function from profiling measurements, including human- or LLM-generated solutions. BigO(Bench) also includes of set of 3,105 coding problems and 1,190,250 solutions from Code Contests annotated with inferred (synthetic) time and space complexity labels from the complexity framework, as well as corresponding runtime and memory footprint values for a large set of input sizes. We present results from evaluating multiple state-of-the-art language models on this benchmark, highlighting their strengths and weaknesses in handling complexity requirements. In particular, token-space reasoning models are unrivaled in code generation but not in complexity understanding, hinting that they may not generalize well to tasks for which no reward was given at training time.
Assessing Human Editing Effort on LLM-Generated Texts via Compression-Based Edit Distance
Assessing the extent of human edits on texts generated by Large Language Models (LLMs) is crucial to understanding the human-AI interactions and improving the quality of automated text generation systems. Existing edit distance metrics, such as Levenshtein, BLEU, ROUGE, and TER, often fail to accurately measure the effort required for post-editing, especially when edits involve substantial modifications, such as block operations. In this paper, we introduce a novel compression-based edit distance metric grounded in the Lempel-Ziv-77 algorithm, designed to quantify the amount of post-editing applied to LLM-generated texts. Our method leverages the properties of text compression to measure the informational difference between the original and edited texts. Through experiments on real-world human edits datasets, we demonstrate that our proposed metric is highly correlated with actual edit time and effort. We also show that LLMs exhibit an implicit understanding of editing speed, that aligns well with our metric. Furthermore, we compare our metric with existing ones, highlighting its advantages in capturing complex edits with linear computational efficiency. Our code and data are available at: https://github.com/NDV-tiime/CompressionDistance
Pruner-Zero: Evolving Symbolic Pruning Metric from scratch for Large Language Models
Despite the remarkable capabilities, Large Language Models (LLMs) face deployment challenges due to their extensive size. Pruning methods drop a subset of weights to accelerate, but many of them require retraining, which is prohibitively expensive and computationally demanding. Recently, post-training pruning approaches introduced novel metrics, enabling the pruning of LLMs without retraining. However, these metrics require the involvement of human experts and tedious trial and error. To efficiently identify superior pruning metrics, we develop an automatic framework for searching symbolic pruning metrics using genetic programming. In particular, we devise an elaborate search space encompassing the existing pruning metrics to discover the potential symbolic pruning metric. We propose an opposing operation simplification strategy to increase the diversity of the population. In this way, Pruner-Zero allows auto-generation of symbolic pruning metrics. Based on the searched results, we explore the correlation between pruning metrics and performance after pruning and summarize some principles. Extensive experiments on LLaMA and LLaMA-2 on language modeling and zero-shot tasks demonstrate that our Pruner-Zero obtains superior performance than SOTA post-training pruning methods. Code at: https://github.com/pprp/Pruner-Zero.
TIGERScore: Towards Building Explainable Metric for All Text Generation Tasks
We present TIGERScore, a Trained metric that follows Instruction Guidance to perform Explainable, and Reference-free evaluation over a wide spectrum of text generation tasks. Different from other automatic evaluation methods that only provide arcane scores, TIGERScore is guided by the natural language instruction to provide error analysis to pinpoint the mistakes in the generated text. Our metric is based on LLaMA, trained on our meticulously curated instruction-tuning dataset MetricInstruct which covers 6 text generation tasks and 23 text generation datasets. The dataset consists of 48K quadruple in the form of (instruction, input, system output rightarrow error analysis). We collected the `system outputs' through diverse channels to cover different types of errors. To quantitatively assess our metric, we evaluate its correlation with human ratings on 5 held-in datasets, 2 held-out datasets and show that TIGERScore can achieve the highest overall Spearman's correlation with human ratings across these datasets and outperforms other metrics significantly. As a reference-free metric, its correlation can even surpass the best existing reference-based metrics. To further qualitatively assess the rationale generated by our metric, we conduct human evaluation on the generated explanations and found that the explanations are 70.8\% accurate. Through these experimental results, we believe TIGERScore demonstrates the possibility of building universal explainable metrics to evaluate any text generation task.
Leveraging LLMs for Legacy Code Modernization: Challenges and Opportunities for LLM-Generated Documentation
Legacy software systems, written in outdated languages like MUMPS and mainframe assembly, pose challenges in efficiency, maintenance, staffing, and security. While LLMs offer promise for modernizing these systems, their ability to understand legacy languages is largely unknown. This paper investigates the utilization of LLMs to generate documentation for legacy code using two datasets: an electronic health records (EHR) system in MUMPS and open-source applications in IBM mainframe Assembly Language Code (ALC). We propose a prompting strategy for generating line-wise code comments and a rubric to evaluate their completeness, readability, usefulness, and hallucination. Our study assesses the correlation between human evaluations and automated metrics, such as code complexity and reference-based metrics. We find that LLM-generated comments for MUMPS and ALC are generally hallucination-free, complete, readable, and useful compared to ground-truth comments, though ALC poses challenges. However, no automated metrics strongly correlate with comment quality to predict or measure LLM performance. Our findings highlight the limitations of current automated measures and the need for better evaluation metrics for LLM-generated documentation in legacy systems.
