Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeA Unified Perspective on Orthogonalization and Diagonalization
This paper makes a formal connection between two families of widely used matrix factorization algorithms in numerical linear algebra. One family consists of the Jacobi eigenvalue algorithm and its variants for computing the Hermitian eigendecomposition and singular value decomposition. The other consists of Gaussian elimination and the Gram-Schmidt procedure with various pivoting rules for computing the Cholesky decomposition and QR decomposition respectively. Both families are cast as special cases of a more general class of factorization algorithms. We provide a randomized pivoting rule that applies to this general class (which differs substantially from the usual pivoting rules for Gaussian elimination / Gram-Schmidt) which results in the same linear rate of convergence for each algorithm, irrespective of which factorization it computes. A second important consequence of this randomized pivoting rule is a provable, effective bound on the numerical stability of the Jacobi eigenvalue algorithm, which addresses a longstanding open problem of Demmel and Veseli\'c `92.
Faster Algorithms for Structured Matrix Multiplication via Flip Graph Search
We give explicit low-rank bilinear non-commutative schemes for multiplying structured n times n matrices with 2 leq n leq 5, which serve as building blocks for recursive algorithms with improved multiplicative factors in asymptotic complexity. Our schemes are discovered over F_2 or F_3 and lifted to Z or Q. Using a flip graph search over tensor decompositions, we derive schemes for general, upper-triangular, lower-triangular, symmetric, and skew-symmetric inputs, as well as products of a structured matrix with its transpose. In particular, we obtain 4 times 4 rank-34 schemes: (i) multiplying a general matrix by its transpose using 10 recursive calls, improving the factor from 26/41 (0.634) to 8/13 (0.615); and (ii) multiplying an upper-triangular matrix by a general matrix using 12 recursive calls, improving the factor from 8/13 (0.615) to 22/37 (0.595). Additionally, using F_3 flip graphs, we discover schemes over Q that fundamentally require the inverse of 2, including a 2 times 2 symmetric-symmetric multiplication of rank 5 and a 3 times 3 skew-symmetric-general multiplication of rank 14 (improving upon AlphaTensor's 15).
Projections onto Spectral Matrix Cones
Semidefinite programming is a fundamental problem class in convex optimization, but despite recent advances in solvers, solving large-scale semidefinite programs remains challenging. Generally the matrix functions involved are spectral or unitarily invariant, i.e., they depend only on the eigenvalues or singular values of the matrix. This paper investigates how spectral matrix cones -- cones defined from epigraphs and perspectives of spectral or unitarily invariant functions -- can be used to enhance first-order conic solvers for semidefinite programs. Our main result shows that projecting a matrix can be reduced to projecting its eigenvalues or singular values, which we demonstrate can be done at a negligible cost compared to the eigenvalue or singular value decomposition itself. We have integrated support for spectral matrix cone projections into the Splitting Conic Solver (SCS). Numerical experiments show that SCS with this enhancement can achieve speedups of up to an order of magnitude for solving semidefinite programs arising in experimental design, robust principal component analysis, and graph partitioning.
Fast, Stable and Efficient Approximation of Multi-parameter Persistence Modules with MMA
In this article, we introduce a new parameterized family of topological invariants, taking the form of candidate decompositions, for multi-parameter persistence modules. We prove that our candidate decompositions are controllable approximations: when restricting to modules that can be decomposed into interval summands, we establish theoretical results about the approximation error between our candidate decompositions and the true underlying module in terms of the standard interleaving and bottleneck distances. Moreover, even when the underlying module does not admit such a decomposition, our candidate decompositions are nonetheless stable invariants; small perturbations in the underlying module lead to small perturbations in the candidate decomposition. Then, we introduce MMA (Multipersistence Module Approximation): an algorithm for computing stable instances of such invariants, which is based on fibered barcodes and exact matchings, two constructions that stem from the theory of single-parameter persistence. By design, MMA can handle an arbitrary number of filtrations, and has bounded complexity and running time. Finally, we present empirical evidence validating the generalization capabilities and running time speed-ups of MMA on several data sets.
A theory of meta-factorization
We introduce meta-factorization, a theory that describes matrix decompositions as solutions of linear matrix equations: the projector and the reconstruction equation. Meta-factorization reconstructs known factorizations, reveals their internal structures, and allows for introducing modifications, as illustrated with SVD, QR, and UTV factorizations. The prospect of meta-factorization also provides insights into computational aspects of generalized matrix inverses and randomized linear algebra algorithms. The relations between the Moore-Penrose pseudoinverse, generalized Nystr\"{o}m method, and the CUR decomposition are revealed here as an illustration. Finally, meta-factorization offers hints on the structure of new factorizations and provides the potential of creating them.
Optimal piecewise linear data compression for solutions of parametrized partial differential equations
Model order reduction has been extensively studied over the last two decades. Projection-based methods such as the Proper Orthogonal Decomposition and the Reduced Basis Method enjoy the important advantages of Galerkin methods in the derivation of the reduced problem, but are limited to linear data compression for which the reduced solution is sought as a linear combination of spatial modes. Nonlinear data compression must be used when the solution manifold is not embedded in a low-dimensional subspace. Early methods involve piecewise linear data compression, by constructing a dictionary of reduced-order models tailored to a partition of the solution manifold. In this work, we introduce the concept of optimal partition of the solution manifold in terms of normalized Kolmogorov widths, and prove that the optimal partitions can be found by means of a representative-based clustering algorithm using the sine dissimilarity measure on the solution manifold.
Approximately Optimal Core Shapes for Tensor Decompositions
This work studies the combinatorial optimization problem of finding an optimal core tensor shape, also called multilinear rank, for a size-constrained Tucker decomposition. We give an algorithm with provable approximation guarantees for its reconstruction error via connections to higher-order singular values. Specifically, we introduce a novel Tucker packing problem, which we prove is NP-hard, and give a polynomial-time approximation scheme based on a reduction to the 2-dimensional knapsack problem with a matroid constraint. We also generalize our techniques to tree tensor network decompositions. We implement our algorithm using an integer programming solver, and show that its solution quality is competitive with (and sometimes better than) the greedy algorithm that uses the true Tucker decomposition loss at each step, while also running up to 1000x faster.
Generalized Convolution and Efficient Language Recognition
Convolution is a broadly useful operation with applications including signal processing, machine learning, probability, optics, polynomial multiplication, and efficient parsing. Usually, however, this operation is understood and implemented in more specialized forms, hiding commonalities and limiting usefulness. This paper formulates convolution in the common algebraic framework of semirings and semimodules and populates that framework with various representation types. One of those types is the grand abstract template and itself generalizes to the free semimodule monad. Other representations serve varied uses and performance trade-offs, with implementations calculated from simple and regular specifications. Of particular interest is Brzozowski's method for regular expression matching. Uncovering the method's essence frees it from syntactic manipulations, while generalizing from boolean to weighted membership (such as multisets and probability distributions) and from sets to n-ary relations. The classic trie data structure then provides an elegant and efficient alternative to syntax. Pleasantly, polynomial arithmetic requires no additional implementation effort, works correctly with a variety of representations, and handles multivariate polynomials and power series with ease. Image convolution also falls out as a special case.
