new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

One-connection rule for structural equation models

Linear structural equation models are multivariate statistical models encoded by mixed graphs. In particular, the set of covariance matrices for distributions belonging to a linear structural equation model for a fixed mixed graph G=(V, D,B) is parameterized by a rational function with parameters for each vertex and edge in G. This rational parametrization naturally allows for the study of these models from an algebraic and combinatorial point of view. Indeed, this point of view has led to a collection of results in the literature, mainly focusing on questions related to identifiability and determining relationships between covariances (i.e., finding polynomials in the Gaussian vanishing ideal). So far, a large proportion of these results has focused on the case when D, the directed part of the mixed graph G, is acyclic. This is due to the fact that in the acyclic case, the parametrization becomes polynomial and there is a description of the entries of the covariance matrices in terms of a finite sum. We move beyond the acyclic case and give a closed form expression for the entries of the covariance matrices in terms of the one-connections in a graph obtained from D through some small operations. This closed form expression then allows us to show that if G is simple, then the parametrization map is generically finite-to-one. Finally, having a closed form expression for the covariance matrices allows for the development of an algorithm for systematically exploring possible polynomials in the Gaussian vanishing ideal.

  • 4 authors
·
Oct 1, 2022

Unsupervised Representation Learning for 3D Mesh Parameterization with Semantic and Visibility Objectives

Recent 3D generative models produce high-quality textures for 3D mesh objects. However, they commonly rely on the heavy assumption that input 3D meshes are accompanied by manual mesh parameterization (UV mapping), a manual task that requires both technical precision and artistic judgment. Industry surveys show that this process often accounts for a significant share of asset creation, creating a major bottleneck for 3D content creators. Moreover, existing automatic methods often ignore two perceptually important criteria: (1) semantic awareness (UV charts should align semantically similar 3D parts across shapes) and (2) visibility awareness (cutting seams should lie in regions unlikely to be seen). To overcome these shortcomings and to automate the mesh parameterization process, we present an unsupervised differentiable framework that augments standard geometry-preserving UV learning with semantic- and visibility-aware objectives. For semantic-awareness, our pipeline (i) segments the mesh into semantic 3D parts, (ii) applies an unsupervised learned per-part UV-parameterization backbone, and (iii) aggregates per-part charts into a unified UV atlas. For visibility-awareness, we use ambient occlusion (AO) as an exposure proxy and back-propagate a soft differentiable AO-weighted seam objective to steer cutting seams toward occluded regions. By conducting qualitative and quantitative evaluations against state-of-the-art methods, we show that the proposed method produces UV atlases that better support texture generation and reduce perceptible seam artifacts compared to recent baselines. Our implementation code is publicly available at: https://github.com/AHHHZ975/Semantic-Visibility-UV-Param.

  • 3 authors
·
Sep 29, 2025