Program Synthesis with Large Language Models
This paper explores the limits of the current generation of large language models for program synthesis in general purpose programming languages. We evaluate a collection of such models (with between 244M and 137B parameters) on two new benchmarks, MBPP and MathQA-Python, in both the few-shot and fine-tuning regimes. Our benchmarks are designed to measure the ability of these models to synthesize short Python programs from natural language descriptions. The Mostly Basic Programming Problems (MBPP) dataset contains 974 programming tasks, designed to be solvable by entry-level programmers. The MathQA-Python dataset, a Python version of the MathQA benchmark, contains 23914 problems that evaluate the ability of the models to synthesize code from more complex text. On both datasets, we find that synthesis performance scales log-linearly with model size. Our largest models, even without finetuning on a code dataset, can synthesize solutions to 59.6 percent of the problems from MBPP using few-shot learning with a well-designed prompt. Fine-tuning on a held-out portion of the dataset improves performance by about 10 percentage points across most model sizes. On the MathQA-Python dataset, the largest fine-tuned model achieves 83.8 percent accuracy. Going further, we study the model's ability to engage in dialog about code, incorporating human feedback to improve its solutions. We find that natural language feedback from a human halves the error rate compared to the model's initial prediction. Additionally, we conduct an error analysis to shed light on where these models fall short and what types of programs are most difficult to generate. Finally, we explore the semantic grounding of these models by fine-tuning them to predict the results of program execution. We find that even our best models are generally unable to predict the output of a program given a specific input.
OOP: Object-Oriented Programming Evaluation Benchmark for Large Language Models
Advancing automated programming necessitates robust and comprehensive code generation benchmarks, yet current evaluation frameworks largely neglect object-oriented programming (OOP) in favor of functional programming (FP), e.g., HumanEval and MBPP. To address this, our study introduces a pioneering OOP-focused benchmark, featuring 431 Python programs that encompass essential OOP concepts and features like classes and encapsulation methods. We propose a novel evaluation metric, pass@o, tailored for OOP, enhancing traditional pass@k measures. Our evaluation of 23 leading large language models (LLMs), including both general and code-specialized models, reveals three key insights: 1) pass@o offers a more relevant and comprehensive assessment for OOP code generation; 2) Despite excelling in FP, code-specialized LLMs like WizardCoder lag in OOP compared to models like ChatGPT; 3) The poor performance of all advanced LLMs on our OOP benchmark highlights a critical need for improvements in this field. Our benchmark and scripts are publicly released at: https://github.com/alphadl/OOP-eval.
CoSQA+: Enhancing Code Search Dataset with Matching Code
Semantic code search, retrieving code that matches a given natural language query, is an important task to improve productivity in software engineering. Existing code search datasets are problematic: either using unrealistic queries, or with mismatched codes, and typically using one-to-one query-code pairing, which fails to reflect the reality that a query might have multiple valid code matches. This paper introduces CoSQA+, pairing high-quality queries (reused from CoSQA) with multiple suitable codes. We collect code candidates from diverse sources and form candidate pairs by pairing queries with these codes. Utilizing the power of large language models (LLMs), we automate pair annotation, filtering, and code generation for queries without suitable matches. Through extensive experiments, CoSQA+ has demonstrated superior quality over CoSQA. Models trained on CoSQA+ exhibit improved performance. Furthermore, we propose a new metric Mean Multi-choice Reciprocal Rank (MMRR), to assess one-to-N code search performance. We provide the code and data at https://github.com/DeepSoftwareAnalytics/CoSQA_Plus.
SysLLMatic: Large Language Models are Software System Optimizers
Automatic software system optimization can improve software speed, reduce operating costs, and save energy. Traditional approaches to optimization rely on manual tuning and compiler heuristics, limiting their ability to generalize across diverse codebases and system contexts. Recent methods using Large Language Models (LLMs) offer automation to address these limitations, but often fail to scale to the complexity of real-world software systems and applications. We present SysLLMatic, a system that integrates LLMs with profiling-guided feedback and system performance insights to automatically optimize software code. We evaluate it on three benchmark suites: HumanEval_CPP (competitive programming in C++), SciMark2 (scientific kernels in Java), and DaCapoBench (large-scale software systems in Java). Results show that SysLLMatic can improve system performance, including latency, throughput, energy efficiency, memory usage, and CPU utilization. It consistently outperforms state-of-the-art LLM baselines on microbenchmarks. On large-scale application codes, it surpasses traditional compiler optimizations, achieving average relative improvements of 1.85x in latency and 2.24x in throughput. Our findings demonstrate that LLMs, guided by principled systems thinking and appropriate performance diagnostics, can serve as viable software system optimizers. We further identify limitations of our approach and the challenges involved in handling complex applications. This work provides a foundation for generating optimized code across various languages, benchmarks, and program sizes in a principled manner.