Bimonoidal Structure of Probability Monads
We give a conceptual treatment of the notion of joints, marginals, and independence in the setting of categorical probability. This is achieved by endowing the usual probability monads (like the Giry monad) with a monoidal and an opmonoidal structure, mutually compatible (i.e. a bimonoidal structure). If the underlying monoidal category is cartesian monoidal, a bimonoidal structure is given uniquely by a commutative strength. However, if the underlying monoidal category is not cartesian monoidal, a strength is not enough to guarantee all the desired properties of joints and marginals. A bimonoidal structure is then the correct requirement for the more general case. We explain the theory and the operational interpretation, with the help of the graphical calculus for monoidal categories. We give a definition of stochastic independence based on the bimonoidal structure, compatible with the intuition and with other approaches in the literature for cartesian monoidal categories. We then show as an example that the Kantorovich monad on the category of complete metric spaces is a bimonoidal monad for a non-cartesian monoidal structure.
Implicit Multiple Tensor Decomposition
Recently, triple decomposition has attracted increasing attention for decomposing third-order tensors into three factor tensors. However, this approach is limited to third-order tensors and enforces uniformity in the lower dimensions across all factor tensors, which restricts its flexibility and applicability. To address these issues, we propose the Multiple decomposition, a novel framework that generalizes triple decomposition to arbitrary order tensors and allows the short dimensions of the factor tensors to differ. We establish its connections with other classical tensor decompositions. Furthermore, implicit neural representation (INR) is employed to continuously represent the factor tensors in Multiple decomposition, enabling the method to generalize to non-grid data. We refer to this INR-based Multiple decomposition as Implicit Multiple Tensor Decomposition (IMTD). Then, the Proximal Alternating Least Squares (PALS) algorithm is utilized to solve the IMTD-based tensor reconstruction models. Since the objective function in IMTD-based models often lacks the Kurdyka-Lojasiewicz (KL) property, we establish a KL-free convergence analysis for the algorithm. Finally, extensive numerical experiments further validate the effectiveness of the proposed method.
Functional Bayesian Tucker Decomposition for Continuous-indexed Tensor Data
Tucker decomposition is a powerful tensor model to handle multi-aspect data. It demonstrates the low-rank property by decomposing the grid-structured data as interactions between a core tensor and a set of object representations (factors). A fundamental assumption of such decomposition is that there are finite objects in each aspect or mode, corresponding to discrete indexes of data entries. However, real-world data is often not naturally posed in this setting. For example, geographic data is represented as continuous indexes of latitude and longitude coordinates, and cannot fit tensor models directly. To generalize Tucker decomposition to such scenarios, we propose Functional Bayesian Tucker Decomposition (FunBaT). We treat the continuous-indexed data as the interaction between the Tucker core and a group of latent functions. We use Gaussian processes (GP) as functional priors to model the latent functions. Then, we convert each GP into a state-space prior by constructing an equivalent stochastic differential equation (SDE) to reduce computational cost. An efficient inference algorithm is developed for scalable posterior approximation based on advanced message-passing techniques. The advantage of our method is shown in both synthetic data and several real-world applications. We release the code of FunBaT at https://github.com/xuangu-fang/Functional-Bayesian-Tucker-Decomposition.
Parameterized covering in semi-ladder-free hypergraphs
In this article, we study the parameterized complexity of the Set Cover problem restricted to semi-ladder-free hypergraphs, a class defined by Fabianski et al. [Proceedings of STACS 2019]. We observe that two algorithms introduced by Langerman and Morin [Discrete & Computational Geometry 2005] in the context of geometric covering problems can be adapted to this setting, yielding simple FPT and kernelization algorithms for Set Cover in semi-ladder-free hypergraphs. We complement our algorithmic results with a compression lower bound for the problem, which proves the tightness of our kernelization under standard complexity-theoretic assumptions.
Discrete Total Variation with Finite Elements and Applications to Imaging
The total variation (TV)-seminorm is considered for piecewise polynomial, globally discontinuous (DG) and continuous (CG) finite element functions on simplicial meshes. A novel, discrete variant (DTV) based on a nodal quadrature formula is defined. DTV has favorable properties, compared to the original TV-seminorm for finite element functions. These include a convenient dual representation in terms of the supremum over the space of Raviart--Thomas finite element functions, subject to a set of simple constraints. It can therefore be shown that a variety of algorithms for classical image reconstruction problems, including TV-L^2 and TV-L^1, can be implemented in low and higher-order finite element spaces with the same efficiency as their counterparts originally developed for images on Cartesian grids.
Subspace power method for symmetric tensor decomposition
We introduce the Subspace Power Method (SPM) for calculating the CP decomposition of low-rank real symmetric tensors. This algorithm calculates one new CP component at a time, alternating between applying the shifted symmetric higher-order power method (SS-HOPM) to a certain modified tensor, constructed from a matrix flattening of the original tensor; and using appropriate deflation steps. We obtain rigorous guarantees for SPM regarding convergence and global optima for input tensors of dimension d and order m of CP rank up to O(d^{lfloor m/2rfloor}), via results in classical algebraic geometry and optimization theory. As a by-product of our analysis we prove that SS-HOPM converges unconditionally, settling a conjecture in [Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM Journal on Matrix Analysis and Applications 32(4), 1095-1124 (2011)]. We present numerical experiments which demonstrate that SPM is efficient and robust to noise, being up to one order of magnitude faster than state-of-the-art CP decomposition algorithms in certain experiments. Furthermore, prior knowledge of the CP rank is not required by SPM.
