52 First Frame Is the Place to Go for Video Content Customization What role does the first frame play in video generation models? Traditionally, it's viewed as the spatial-temporal starting point of a video, merely a seed for subsequent animation. In this work, we reveal a fundamentally different perspective: video models implicitly treat the first frame as a conceptual memory buffer that stores visual entities for later reuse during generation. Leveraging this insight, we show that it's possible to achieve robust and generalized video content customization in diverse scenarios, using only 20-50 training examples without architectural changes or large-scale finetuning. This unveils a powerful, overlooked capability of video generation models for reference-based video customization. University of Maryland College Park · Nov 19 3
- Contextual Experience Replay for Self-Improvement of Language Agents Large language model (LLM) agents have been applied to sequential decision-making tasks such as web navigation, but without any environment-specific experiences, they often fail in these complex tasks. Moreover, current LLM agents are not designed to continually learn from past experiences during inference time, which could be crucial for them to gain these environment-specific experiences. To address this, we propose Contextual Experience Replay (CER), a training-free framework to enable efficient self-improvement for language agents in their context window. Specifically, CER accumulates and synthesizes past experiences into a dynamic memory buffer. These experiences encompass environment dynamics and common decision-making patterns, allowing the agents to retrieve and augment themselves with relevant knowledge in new tasks, enhancing their adaptability in complex environments. We evaluate CER on the challenging WebArena and VisualWebArena benchmarks. On VisualWebArena, CER achieves a competitive performance of 31.9%. On WebArena, CER also gets a competitive average success rate of 36.7%, relatively improving the success rate of the GPT-4o agent baseline by 51.0%. We also conduct a comprehensive analysis on it to prove its efficiency, validity and understand it better. 4 authors · Jun 7