Unsupervised Discovery of Formulas for Mathematical Constants
Ongoing efforts that span over decades show a rise of AI methods for accelerating scientific discovery, yet accelerating discovery in mathematics remains a persistent challenge for AI. Specifically, AI methods were not effective in creation of formulas for mathematical constants because each such formula must be correct for infinite digits of precision, with "near-true" formulas providing no insight toward the correct ones. Consequently, formula discovery lacks a clear distance metric needed to guide automated discovery in this realm. In this work, we propose a systematic methodology for categorization, characterization, and pattern identification of such formulas. The key to our methodology is introducing metrics based on the convergence dynamics of the formulas, rather than on the numerical value of the formula. These metrics enable the first automated clustering of mathematical formulas. We demonstrate this methodology on Polynomial Continued Fraction formulas, which are ubiquitous in their intrinsic connections to mathematical constants, and generalize many mathematical functions and structures. We test our methodology on a set of 1,768,900 such formulas, identifying many known formulas for mathematical constants, and discover previously unknown formulas for pi, ln(2), Gauss', and Lemniscate's constants. The uncovered patterns enable a direct generalization of individual formulas to infinite families, unveiling rich mathematical structures. This success paves the way towards a generative model that creates formulas fulfilling specified mathematical properties, accelerating the rate of discovery of useful formulas.
Are Your LLMs Capable of Stable Reasoning?
The rapid advancement of Large Language Models (LLMs) has demonstrated remarkable progress in complex reasoning tasks. However, a significant discrepancy persists between benchmark performances and real-world applications. We identify this gap as primarily stemming from current evaluation protocols and metrics, which inadequately capture the full spectrum of LLM capabilities, particularly in complex reasoning tasks where both accuracy and consistency are crucial. This work makes two key contributions. First, we introduce G-Pass@k, a novel evaluation metric that provides a continuous assessment of model performance across multiple sampling attempts, quantifying both the model's peak performance potential and its stability. Second, we present LiveMathBench, a dynamic benchmark comprising challenging, contemporary mathematical problems designed to minimize data leakage risks during evaluation. Through extensive experiments using G-Pass@k on state-of-the-art LLMs with LiveMathBench, we provide comprehensive insights into both their maximum capabilities and operational consistency. Our findings reveal substantial room for improvement in LLMs' "realistic" reasoning capabilities, highlighting the need for more robust evaluation methods. The benchmark and detailed results are available at: https://github.com/open-compass/GPassK.
Copilot Evaluation Harness: Evaluating LLM-Guided Software Programming
The integration of Large Language Models (LLMs) into Development Environments (IDEs) has become a focal point in modern software development. LLMs such as OpenAI GPT-3.5/4 and Code Llama offer the potential to significantly augment developer productivity by serving as intelligent, chat-driven programming assistants. However, utilizing LLMs out of the box is unlikely to be optimal for any given scenario. Rather, each system requires the LLM to be honed to its set of heuristics to ensure the best performance. In this paper, we introduce the Copilot evaluation harness: a set of data and tools for evaluating LLM-guided IDE interactions, covering various programming scenarios and languages. We propose our metrics as a more robust and information-dense evaluation than previous state of the art evaluation systems. We design and compute both static and execution based success metrics for scenarios encompassing a wide range of developer tasks, including code generation from natural language (generate), documentation generation from code (doc), test case generation (test), bug-fixing (fix), and workspace understanding and query resolution (workspace). These success metrics are designed to evaluate the performance of LLMs within a given IDE and its respective parameter space. Our learnings from evaluating three common LLMs using these metrics can inform the development and validation of future scenarios in LLM guided IDEs.
CodeMonkeys: Scaling Test-Time Compute for Software Engineering
Scaling test-time compute is a promising axis for improving LLM capabilities. However, test-time compute can be scaled in a variety of ways, and effectively combining different approaches remains an active area of research. Here, we explore this problem in the context of solving real-world GitHub issues from the SWE-bench dataset. Our system, named CodeMonkeys, allows models to iteratively edit a codebase by jointly generating and running a testing script alongside their draft edit. We sample many of these multi-turn trajectories for every issue to generate a collection of candidate edits. This approach lets us scale "serial" test-time compute by increasing the number of iterations per trajectory and "parallel" test-time compute by increasing the number of trajectories per problem. With parallel scaling, we can amortize up-front costs across multiple downstream samples, allowing us to identify relevant codebase context using the simple method of letting an LLM read every file. In order to select between candidate edits, we combine voting using model-generated tests with a final multi-turn trajectory dedicated to selection. Overall, CodeMonkeys resolves 57.4% of issues from SWE-bench Verified using a budget of approximately 2300 USD. Our selection method can also be used to combine candidates from different sources. Selecting over an ensemble of edits from existing top SWE-bench Verified submissions obtains a score of 66.2% and outperforms the best member of the ensemble on its own. We fully release our code and data at https://scalingintelligence.stanford.edu/pubs/codemonkeys.