Faces of highest weight modules and the universal Weyl polyhedron
Let V be a highest weight module over a Kac-Moody algebra g, and let conv V denote the convex hull of its weights. We determine the combinatorial isomorphism type of conv V, i.e. we completely classify the faces and their inclusions. In the special case where g is semisimple, this brings closure to a question studied by Cellini-Marietti [IMRN 2015] for the adjoint representation, and by Khare [J. Algebra 2016; Trans. Amer. Math. Soc. 2017] for most modules. The determination of faces of finite-dimensional modules up to the Weyl group action and some of their inclusions also appears in previous work of Satake [Ann. of Math. 1960], Borel-Tits [IHES Publ. Math. 1965], Vinberg [Izv. Akad. Nauk 1990], and Casselman [Austral. Math. Soc. 1997]. For any subset of the simple roots, we introduce a remarkable convex cone which we call the universal Weyl polyhedron, which controls the convex hulls of all modules parabolically induced from the corresponding Levi factor. Namely, the combinatorial isomorphism type of the cone stores the classification of faces for all such highest weight modules, as well as how faces degenerate as the highest weight gets increasingly singular. To our knowledge, this cone is new in finite and infinite type. We further answer a question of Michel Brion, by showing that the localization of conv V along a face is always the convex hull of the weights of a parabolically induced module. Finally, as we determine the inclusion relations between faces representation-theoretically from the set of weights, without recourse to convexity, we answer a similar question for highest weight modules over symmetrizable quantum groups.
Inversion of adjunction for quotient singularities III: semi-invariant case
We prove the precise inversion of adjunction formula for finite linear group quotients of complete intersection varieties defined by semi-invariant equations. As an application, we prove the semi-continuity of minimal log discrepancies for them. These results extend the results in our first paper, where we prove the same results for complete intersection varieties defined by ``invariant equations".
AuON: A Linear-time Alternative to Semi-Orthogonal Momentum Updates
Orthogonal gradient updates have emerged as a promising direction in optimization for machine learning. However, traditional approaches such as SVD/QR decomposition incur prohibitive computational costs of O(n^3) and underperform compared to well-tuned SGD with momentum, since momentum is applied only after strict orthogonalization. Recent advances, such as Muon, improve efficiency by applying momentum before orthogonalization and producing semi-orthogonal matrices via Newton-Schulz iterations, reducing complexity to O(n^2). Nevertheless, quadratic costs remain a bottleneck. In this work, we study the semi-orthogonal properties of momentum-based updates and develop a method to bound momentum updates under a spectral-norm trust region, preserving directional information without requiring explicit semi-orthogonalization. We propose AuON (Alternative Unit-norm momentum updates by Normalized nonlinear scaling), a linear-time optimizer that achieves strong performance without constructing semi-orthogonal matrices, while preserving structural alignment and reconditioning ill-posed updates. Our approach combines hyperbolic-cosine RMS scaling transformations with normalization, demonstrating both effectiveness and computational efficiency compared to Newton-Schulz methods. We further introduce a hybrid variant (Hybrid-AuON) that applies a single Newton-Schulz iteration. Experiments across vision and language benchmarks show that AuON and its hybrid variant achieve performance comparable to strong baselines such as AdamW and Muon. Code is available at: https://github.com/ryyzn9/AuON
Asymptotic Analysis of Stochastic Splitting Methods for Multivariate Monotone Inclusions
We propose an abstract framework to establish the convergence of the iterates of stochastic versions of a broad range of monotone operator splitting methods in Hilbert spaces. This framework allows for the introduction of stochasticity at several levels: approximation of operators, selection of coordinates and operators in block-iterative implementations, and relaxation parameters. The proposed analysis involves a reduced inclusion model with two operators. At each iteration, stochastic approximations to points in the graphs of these two operators are used to form the update. The results are applied to derive the almost sure and L^2 convergence of stochastic versions of the proximal point algorithm, as well as of randomized block-iterative projective splitting methods for solving systems of coupled inclusions involving a mix of set-valued, cocoercive, and Lipschitzian monotone operators combined via various monotonicity-preserving operations.
Planar site percolation on semi-transitive graphs
Semi-transitive graphs, defined in hps98 as examples where ``uniform percolation" holds whenever p>p_c, are a large class of graphs more general than quasi-transitive graphs. Let G be a semi-transitive graph with one end which can be properly embedded into the plane with uniformly bounded face degree for finite faces and minimal vertex degree at least 7. We show that p_u^{site}(G) +p_c^{site}(G_*)=1, where G_* denotes the matching graph of G. This fulfils and extends an observation of Sykes and Essam in 1964 (SE64) to semi-transitive graphs.
Group Representational Position Encoding
We present GRAPE (Group RepresentAtional Position Encoding), a unified framework for positional encoding based on group actions. GRAPE brings together two families of mechanisms: (i) multiplicative rotations (Multiplicative GRAPE) in SO(d) and (ii) additive logit biases (Additive GRAPE) arising from unipotent actions in the general linear group GL. In Multiplicative GRAPE, a position n in Z (or t in R) acts as G(n)=exp(n,ω,L) with a rank-2 skew generator L in R^{d times d}, yielding a relative, compositional, norm-preserving map with a closed-form matrix exponential. RoPE is recovered exactly when the d/2 planes are the canonical coordinate pairs with log-uniform spectrum. Learned commuting subspaces and compact non-commuting mixtures strictly extend this geometry to capture cross-subspace feature coupling at O(d) and O(r d) cost per head, respectively. In Additive GRAPE, additive logits arise as rank-1 (or low-rank) unipotent actions, recovering ALiBi and the Forgetting Transformer (FoX) as exact special cases while preserving an exact relative law and streaming cacheability. Altogether, GRAPE supplies a principled design space for positional geometry in long-context models, subsuming RoPE and ALiBi as special cases. Project Page: https://github.com/model-architectures/GRAPE.
Compatibility of Fundamental Matrices for Complete Viewing Graphs
This paper studies the problem of recovering cameras from a set of fundamental matrices. A set of fundamental matrices is said to be compatible if a set of cameras exists for which they are the fundamental matrices. We focus on the complete graph, where fundamental matrices for each pair of cameras are given. Previous work has established necessary and sufficient conditions for compatibility as rank and eigenvalue conditions on the n-view fundamental matrix obtained by concatenating the individual fundamental matrices. In this work, we show that the eigenvalue condition is redundant. We provide explicit homogeneous polynomials that describe necessary and sufficient conditions for compatibility in terms of the fundamental matrices and their epipoles. In this direction, we find that quadruple-wise compatibility is enough to ensure global compatibility for any number of cameras. We demonstrate that for four cameras, compatibility is generically described by triple-wise conditions and one additional equation involving all fundamental matrices.
Near-Optimal Cryptographic Hardness of Agnostically Learning Halfspaces and ReLU Regression under Gaussian Marginals
We study the task of agnostically learning halfspaces under the Gaussian distribution. Specifically, given labeled examples (x,y) from an unknown distribution on R^n times { pm 1}, whose marginal distribution on x is the standard Gaussian and the labels y can be arbitrary, the goal is to output a hypothesis with 0-1 loss OPT+epsilon, where OPT is the 0-1 loss of the best-fitting halfspace. We prove a near-optimal computational hardness result for this task, under the widely believed sub-exponential time hardness of the Learning with Errors (LWE) problem. Prior hardness results are either qualitatively suboptimal or apply to restricted families of algorithms. Our techniques extend to yield near-optimal lower bounds for related problems, including ReLU regression.
