new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions

Recent progress in vision Transformers exhibits great success in various tasks driven by the new spatial modeling mechanism based on dot-product self-attention. In this paper, we show that the key ingredients behind the vision Transformers, namely input-adaptive, long-range and high-order spatial interactions, can also be efficiently implemented with a convolution-based framework. We present the Recursive Gated Convolution (g^nConv) that performs high-order spatial interactions with gated convolutions and recursive designs. The new operation is highly flexible and customizable, which is compatible with various variants of convolution and extends the two-order interactions in self-attention to arbitrary orders without introducing significant extra computation. g^nConv can serve as a plug-and-play module to improve various vision Transformers and convolution-based models. Based on the operation, we construct a new family of generic vision backbones named HorNet. Extensive experiments on ImageNet classification, COCO object detection and ADE20K semantic segmentation show HorNet outperform Swin Transformers and ConvNeXt by a significant margin with similar overall architecture and training configurations. HorNet also shows favorable scalability to more training data and larger model sizes. Apart from the effectiveness in visual encoders, we also show g^nConv can be applied to task-specific decoders and consistently improve dense prediction performance with less computation. Our results demonstrate that g^nConv can be a new basic module for visual modeling that effectively combines the merits of both vision Transformers and CNNs. Code is available at https://github.com/raoyongming/HorNet

  • 6 authors
·
Jul 28, 2022

MambaClinix: Hierarchical Gated Convolution and Mamba-Based U-Net for Enhanced 3D Medical Image Segmentation

Deep learning, particularly convolutional neural networks (CNNs) and Transformers, has significantly advanced 3D medical image segmentation. While CNNs are highly effective at capturing local features, their limited receptive fields may hinder performance in complex clinical scenarios. In contrast, Transformers excel at modeling long-range dependencies but are computationally intensive, making them expensive to train and deploy. Recently, the Mamba architecture, based on the State Space Model (SSM), has been proposed to efficiently model long-range dependencies while maintaining linear computational complexity. However, its application in medical image segmentation reveals shortcomings, particularly in capturing critical local features essential for accurate delineation of clinical regions. In this study, we propose MambaClinix, a novel U-shaped architecture for medical image segmentation that integrates a hierarchical gated convolutional network(HGCN) with Mamba in an adaptive stage-wise framework. This design significantly enhances computational efficiency and high-order spatial interactions, enabling the model to effectively capture both proximal and distal relationships in medical images. Specifically, our HGCN is designed to mimic the attention mechanism of Transformers by a purely convolutional structure, facilitating high-order spatial interactions in feature maps while avoiding the computational complexity typically associated with Transformer-based methods. Additionally, we introduce a region-specific Tversky loss, which emphasizes specific pixel regions to improve auto-segmentation performance, thereby optimizing the model's decision-making process. Experimental results on five benchmark datasets demonstrate that the proposed MambaClinix achieves high segmentation accuracy while maintaining low model complexity.

  • 7 authors
·
Sep 19, 2024