The ML.ENERGY Benchmark: Toward Automated Inference Energy Measurement and Optimization
As the adoption of Generative AI in real-world services grow explosively, energy has emerged as a critical bottleneck resource. However, energy remains a metric that is often overlooked, under-explored, or poorly understood in the context of building ML systems. We present the ML.ENERGY Benchmark, a benchmark suite and tool for measuring inference energy consumption under realistic service environments, and the corresponding ML.ENERGY Leaderboard, which have served as a valuable resource for those hoping to understand and optimize the energy consumption of their generative AI services. In this paper, we explain four key design principles for benchmarking ML energy we have acquired over time, and then describe how they are implemented in the ML.ENERGY Benchmark. We then highlight results from the latest iteration of the benchmark, including energy measurements of 40 widely used model architectures across 6 different tasks, case studies of how ML design choices impact energy consumption, and how automated optimization recommendations can lead to significant (sometimes more than 40%) energy savings without changing what is being computed by the model. The ML.ENERGY Benchmark is open-source and can be easily extended to various customized models and application scenarios.
Democratizing LLMs: An Exploration of Cost-Performance Trade-offs in Self-Refined Open-Source Models
The dominance of proprietary LLMs has led to restricted access and raised information privacy concerns. High-performing open-source alternatives are crucial for information-sensitive and high-volume applications but often lag behind in performance. To address this gap, we propose (1) A untargeted variant of iterative self-critique and self-refinement devoid of external influence. (2) A novel ranking metric - Performance, Refinement, and Inference Cost Score (PeRFICS) - to find the optimal model for a given task considering refined performance and cost. Our experiments show that SoTA open source models of varying sizes from 7B - 65B, on average, improve 8.2% from their baseline performance. Strikingly, even models with extremely small memory footprints, such as Vicuna-7B, show a 11.74% improvement overall and up to a 25.39% improvement in high-creativity, open ended tasks on the Vicuna benchmark. Vicuna-13B takes it a step further and outperforms ChatGPT post-refinement. This work has profound implications for resource-constrained and information-sensitive environments seeking to leverage LLMs without incurring prohibitive costs, compromising on performance and privacy. The domain-agnostic self-refinement process coupled with our novel ranking metric facilitates informed decision-making in model selection, thereby reducing costs and democratizing access to high-performing language models, as evidenced by case studies.
Predicting Code Coverage without Execution
Code coverage is a widely used metric for quantifying the extent to which program elements, such as statements or branches, are executed during testing. Calculating code coverage is resource-intensive, requiring code building and execution with additional overhead for the instrumentation. Furthermore, computing coverage of any snippet of code requires the whole program context. Using Machine Learning to amortize this expensive process could lower the cost of code coverage by requiring only the source code context, and the task of code coverage prediction can be a novel benchmark for judging the ability of models to understand code. We propose a novel benchmark task called Code Coverage Prediction for Large Language Models (LLMs). We formalize this task to evaluate the capability of LLMs in understanding code execution by determining which lines of a method are executed by a given test case and inputs. We curate and release a dataset we call COVERAGEEVAL by executing tests and code from the HumanEval dataset and collecting code coverage information. We report the performance of four state-of-the-art LLMs used for code-related tasks, including OpenAI's GPT-4 and GPT-3.5-Turbo, Google's BARD, and Anthropic's Claude, on the Code Coverage Prediction task. Finally, we argue that code coverage as a metric and pre-training data source are valuable for overall LLM performance on software engineering tasks.
Etalon: Holistic Performance Evaluation Framework for LLM Inference Systems
Serving large language models (LLMs) in production can incur substantial costs, which has prompted recent advances in inference system optimizations. Today, these systems are evaluated against conventional latency and throughput metrics (eg. TTFT, TBT, Normalised Latency and TPOT). However, these metrics fail to fully capture the nuances of LLM inference, leading to an incomplete assessment of user-facing performance crucial for real-time applications such as chat and translation. In this paper, we first identify the pitfalls of current performance metrics in evaluating LLM inference systems. We then propose Etalon, a comprehensive performance evaluation framework that includes fluidity-index -- a novel metric designed to reflect the intricacies of the LLM inference process and its impact on real-time user experience. Finally, we evaluate various existing open-source platforms and model-as-a-service offerings using Etalon, discussing their strengths and weaknesses. Etalon is available at https://github.com/project-etalon/etalon.