On a conjecture of Gross, Mansour and Tucker for Δ-matroids
Gross, Mansour, and Tucker introduced the partial-duality polynomial of a ribbon graph [Distributions, European J. Combin. 86, 1--20, 2020], the generating function enumerating partial duals by the Euler genus. Chmutov and Vignes-Tourneret wondered if this polynomial and its conjectured properties would hold for general delta-matroids, which are combinatorial abstractions of ribbon graphs. Yan and Jin contributed to this inquiry by identifying a subset of delta-matroids-specifically, even normal binary ones-whose twist polynomials are characterized by a singular term. Building upon this foundation, the current paper expands the scope of the investigation to encompass even non-binary delta-matroids, revealing that none of them have width-changing twists.
Improving Robustness for Joint Optimization of Camera Poses and Decomposed Low-Rank Tensorial Radiance Fields
In this paper, we propose an algorithm that allows joint refinement of camera pose and scene geometry represented by decomposed low-rank tensor, using only 2D images as supervision. First, we conduct a pilot study based on a 1D signal and relate our findings to 3D scenarios, where the naive joint pose optimization on voxel-based NeRFs can easily lead to sub-optimal solutions. Moreover, based on the analysis of the frequency spectrum, we propose to apply convolutional Gaussian filters on 2D and 3D radiance fields for a coarse-to-fine training schedule that enables joint camera pose optimization. Leveraging the decomposition property in decomposed low-rank tensor, our method achieves an equivalent effect to brute-force 3D convolution with only incurring little computational overhead. To further improve the robustness and stability of joint optimization, we also propose techniques of smoothed 2D supervision, randomly scaled kernel parameters, and edge-guided loss mask. Extensive quantitative and qualitative evaluations demonstrate that our proposed framework achieves superior performance in novel view synthesis as well as rapid convergence for optimization.
A New PHO-rmula for Improved Performance of Semi-Structured Networks
Recent advances to combine structured regression models and deep neural networks for better interpretability, more expressiveness, and statistically valid uncertainty quantification demonstrate the versatility of semi-structured neural networks (SSNs). We show that techniques to properly identify the contributions of the different model components in SSNs, however, lead to suboptimal network estimation, slower convergence, and degenerated or erroneous predictions. In order to solve these problems while preserving favorable model properties, we propose a non-invasive post-hoc orthogonalization (PHO) that guarantees identifiability of model components and provides better estimation and prediction quality. Our theoretical findings are supported by numerical experiments, a benchmark comparison as well as a real-world application to COVID-19 infections.
Locally resolvable BIBDs and generalized quadrangles with ovoids
In this note we establish a 1-to-1 correspondence between the class of generalized quadrangles with ovoids and the class of balanced incomplete block designs that posses a non-triangular local resolution system and have the appropriate parameters. We present a non-triangular local resolution system for a difference family BIBD construction of Sprott.
Polynomial, trigonometric, and tropical activations
Which functions can be used as activations in deep neural networks? This article explores families of functions based on orthonormal bases, including the Hermite polynomial basis and the Fourier trigonometric basis, as well as a basis resulting from the tropicalization of a polynomial basis. Our study shows that, through simple variance-preserving initialization and without additional clamping mechanisms, these activations can successfully be used to train deep models, such as GPT-2 for next-token prediction on OpenWebText and ConvNeXt for image classification on ImageNet. Our work addresses the issue of exploding and vanishing activations and gradients, particularly prevalent with polynomial activations, and opens the door for improving the efficiency of large-scale learning tasks. Furthermore, our approach provides insight into the structure of neural networks, revealing that networks with polynomial activations can be interpreted as multivariate polynomial mappings. Finally, using Hermite interpolation, we show that our activations can closely approximate classical ones in pre-trained models by matching both the function and its derivative, making them especially useful for fine-tuning tasks. These activations are available in the torchortho library, which can be accessed via: https://github.com/K-H-Ismail/torchortho.
Sketching Meets Differential Privacy: Fast Algorithm for Dynamic Kronecker Projection Maintenance
Projection maintenance is one of the core data structure tasks. Efficient data structures for projection maintenance have led to recent breakthroughs in many convex programming algorithms. In this work, we further extend this framework to the Kronecker product structure. Given a constraint matrix {sf A} and a positive semi-definite matrix Win R^{ntimes n} with a sparse eigenbasis, we consider the task of maintaining the projection in the form of {sf B}^top({sf B}{sf B}^top)^{-1}{sf B}, where {sf B}={sf A}(Wotimes I) or {sf B}={sf A}(W^{1/2}otimes W^{1/2}). At each iteration, the weight matrix W receives a low rank change and we receive a new vector h. The goal is to maintain the projection matrix and answer the query {sf B}^top({sf B}{sf B}^top)^{-1}{sf B}h with good approximation guarantees. We design a fast dynamic data structure for this task and it is robust against an adaptive adversary. Following the beautiful and pioneering work of [Beimel, Kaplan, Mansour, Nissim, Saranurak and Stemmer, STOC'22], we use tools from differential privacy to reduce the randomness required by the data structure and further improve the running time.
Model-Based and Sample-Efficient AI-Assisted Math Discovery in Sphere Packing
Sphere packing, Hilbert's eighteenth problem, asks for the densest arrangement of congruent spheres in n-dimensional Euclidean space. Although relevant to areas such as cryptography, crystallography, and medical imaging, the problem remains unresolved: beyond a few special dimensions, neither optimal packings nor tight upper bounds are known. Even a major breakthrough in dimension n=8, later recognised with a Fields Medal, underscores its difficulty. A leading technique for upper bounds, the three-point method, reduces the problem to solving large, high-precision semidefinite programs (SDPs). Because each candidate SDP may take days to evaluate, standard data-intensive AI approaches are infeasible. We address this challenge by formulating SDP construction as a sequential decision process, the SDP game, in which a policy assembles SDP formulations from a set of admissible components. Using a sample-efficient model-based framework that combines Bayesian optimisation with Monte Carlo Tree Search, we obtain new state-of-the-art upper bounds in dimensions 4-16, showing that model-based search can advance computational progress in longstanding geometric problems. Together, these results demonstrate that sample-efficient, model-based search can make tangible progress on mathematically rigid, evaluation limited problems, pointing towards a complementary direction for AI-assisted discovery beyond large-scale LLM-driven exploration.
Are Random Decompositions all we need in High Dimensional Bayesian Optimisation?
