1 Explicit Shape Encoding for Real-Time Instance Segmentation In this paper, we propose a novel top-down instance segmentation framework based on explicit shape encoding, named ESE-Seg. It largely reduces the computational consumption of the instance segmentation by explicitly decoding the multiple object shapes with tensor operations, thus performs the instance segmentation at almost the same speed as the object detection. ESE-Seg is based on a novel shape signature Inner-center Radius (IR), Chebyshev polynomial fitting and the strong modern object detectors. ESE-Seg with YOLOv3 outperforms the Mask R-CNN on Pascal VOC 2012 at mAP^[email protected] while 7 times faster. 4 authors · Aug 12, 2019
- GenCorres: Consistent Shape Matching via Coupled Implicit-Explicit Shape Generative Models This paper introduces GenCorres, a novel unsupervised joint shape matching (JSM) approach. Our key idea is to learn a mesh generator to fit an unorganized deformable shape collection while constraining deformations between adjacent synthetic shapes to preserve geometric structures such as local rigidity and local conformality. GenCorres presents three appealing advantages over existing JSM techniques. First, GenCorres performs JSM among a synthetic shape collection whose size is much bigger than the input shapes and fully leverages the datadriven power of JSM. Second, GenCorres unifies consistent shape matching and pairwise matching (i.e., by enforcing deformation priors between adjacent synthetic shapes). Third, the generator provides a concise encoding of consistent shape correspondences. However, learning a mesh generator from an unorganized shape collection is challenging, requiring a good initialization. GenCorres addresses this issue by learning an implicit generator from the input shapes, which provides intermediate shapes between two arbitrary shapes. We introduce a novel approach for computing correspondences between adjacent implicit surfaces, which we use to regularize the implicit generator. Synthetic shapes of the implicit generator then guide initial fittings (i.e., via template-based deformation) for learning the mesh generator. Experimental results show that GenCorres considerably outperforms state-of-the-art JSM techniques. The synthetic shapes of GenCorres also achieve salient performance gains against state-of-the-art deformable shape generators. 5 authors · Apr 20, 2023
- Ponymation: Learning Articulated 3D Animal Motions from Unlabeled Online Videos We introduce a new method for learning a generative model of articulated 3D animal motions from raw, unlabeled online videos. Unlike existing approaches for 3D motion synthesis, our model requires no pose annotations or parametric shape models for training; it learns purely from a collection of unlabeled web video clips, leveraging semantic correspondences distilled from self-supervised image features. At the core of our method is a video Photo-Geometric Auto-Encoding framework that decomposes each training video clip into a set of explicit geometric and photometric representations, including a rest-pose 3D shape, an articulated pose sequence, and texture, with the objective of re-rendering the input video via a differentiable renderer. This decomposition allows us to learn a generative model over the underlying articulated pose sequences akin to a Variational Auto-Encoding (VAE) formulation, but without requiring any external pose annotations. At inference time, we can generate new motion sequences by sampling from the learned motion VAE, and create plausible 4D animations of an animal automatically within seconds given a single input image. 6 authors · Dec 21, 2023