Automatic Evaluation of Generative Models with Instruction Tuning
Automatic evaluation of natural language generation has long been an elusive goal in NLP.A recent paradigm fine-tunes pre-trained language models to emulate human judgements for a particular task and evaluation criterion. Inspired by the generalization ability of instruction-tuned models, we propose a learned metric based on instruction tuning. To test our approach, we collected HEAP, a dataset of human judgements across various NLG tasks and evaluation criteria. Our findings demonstrate that instruction tuning language models on HEAP yields good performance on many evaluation tasks, though some criteria are less trivial to learn than others. Further, jointly training on multiple tasks can yield additional performance improvements, which can be beneficial for future tasks with little to no human annotated data.
WebApp1K: A Practical Code-Generation Benchmark for Web App Development
We introduce WebApp1K, a practical code-generation benchmark to measure LLM ability to develop web apps. This benchmark aims to calibrate LLM output and aid the models to progressively improve code correctness and functionality. The benchmark is lightweight and easy to run. We present the initial version of WebApp1K, and share our findings of running the benchmark against the latest frontier LLMs. First, open source LLMs deliver impressive performance, closely trailing behind GPT-4o and Claude 3.5. Second, model size has strong correlation with code correctness. Third, no prompting techniques have been found to lift performance either universally to all models, or significantly to a single model.
CPRet: A Dataset, Benchmark, and Model for Retrieval in Competitive Programming
Competitive programming benchmarks are widely used in scenarios such as programming contests and large language model assessments. However, the growing presence of duplicate or highly similar problems raises concerns not only about competition fairness, but also about the validity of competitive programming as a benchmark for model evaluation. In this paper, we propose a new problem -- similar question retrieval -- to address this issue. Due to the lack of both data and models, solving this problem is challenging. To this end, we introduce CPRet, a retrieval-oriented benchmark suite for competitive programming, covering four retrieval tasks: two code-centric (i.e., Text-to-Code and Code-to-Code) and two newly proposed problem-centric tasks (i.e., Problem-to-Duplicate and Simplified-to-Full), built from a combination of automatically crawled problem-solution data and manually curated annotations. Our contribution includes both high-quality training data and temporally separated test sets for reliable evaluation. In addition, we develop two task-specialized retrievers based on this dataset: CPRetriever-Code, trained with a novel Group-InfoNCE loss for problem-code alignment, and CPRetriever-Prob, fine-tuned for identifying problem-level similarity. Both models achieve strong results and are open-sourced for local use. Finally, we analyze LiveCodeBench and find that high-similarity problems inflate model pass rates and reduce differentiation, underscoring the need for similarity-aware evaluation in future benchmarks. Code and data are available at: https://github.com/coldchair/CPRet
EffiBench: Benchmarking the Efficiency of Automatically Generated Code
Code generation models have increasingly become integral to aiding software development, offering assistance in tasks such as code completion, debugging, and code translation. Although current research has thoroughly examined the correctness of code produced by code generation models, a vital aspect, i.e., the efficiency of the generated code, has often been neglected. This paper presents EffiBench, a benchmark with 1,000 efficiency-critical coding problems for assessing the efficiency of code generated by code generation models. EffiBench contains a diverse set of LeetCode coding problems. Each problem is paired with an executable human-written canonical solution. With EffiBench, we empirically examine the capability of 21 Large Language Models (13 open-sourced and 8 closed-sourced) in generating efficient code. The results demonstrate that GPT-4-turbo generates the most efficient code, significantly outperforming Palm-2-chat-bison, Claude-instant-1, Gemini-pro, GPT-4, and GPT-3.5. Nevertheless, its code efficiency is still worse than the efficiency of human-written canonical solutions. In particular, the average and worst execution time of GPT-4-turbo generated code is 1.69 and 45.49 times that of the canonical solutions.
Efficient Benchmarking (of Language Models)
The increasing versatility of language models LMs has given rise to a new class of benchmarks that comprehensively assess a broad range of capabilities. Such benchmarks are associated with massive computational costs reaching thousands of GPU hours per model. However the efficiency aspect of these evaluation efforts had raised little discussion in the literature. In this work we present the problem of Efficient Benchmarking namely intelligently reducing the computation costs of LM evaluation without compromising reliability. Using the HELM benchmark as a test case we investigate how different benchmark design choices affect the computation-reliability tradeoff. We propose to evaluate the reliability of such decisions by using a new measure Decision Impact on Reliability DIoR for short. We find for example that the current leader on HELM may change by merely removing a low-ranked model from the benchmark and observe that a handful of examples suffice to obtain the correct benchmark ranking. Conversely a slightly different choice of HELM scenarios varies ranking widely. Based on our findings we outline a set of concrete recommendations for more efficient benchmark design and utilization practices leading to dramatic cost savings with minimal loss of benchmark reliability often reducing computation by x100 or more.