Learning decompositions of expensive-to-evaluate black-box functions promises to scale Bayesian optimisation (BO) to high-dimensional problems. However, the success of these techniques depends on finding proper decompositions that accurately represent the black-box. While previous works learn those decompositions based on data, we investigate data-independent decomposition sampling rules in this paper. We find that data-driven learners of decompositions can be easily misled towards local decompositions that do not hold globally across the search space. Then, we formally show that a random tree-based decomposition sampler exhibits favourable theoretical guarantees that effectively trade off maximal information gain and functional mismatch between the actual black-box and its surrogate as provided by the decomposition. Those results motivate the development of the random decomposition upper-confidence bound algorithm (RDUCB) that is straightforward to implement - (almost) plug-and-play - and, surprisingly, yields significant empirical gains compared to the previous state-of-the-art on a comprehensive set of benchmarks. We also confirm the plug-and-play nature of our modelling component by integrating our method with HEBO, showing improved practical gains in the highest dimensional tasks from Bayesmark.
Tensor Decomposition Networks for Fast Machine Learning Interatomic Potential Computations
SO(3)-equivariant networks are the dominant models for machine learning interatomic potentials (MLIPs). The key operation of such networks is the Clebsch-Gordan (CG) tensor product, which is computationally expensive. To accelerate the computation, we develop tensor decomposition networks (TDNs) as a class of approximately equivariant networks in which CG tensor products are replaced by low-rank tensor decompositions, such as the CANDECOMP/PARAFAC (CP) decomposition. With the CP decomposition, we prove (i) a uniform bound on the induced error of SO(3)-equivariance, and (ii) the universality of approximating any equivariant bilinear map. To further reduce the number of parameters, we propose path-weight sharing that ties all multiplicity-space weights across the O(L^3) CG paths into a single shared parameter set without compromising equivariance, where L is the maximum angular degree. The resulting layer acts as a plug-and-play replacement for tensor products in existing networks, and the computational complexity of tensor products is reduced from O(L^6) to O(L^4). We evaluate TDNs on PubChemQCR, a newly curated molecular relaxation dataset containing 105 million DFT-calculated snapshots. We also use existing datasets, including OC20, and OC22. Results show that TDNs achieve competitive performance with dramatic speedup in computations. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS/tree/main/OpenMol/TDN{https://github.com/divelab/AIRS/}).
Visual Anagrams: Generating Multi-View Optical Illusions with Diffusion Models
We address the problem of synthesizing multi-view optical illusions: images that change appearance upon a transformation, such as a flip or rotation. We propose a simple, zero-shot method for obtaining these illusions from off-the-shelf text-to-image diffusion models. During the reverse diffusion process, we estimate the noise from different views of a noisy image, and then combine these noise estimates together and denoise the image. A theoretical analysis suggests that this method works precisely for views that can be written as orthogonal transformations, of which permutations are a subset. This leads to the idea of a visual anagram--an image that changes appearance under some rearrangement of pixels. This includes rotations and flips, but also more exotic pixel permutations such as a jigsaw rearrangement. Our approach also naturally extends to illusions with more than two views. We provide both qualitative and quantitative results demonstrating the effectiveness and flexibility of our method. Please see our project webpage for additional visualizations and results: https://dangeng.github.io/visual_anagrams/
Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise
The concept class of low-degree polynomial threshold functions (PTFs) plays a fundamental role in machine learning. In this paper, we study PAC learning of K-sparse degree-d PTFs on R^n, where any such concept depends only on K out of n attributes of the input. Our main contribution is a new algorithm that runs in time ({nd}/{epsilon})^{O(d)} and under the Gaussian marginal distribution, PAC learns the class up to error rate epsilon with O(K^{4d}{epsilon^{2d}} cdot log^{5d} n) samples even when an eta leq O(epsilon^d) fraction of them are corrupted by the nasty noise of Bshouty et al. (2002), possibly the strongest corruption model. Prior to this work, attribute-efficient robust algorithms are established only for the special case of sparse homogeneous halfspaces. Our key ingredients are: 1) a structural result that translates the attribute sparsity to a sparsity pattern of the Chow vector under the basis of Hermite polynomials, and 2) a novel attribute-efficient robust Chow vector estimation algorithm which uses exclusively a restricted Frobenius norm to either certify a good approximation or to validate a sparsity-induced degree-2d polynomial as a filter to detect corrupted samples.
Fast Matrix Multiplication via Ternary Meta Flip Graphs
Matrix multiplication optimization remains a fundamental challenge in computational mathematics. This work introduces a novel approach that discovers matrix multiplication schemes in the ternary field (Z_T), where coefficients are restricted to {-1, 0, 1} to minimize naive additive complexity. The core of the method is a GPU-accelerated meta flip graph algorithm that maintains ternary safety through specialized arithmetic operations and sign symmetry breaking. Key results include new best ranks for the formats 4 times 5 times 12, 5 times 6 times 10, and 6 times 7 times 9, the independent discovery of 32 schemes in Z_T that match known optimal ranks (including 8 previously known only with rational coefficients), and 30 rank improvements in the binary field. The analysis of 164 known schemes shows that 92 can be implemented in Z_T, while 72 could not be found in the ternary field with current methods, defining the current boundaries of this approach. All software, results, and discovered schemes are provided as open-source.
Disintegration and Bayesian Inversion via String Diagrams
The notions of disintegration and Bayesian inversion are fundamental in conditional probability theory. They produce channels, as conditional probabilities, from a joint state, or from an already given channel (in opposite direction). These notions exist in the literature, in concrete situations, but are presented here in abstract graphical formulations. The resulting abstract descriptions are used for proving basic results in conditional probability theory. The existence of disintegration and Bayesian inversion is discussed for discrete probability, and also for measure-theoretic probability --- via standard Borel spaces and via likelihoods. Finally, the usefulness of disintegration and Bayesian inversion is illustrated in several examples.
Infinite products and zero-one laws in categorical probability
Markov categories are a recent category-theoretic approach to the foundations of probability and statistics. Here we develop this approach further by treating infinite products and the Kolmogorov extension theorem. This is relevant for all aspects of probability theory in which infinitely many random variables appear at a time. These infinite tensor products bigotimes_{i in J} X_i come in two versions: a weaker but more general one for families of objects (X_i)_{i in J} in semicartesian symmetric monoidal categories, and a stronger but more specific one for families of objects in Markov categories. As a first application, we state and prove versions of the zero-one laws of Kolmogorov and Hewitt-Savage for Markov categories. This gives general versions of these results which can be instantiated not only in measure-theoretic probability, where they specialize to the standard ones in the setting of standard Borel spaces, but also in other contexts.