A Multi-Language Object-Oriented Programming Benchmark for Large Language Models
Establishing fair and robust benchmarks is essential for evaluating intelligent code generation by large language models (LLMs). Our survey of 35 existing benchmarks uncovers three major imbalances: 85.7% focus on a single programming language; 94.3% target only function-level or statement-level tasks; and over 80% include fewer than ten test cases on average. To address these gaps, we propose MultiOOP, a multi-language object-oriented programming benchmark covering six popular languages (Python, PHP, C++, C#, Java, JavaScript) with 267 tasks per language. We design a translator that extends an existing single-language OOP benchmark and the pass@o metric to a multilingual setting. Moreover, we propose an automated framework for augmenting test cases to ensure the reliability of the evaluation results. We evaluate 14 mainstream LLMs under zero-shot prompting and report three key findings: 1) Substantial performance degradation: pass@1 scores on MultiOOP drop by up to 65.6 percentage points compared to function-level tasks (e.g., HumanEval). 2) Cross-language variability: GPT-4o mini achieves pass@1 of 48.06% in Python but only 0.12%-15.26% in other languages, indicating limited multilingual generalization. 3) Conceptual gaps: pass@o scores are consistently 1.1-19.2 points lower than pass@k, demonstrating that LLMs often generate executable code without fully capturing core OOP concepts. Our benchmark, metric extensions, and evaluation scripts will be publicly released to foster a more balanced and comprehensive assessment of LLMs in object-oriented code generation. Our code and data will be released at https://github.com/alphadl/OOP-eval and https://huggingface.co/datasets/codeai-dteam/MultiOOP respectively.
What Did I Do Wrong? Quantifying LLMs' Sensitivity and Consistency to Prompt Engineering
Large Language Models (LLMs) changed the way we design and interact with software systems. Their ability to process and extract information from text has drastically improved productivity in a number of routine tasks. Developers that want to include these models in their software stack, however, face a dreadful challenge: debugging LLMs' inconsistent behavior across minor variations of the prompt. We therefore introduce two metrics for classification tasks, namely sensitivity and consistency, which are complementary to task performance. First, sensitivity measures changes of predictions across rephrasings of the prompt, and does not require access to ground truth labels. Instead, consistency measures how predictions vary across rephrasings for elements of the same class. We perform an empirical comparison of these metrics on text classification tasks, using them as guideline for understanding failure modes of the LLM. Our hope is that sensitivity and consistency will be helpful to guide prompt engineering and obtain LLMs that balance robustness with performance.
Information Capacity: Evaluating the Efficiency of Large Language Models via Text Compression
Recent years have witnessed the rapid advancements of large language models (LLMs) and their expanding applications, leading to soaring demands for computational resources. The widespread adoption of test-time scaling further aggravates the tension between model capability and resource consumption, highlighting the importance of inference efficiency. However, a unified metric that accurately reflects an LLM's efficiency across different model sizes and architectures remains absent. Motivated by the correlation between compression and intelligence, we introduce information capacity, a measure of model efficiency based on text compression performance relative to computational complexity. Larger models can predict the next token more accurately, achieving greater compression gains but at higher computational costs. Empirical evaluations on mainstream open-source models show that models of varying sizes within a series exhibit consistent information capacity. This metric enables a fair efficiency comparison across model series and accurate performance prediction within a model series. A distinctive feature of information capacity is that it incorporates tokenizer efficiency, which affects both input and output token counts but is often neglected in LLM evaluations. We assess the information capacity of 49 models on 5 heterogeneous datasets and observe consistent results on the influences of tokenizer efficiency, pretraining data, and the mixture-of-experts architecture.
LLM4DS: Evaluating Large Language Models for Data Science Code Generation
The adoption of Large Language Models (LLMs) for code generation in data science offers substantial potential for enhancing tasks such as data manipulation, statistical analysis, and visualization. However, the effectiveness of these models in the data science domain remains underexplored. This paper presents a controlled experiment that empirically assesses the performance of four leading LLM-based AI assistants-Microsoft Copilot (GPT-4 Turbo), ChatGPT (o1-preview), Claude (3.5 Sonnet), and Perplexity Labs (Llama-3.1-70b-instruct)-on a diverse set of data science coding challenges sourced from the Stratacratch platform. Using the Goal-Question-Metric (GQM) approach, we evaluated each model's effectiveness across task types (Analytical, Algorithm, Visualization) and varying difficulty levels. Our findings reveal that all models exceeded a 50% baseline success rate, confirming their capability beyond random chance. Notably, only ChatGPT and Claude achieved success rates significantly above a 60% baseline, though none of the models reached a 70% threshold, indicating limitations in higher standards. ChatGPT demonstrated consistent performance across varying difficulty levels, while Claude's success rate fluctuated with task complexity. Hypothesis testing indicates that task type does not significantly impact success rate overall. For analytical tasks, efficiency analysis shows no significant differences in execution times, though ChatGPT tended to be slower and less predictable despite high success rates. This study provides a structured, empirical evaluation of LLMs in data science, delivering insights that support informed model selection tailored to specific task demands. Our findings establish a framework for future AI assessments, emphasizing the value of rigorous evaluation beyond basic accuracy measures.
Beyond Efficiency: A Systematic Survey of Resource-Efficient Large Language Models
The burgeoning field of Large Language Models (LLMs), exemplified by sophisticated models like OpenAI's ChatGPT, represents a significant advancement in artificial intelligence. These models, however, bring forth substantial challenges in the high consumption of computational, memory, energy, and financial resources, especially in environments with limited resource capabilities. This survey aims to systematically address these challenges by reviewing a broad spectrum of techniques designed to enhance the resource efficiency of LLMs. We categorize methods based on their optimization focus: computational, memory, energy, financial, and network resources and their applicability across various stages of an LLM's lifecycle, including architecture design, pretraining, finetuning, and system design. Additionally, the survey introduces a nuanced categorization of resource efficiency techniques by their specific resource types, which uncovers the intricate relationships and mappings between various resources and corresponding optimization techniques. A standardized set of evaluation metrics and datasets is also presented to facilitate consistent and fair comparisons across different models and techniques. By offering a comprehensive overview of the current sota and identifying open research avenues, this survey serves as a foundational reference for researchers and practitioners, aiding them in developing more sustainable and efficient LLMs in a rapidly evolving landscape.
Algorithmic progress in language models
We investigate the rate at which algorithms for pre-training language models have improved since the advent of deep learning. Using a dataset of over 200 language model evaluations on Wikitext and Penn Treebank spanning 2012-2023, we find that the compute required to reach a set performance threshold has halved approximately every 8 months, with a 95% confidence interval of around 5 to 14 months, substantially faster than hardware gains per Moore's Law. We estimate augmented scaling laws, which enable us to quantify algorithmic progress and determine the relative contributions of scaling models versus innovations in training algorithms. Despite the rapid pace of algorithmic progress and the development of new architectures such as the transformer, our analysis reveals that the increase in compute made an even larger contribution to overall performance improvements over this time period. Though limited by noisy benchmark data, our analysis quantifies the rapid progress in language modeling, shedding light on the relative contributions from compute and algorithms.
S*: Test Time Scaling for Code Generation
Increasing test-time compute for LLMs shows promise across domains but remains underexplored in code generation, despite extensive study in math. In this paper, we propose S*, the first hybrid test-time scaling framework that substantially improves the coverage and selection accuracy of generated code. S* extends the existing parallel scaling paradigm with sequential scaling to push performance boundaries. It further leverages a novel selection mechanism that adaptively generates distinguishing inputs for pairwise comparison, combined with execution-grounded information to robustly identify correct solutions. We evaluate across 12 Large Language Models and Large Reasoning Model and show: (1) S* consistently improves performance across model families and sizes, enabling a 3B model to outperform GPT-4o-mini; (2) S* enables non-reasoning models to surpass reasoning models - GPT-4o-mini with S* outperforms o1-preview by 3.7% on LiveCodeBench; (3) S* further boosts state-of-the-art reasoning models - DeepSeek-R1-Distill-Qwen-32B with S* achieves 85.7% on LiveCodeBench, approaching o1 (high) at 88.5%. Code will be available under https://github.com/NovaSky-AI/SkyThought.
DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation
We introduce DS-1000, a code generation benchmark with a thousand data science problems spanning seven Python libraries, such as NumPy and Pandas. Compared to prior works, DS-1000 incorporates three core features. First, our problems reflect diverse, realistic, and practical use cases since we collected them from StackOverflow. Second, our automatic evaluation is highly specific (reliable) -- across all Codex-002-predicted solutions that our evaluation accept, only 1.8% of them are incorrect; we achieve this with multi-criteria metrics, checking both functional correctness by running test cases and surface-form constraints by restricting API usages or keywords. Finally, we proactively defend against memorization by slightly modifying our problems to be different from the original StackOverflow source; consequently, models cannot answer them correctly by memorizing the solutions from pre-training. The current best public system (Codex-002) achieves 43.3% accuracy, leaving ample room for improvement. We release our benchmark at https://ds1000-code-gen.github.io.
SURGE: On the Potential of Large Language Models as General-Purpose Surrogate Code Executors
Large language models (LLMs) have demonstrated remarkable capabilities in code-related tasks, such as code understanding and code generation. However, an equally important yet underexplored question is whether LLMs can serve as general-purpose surrogate code executors, to predict the output and behavior of a program without actually running it. To systematically investigate this capability, we introduce SURGE, a comprehensive benchmark covering eight key aspects: multi-language programming tasks, competition-level programming problems, repository-level code analysis, high-cost scientific computing, time-complexity-intensive algorithms, buggy code analysis, programs dependent on specific compilers or execution environments, and formal mathematical proof verification. We evaluate multiple open-source and proprietary LLMs on SURGE and conduct a scaling study to analyze the impact of model size and training data scale on surrogate execution accuracy. Additionally, we categorize model prediction errors and explore potential areas for improvement. Our findings indicate that while LLMs can predict code execution results in certain cases, they exhibit limitations in general-purpose surrogate execution. This study provides empirical insights into the feasibility of using LLMs as surrogate code executors. Code and dataset are released at https://github.com/Imbernoulli/SURGE.