A 58-Addition, Rank-23 Scheme for General 3x3 Matrix Multiplication
This paper presents a new state-of-the-art algorithm for exact 3times3 matrix multiplication over general non-commutative rings, achieving a rank-23 scheme with only 58 scalar additions. This improves the previous best additive complexity of 60 additions without a change of basis. The result was discovered through an automated search combining ternary-restricted flip-graph exploration with greedy intersection reduction for common subexpression elimination. The resulting scheme uses only coefficients from {-1, 0, 1}, ensuring both efficiency and portability across arbitrary fields. The total scalar operation count is reduced from 83 to 81.
An Efficient Tester-Learner for Halfspaces
We give the first efficient algorithm for learning halfspaces in the testable learning model recently defined by Rubinfeld and Vasilyan (2023). In this model, a learner certifies that the accuracy of its output hypothesis is near optimal whenever the training set passes an associated test, and training sets drawn from some target distribution -- e.g., the Gaussian -- must pass the test. This model is more challenging than distribution-specific agnostic or Massart noise models where the learner is allowed to fail arbitrarily if the distributional assumption does not hold. We consider the setting where the target distribution is Gaussian (or more generally any strongly log-concave distribution) in d dimensions and the noise model is either Massart or adversarial (agnostic). For Massart noise, our tester-learner runs in polynomial time and outputs a hypothesis with (information-theoretically optimal) error opt + epsilon for any strongly log-concave target distribution. For adversarial noise, our tester-learner obtains error O(opt) + epsilon in polynomial time when the target distribution is Gaussian; for strongly log-concave distributions, we obtain O(opt) + epsilon in quasipolynomial time. Prior work on testable learning ignores the labels in the training set and checks that the empirical moments of the covariates are close to the moments of the base distribution. Here we develop new tests of independent interest that make critical use of the labels and combine them with the moment-matching approach of Gollakota et al. (2023). This enables us to simulate a variant of the algorithm of Diakonikolas et al. (2020) for learning noisy halfspaces using nonconvex SGD but in the testable learning setting.
On the Orthogonal Projections
For any {rm E}-rigid presentation e, we construct an orthogonal projection functor to {rm rep}(e^perp) left adjoint to the natural embedding. We establish a bijection between presentations in {rm rep}(e^perp) and presentations compatible with e. For quivers with potentials, we show that {rm rep}(e^perp) forms a module category of another quiver with potential. We derive mutation formulas for the delta-vectors of positive and negative complements and the dimension vectors of simple modules in {rm rep}(e^perp), enabling an algorithm to find the projected quiver with potential. Additionally, we introduce a modified projection for quivers with potentials that preserves general presentations. For applications to cluster algebras, we establish a connection to the stabilization functors.
Semi-Parametric Neural Image Synthesis
Novel architectures have recently improved generative image synthesis leading to excellent visual quality in various tasks. Much of this success is due to the scalability of these architectures and hence caused by a dramatic increase in model complexity and in the computational resources invested in training these models. Our work questions the underlying paradigm of compressing large training data into ever growing parametric representations. We rather present an orthogonal, semi-parametric approach. We complement comparably small diffusion or autoregressive models with a separate image database and a retrieval strategy. During training we retrieve a set of nearest neighbors from this external database for each training instance and condition the generative model on these informative samples. While the retrieval approach is providing the (local) content, the model is focusing on learning the composition of scenes based on this content. As demonstrated by our experiments, simply swapping the database for one with different contents transfers a trained model post-hoc to a novel domain. The evaluation shows competitive performance on tasks which the generative model has not been trained on, such as class-conditional synthesis, zero-shot stylization or text-to-image synthesis without requiring paired text-image data. With negligible memory and computational overhead for the external database and retrieval we can significantly reduce the parameter count of the generative model and still outperform the state-of-the-art.
DeRF: Decomposed Radiance Fields
With the advent of Neural Radiance Fields (NeRF), neural networks can now render novel views of a 3D scene with quality that fools the human eye. Yet, generating these images is very computationally intensive, limiting their applicability in practical scenarios. In this paper, we propose a technique based on spatial decomposition capable of mitigating this issue. Our key observation is that there are diminishing returns in employing larger (deeper and/or wider) networks. Hence, we propose to spatially decompose a scene and dedicate smaller networks for each decomposed part. When working together, these networks can render the whole scene. This allows us near-constant inference time regardless of the number of decomposed parts. Moreover, we show that a Voronoi spatial decomposition is preferable for this purpose, as it is provably compatible with the Painter's Algorithm for efficient and GPU-friendly rendering. Our experiments show that for real-world scenes, our method provides up to 3x more efficient inference than NeRF (with the same rendering quality), or an improvement of up to 1.0~dB in PSNR (for the same inference cost).
Geometry of Sample Spaces
In statistics, independent, identically distributed random samples do not carry a natural ordering, and their statistics are typically invariant with respect to permutations of their order. Thus, an n-sample in a space M can be considered as an element of the quotient space of M^n modulo the permutation group. The present paper takes this definition of sample space and the related concept of orbit types as a starting point for developing a geometric perspective on statistics. We aim at deriving a general mathematical setting for studying the behavior of empirical and population means in spaces ranging from smooth Riemannian manifolds to general stratified spaces. We fully describe the orbifold and path-metric structure of the sample space when M is a manifold or path-metric space, respectively. These results are non-trivial even when M is Euclidean. We show that the infinite sample space exists in a Gromov-Hausdorff type sense and coincides with the Wasserstein space of probability distributions on M. We exhibit Fr\'echet means and k-means as metric projections onto 1-skeleta or k-skeleta in Wasserstein space, and we define a new and more general notion of polymeans. This geometric characterization via metric projections applies equally to sample and population means, and we use it to establish asymptotic properties of polymeans such as consistency and asymptotic normality.
An Approximation Algorithm for Monotone Submodular Cost Allocation
In this paper, we consider the minimum submodular cost allocation (MSCA) problem. The input of MSCA is k non-negative submodular functions f_1,ldots,f_k on the ground set N given by evaluation oracles, and the goal is to partition N into k (possibly empty) sets X_1,ldots,X_k so that sum_{i=1}^k f_i(X_i) is minimized. In this paper, we focus on the case when f_1,ldots,f_k are monotone (denoted by Mono-MSCA). We provide a natural LP-relaxation for Mono-MSCA, which is equivalent to the convex program relaxation introduced by Chekuri and Ene. We show that the integrality gap of the LP-relaxation is at most k/2, which yields a k/2-approximation algorithm for Mono-MSCA. We also show that the integrality gap of the LP-relaxation is at least k/2-epsilon for any constant epsilon>0 when k is fixed.
D-PAD: Deep-Shallow Multi-Frequency Patterns Disentangling for Time Series Forecasting
In time series forecasting, effectively disentangling intricate temporal patterns is crucial. While recent works endeavor to combine decomposition techniques with deep learning, multiple frequencies may still be mixed in the decomposed components, e.g., trend and seasonal. Furthermore, frequency domain analysis methods, e.g., Fourier and wavelet transforms, have limitations in resolution in the time domain and adaptability. In this paper, we propose D-PAD, a deep-shallow multi-frequency patterns disentangling neural network for time series forecasting. Specifically, a multi-component decomposing (MCD) block is introduced to decompose the series into components with different frequency ranges, corresponding to the "shallow" aspect. A decomposition-reconstruction-decomposition (D-R-D) module is proposed to progressively extract the information of frequencies mixed in the components, corresponding to the "deep" aspect. After that, an interaction and fusion (IF) module is used to further analyze the components. Extensive experiments on seven real-world datasets demonstrate that D-PAD achieves the state-of-the-art performance, outperforming the best baseline by an average of 9.48% and 7.15% in MSE and MAE, respectively.
Punctual Hilbert Schemes and Certified Approximate Singularities
In this paper we provide a new method to certify that a nearby polynomial system has a singular isolated root with a prescribed multiplicity structure. More precisely, given a polynomial system f =(f_1, ldots, f_N)in C[x_1, ldots, x_n]^N, we present a Newton iteration on an extended deflated system that locally converges, under regularity conditions, to a small deformation of f such that this deformed system has an exact singular root. The iteration simultaneously converges to the coordinates of the singular root and the coefficients of the so called inverse system that describes the multiplicity structure at the root. We use $alpha$-theory test to certify the quadratic convergence, and togive bounds on the size of the deformation and on the approximation error. The approach relies on an analysis of the punctual Hilbert scheme, for which we provide a new description. We show in particular that some of its strata can be rationally parametrized and exploit these parametrizations in the certification. We show in numerical experimentation how the approximate inverse system can be computed as a starting point of the Newton iterations and the fast numerical convergence to the singular root with its multiplicity structure, certified by our criteria.
FDGaussian: Fast Gaussian Splatting from Single Image via Geometric-aware Diffusion Model
Reconstructing detailed 3D objects from single-view images remains a challenging task due to the limited information available. In this paper, we introduce FDGaussian, a novel two-stage framework for single-image 3D reconstruction. Recent methods typically utilize pre-trained 2D diffusion models to generate plausible novel views from the input image, yet they encounter issues with either multi-view inconsistency or lack of geometric fidelity. To overcome these challenges, we propose an orthogonal plane decomposition mechanism to extract 3D geometric features from the 2D input, enabling the generation of consistent multi-view images. Moreover, we further accelerate the state-of-the-art Gaussian Splatting incorporating epipolar attention to fuse images from different viewpoints. We demonstrate that FDGaussian generates images with high consistency across different views and reconstructs high-quality 3D objects, both qualitatively and quantitatively. More examples can be found at our website https://qjfeng.net/FDGaussian/.
DAGs with No Fears: A Closer Look at Continuous Optimization for Learning Bayesian Networks
This paper re-examines a continuous optimization framework dubbed NOTEARS for learning Bayesian networks. We first generalize existing algebraic characterizations of acyclicity to a class of matrix polynomials. Next, focusing on a one-parameter-per-edge setting, it is shown that the Karush-Kuhn-Tucker (KKT) optimality conditions for the NOTEARS formulation cannot be satisfied except in a trivial case, which explains a behavior of the associated algorithm. We then derive the KKT conditions for an equivalent reformulation, show that they are indeed necessary, and relate them to explicit constraints that certain edges be absent from the graph. If the score function is convex, these KKT conditions are also sufficient for local minimality despite the non-convexity of the constraint. Informed by the KKT conditions, a local search post-processing algorithm is proposed and shown to substantially and universally improve the structural Hamming distance of all tested algorithms, typically by a factor of 2 or more. Some combinations with local search are both more accurate and more efficient than the original NOTEARS.
Intrinsic Image Decomposition via Ordinal Shading
Intrinsic decomposition is a fundamental mid-level vision problem that plays a crucial role in various inverse rendering and computational photography pipelines. Generating highly accurate intrinsic decompositions is an inherently under-constrained task that requires precisely estimating continuous-valued shading and albedo. In this work, we achieve high-resolution intrinsic decomposition by breaking the problem into two parts. First, we present a dense ordinal shading formulation using a shift- and scale-invariant loss in order to estimate ordinal shading cues without restricting the predictions to obey the intrinsic model. We then combine low- and high-resolution ordinal estimations using a second network to generate a shading estimate with both global coherency and local details. We encourage the model to learn an accurate decomposition by computing losses on the estimated shading as well as the albedo implied by the intrinsic model. We develop a straightforward method for generating dense pseudo ground truth using our model's predictions and multi-illumination data, enabling generalization to in-the-wild imagery. We present an exhaustive qualitative and quantitative analysis of our predicted intrinsic components against state-of-the-art methods. Finally, we demonstrate the real-world applicability of our estimations by performing otherwise difficult editing tasks such as recoloring and relighting.
Information-theoretic subset selection of multivariate Markov chains via submodular optimization
We study the problem of optimally projecting the transition matrix of a finite ergodic multivariate Markov chain onto a lower-dimensional state space. Specifically, we seek to construct a projected Markov chain that optimizes various information-theoretic criteria under cardinality constraints. These criteria include entropy rate, information-theoretic distance to factorizability, independence, and stationarity. We formulate these tasks as best subset selection problems over multivariate Markov chains and leverage the submodular (or supermodular) structure of the objective functions to develop efficient greedy-based algorithms with theoretical guarantees. We extend our analysis to k-submodular settings and introduce a generalized version of the distorted greedy algorithm, which may be of independent interest. Finally, we illustrate the theory and algorithms through extensive numerical experiments with publicly available code on multivariate Markov chains associated with the Bernoulli-Laplace and Curie-Weiss model.
Fast Updating Truncated SVD for Representation Learning with Sparse Matrices
Updating a truncated Singular Value Decomposition (SVD) is crucial in representation learning, especially when dealing with large-scale data matrices that continuously evolve in practical scenarios. Aligning SVD-based models with fast-paced updates becomes increasingly important. Existing methods for updating truncated SVDs employ Rayleigh-Ritz projection procedures, where projection matrices are augmented based on original singular vectors. However, these methods suffer from inefficiency due to the densification of the update matrix and the application of the projection to all singular vectors. To address these limitations, we introduce a novel method for dynamically approximating the truncated SVD of a sparse and temporally evolving matrix. Our approach leverages sparsity in the orthogonalization process of augmented matrices and utilizes an extended decomposition to independently store projections in the column space of singular vectors. Numerical experiments demonstrate a remarkable efficiency improvement of an order of magnitude compared to previous methods. Remarkably, this improvement is achieved while maintaining a comparable precision to existing approaches.