Becoming self-instruct: introducing early stopping criteria for minimal instruct tuning
In this paper, we introduce the Instruction Following Score (IFS), a metric that detects language models' ability to follow instructions. The metric has a dual purpose. First, IFS can be used to distinguish between base and instruct models. We benchmark publicly available base and instruct models, and show that the ratio of well formatted responses to partial and full sentences can be an effective measure between those two model classes. Secondly, the metric can be used as an early stopping criteria for instruct tuning. We compute IFS for Supervised Fine-Tuning (SFT) of 7B and 13B LLaMA models, showing that models learn to follow instructions relatively early in the training process, and the further finetuning can result in changes in the underlying base model semantics. As an example of semantics change we show the objectivity of model predictions, as defined by an auxiliary metric ObjecQA. We show that in this particular case, semantic changes are the steepest when the IFS tends to plateau. We hope that decomposing instruct tuning into IFS and semantic factors starts a new trend in better controllable instruct tuning and opens possibilities for designing minimal instruct interfaces querying foundation models.
TASTY: A Transformer based Approach to Space and Time complexity
Code based Language Models (LMs) have shown very promising results in the field of software engineering with applications such as code refinement, code completion and generation. However, the task of time and space complexity classification from code has not been extensively explored due to a lack of datasets, with prior endeavors being limited to Java. In this project, we aim to address these gaps by creating a labelled dataset of code snippets spanning multiple languages (Python and C++ datasets currently, with C, C#, and JavaScript datasets being released shortly). We find that existing time complexity calculation libraries and tools only apply to a limited number of use-cases. The lack of a well-defined rule based system motivates the application of several recently proposed code-based LMs. We demonstrate the effectiveness of dead code elimination and increasing the maximum sequence length of LMs. In addition to time complexity, we propose to use LMs to find space complexities from code, and to the best of our knowledge, this is the first attempt to do so. Furthermore, we introduce a novel code comprehension task, called cross-language transfer, where we fine-tune the LM on one language and run inference on another. Finally, we visualize the activation of the attention fed classification head of our LMs using Non-negative Matrix Factorization (NMF) to interpret our results.
GSPMD: General and Scalable Parallelization for ML Computation Graphs
We present GSPMD, an automatic, compiler-based parallelization system for common machine learning computations. It allows users to write programs in the same way as for a single device, then give hints through a few annotations on how to distribute tensors, based on which GSPMD will parallelize the computation. Its representation of partitioning is simple yet general, allowing it to express different or mixed paradigms of parallelism on a wide variety of models. GSPMD infers the partitioning for every operator based on limited user annotations, making it convenient to scale existing single-device programs. It solves several technical challenges for production usage, allowing GSPMD to achieve 50% to 62% compute utilization on up to 2048 Cloud TPUv3 cores for models with up to one trillion parameters.
How predictable is language model benchmark performance?
We investigate large language model performance across five orders of magnitude of compute scaling in eleven recent model architectures. We show that average benchmark performance, aggregating over many individual tasks and evaluations as in the commonly-used BIG-Bench dataset, is decently predictable as a function of training compute scale. Specifically, when extrapolating BIG-Bench Hard performance across one order of magnitude in compute, we observe average absolute errors of 6 percentage points (pp). By contrast, extrapolation for individual BIG-Bench tasks across an order of magnitude in compute yields higher average errors of 18pp. Nonetheless, individual task performance remains significantly more predictable than chance. Overall, our work suggests compute scaling provides a promising basis to forecast AI capabilities in diverse benchmarks, though predicting performance in specific tasks poses challenges.
Stable Code Technical Report
We introduce Stable Code, the first in our new-generation of code language models series, which serves as a general-purpose base code language model targeting code completion, reasoning, math, and other software engineering-based tasks. Additionally, we introduce an instruction variant named Stable Code Instruct that allows conversing with the model in a natural chat interface for performing question-answering and instruction-based tasks. In this technical report, we detail the data and training procedure leading to both models. Their weights are available via Hugging Face for anyone to download and use at https://huggingface.co/stabilityai/stable-code-3b and https://huggingface.co/stabilityai/stable-code-instruct-3b. This report contains thorough evaluations of the models, including multilingual programming benchmarks, and the MT benchmark focusing on multi-turn dialogues. At the time of its release, Stable Code is the state-of-the-art open model under 3B parameters and even performs comparably to larger models of sizes 7 billion and 15 billion parameters on the popular Multi-PL benchmark. Stable Code Instruct also exhibits state-of-the-art performance on the MT-Bench coding tasks and on Multi-PL completion compared to other instruction tuned models. Given its appealing small size, we also provide throughput measurements on a number of edge devices. In addition, we open source several quantized checkpoints and provide their performance metrics compared to the original model.