Stochastic Parameter Decomposition
A key step in reverse engineering neural networks is to decompose them into simpler parts that can be studied in relative isolation. Linear parameter decomposition -- a framework that has been proposed to resolve several issues with current decomposition methods -- decomposes neural network parameters into a sum of sparsely used vectors in parameter space. However, the current main method in this framework, Attribution-based Parameter Decomposition (APD), is impractical on account of its computational cost and sensitivity to hyperparameters. In this work, we introduce Stochastic Parameter Decomposition (SPD), a method that is more scalable and robust to hyperparameters than APD, which we demonstrate by decomposing models that are slightly larger and more complex than was possible to decompose with APD. We also show that SPD avoids other issues, such as shrinkage of the learned parameters, and better identifies ground truth mechanisms in toy models. By bridging causal mediation analysis and network decomposition methods, this demonstration opens up new research possibilities in mechanistic interpretability by removing barriers to scaling linear parameter decomposition methods to larger models. We release a library for running SPD and reproducing our experiments at https://github.com/goodfire-ai/spd.
On Enumerating Higher Bruhat Orders Through Deletion and Contraction
The higher Bruhat orders B(n,k) were introduced by Manin-Schechtman to study discriminantal hyperplane arrangements and subsequently studied by Ziegler, who connected B(n,k) to oriented matroids. In this paper, we consider the enumeration of B(n,k) and improve upon Balko's asymptotic lower and upper bounds on |B(n,k)| by a factor exponential in k. A proof of Ziegler's formula for |B(n,n-3)| is given and a bijection between a certain subset of B(n,n-4) and totally symmetric plane partitions is proved. Central to our proofs are deletion and contraction operations for the higher Bruhat orders, defined in analogy with matroids. Dual higher Bruhat orders are also introduced, and we construct isomorphisms relating the higher Bruhat orders and their duals. Additionally, weaving functions are introduced to generalize Felsner's encoding of elements in B(n,2) to all higher Bruhat orders B(n,k).
Dimensionality Reduction for General KDE Mode Finding
Finding the mode of a high dimensional probability distribution D is a fundamental algorithmic problem in statistics and data analysis. There has been particular interest in efficient methods for solving the problem when D is represented as a mixture model or kernel density estimate, although few algorithmic results with worst-case approximation and runtime guarantees are known. In this work, we significantly generalize a result of (LeeLiMusco:2021) on mode approximation for Gaussian mixture models. We develop randomized dimensionality reduction methods for mixtures involving a broader class of kernels, including the popular logistic, sigmoid, and generalized Gaussian kernels. As in Lee et al.'s work, our dimensionality reduction results yield quasi-polynomial algorithms for mode finding with multiplicative accuracy (1-epsilon) for any epsilon > 0. Moreover, when combined with gradient descent, they yield efficient practical heuristics for the problem. In addition to our positive results, we prove a hardness result for box kernels, showing that there is no polynomial time algorithm for finding the mode of a kernel density estimate, unless P = NP. Obtaining similar hardness results for kernels used in practice (like Gaussian or logistic kernels) is an interesting future direction.
Classifying Clustering Schemes
Many clustering schemes are defined by optimizing an objective function defined on the partitions of the underlying set of a finite metric space. In this paper, we construct a framework for studying what happens when we instead impose various structural conditions on the clustering schemes, under the general heading of functoriality. Functoriality refers to the idea that one should be able to compare the results of clustering algorithms as one varies the data set, for example by adding points or by applying functions to it. We show that within this framework, one can prove a theorems analogous to one of J. Kleinberg, in which for example one obtains an existence and uniqueness theorem instead of a non-existence result. We obtain a full classification of all clustering schemes satisfying a condition we refer to as excisiveness. The classification can be changed by varying the notion of maps of finite metric spaces. The conditions occur naturally when one considers clustering as the statistical version of the geometric notion of connected components. By varying the degree of functoriality that one requires from the schemes it is possible to construct richer families of clustering schemes that exhibit sensitivity to density.
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
Given a factorization of an image into a sum of linear components, we present a zero-shot method to control each individual component through diffusion model sampling. For example, we can decompose an image into low and high spatial frequencies and condition these components on different text prompts. This produces hybrid images, which change appearance depending on viewing distance. By decomposing an image into three frequency subbands, we can generate hybrid images with three prompts. We also use a decomposition into grayscale and color components to produce images whose appearance changes when they are viewed in grayscale, a phenomena that naturally occurs under dim lighting. And we explore a decomposition by a motion blur kernel, which produces images that change appearance under motion blurring. Our method works by denoising with a composite noise estimate, built from the components of noise estimates conditioned on different prompts. We also show that for certain decompositions, our method recovers prior approaches to compositional generation and spatial control. Finally, we show that we can extend our approach to generate hybrid images from real images. We do this by holding one component fixed and generating the remaining components, effectively solving an inverse problem.
Complements of finite unions of convex sets
Finite unions of convex sets are a central object of study in discrete and computational geometry. In this paper we initiate a systematic study of complements of such unions -- i.e., sets of the form S=R^d setminus (cup_{i=1}^n K_i), where K_i are convex sets. In the first part of the paper we study isolated points in S, whose number is related to the Betti numbers of cup_{i=1}^n K_i and to its non-convexity properties. We obtain upper bounds on the number of such points, which are sharp for n=3 and significantly improve previous bounds of Lawrence and Morris (2009) for all n ll 2^d{d}. In the second part of the paper we study coverings of S by well-behaved sets. We show that S can be covered by at most g(d,n) flats of different dimensions, in such a way that each x in S is covered by a flat whose dimension equals the `local dimension' of S in the neighborhood of x. Furthermore, we determine the structure of a minimum cover that satisfies this property. Then, we study quantitative aspects of this minimum cover and obtain sharp upper bounds on its size in various settings.
Positive Geometries and Canonical Forms
Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects--the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra--which have been loosely referred to as "positive geometries". The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. In this paper we initiate an exploration of "positive geometries" and "canonical forms" as objects of study in their own right in a more general mathematical setting. We give a precise definition of positive geometries and canonical forms, introduce general methods for finding forms for more complicated positive geometries from simpler ones, and present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties. We also illustrate a number of strategies for computing canonical forms which yield interesting representations for the forms associated with wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex polytopes.
Efficient Algorithms for Recognizing Weighted Tree-Adjoining Languages
The class of tree-adjoining languages can be characterized by various two-level formalisms, consisting of a context-free grammar (CFG) or pushdown automaton (PDA) controlling another CFG or PDA. These four formalisms are equivalent to tree-adjoining grammars (TAG), linear indexed grammars (LIG), pushdown-adjoining automata (PAA), and embedded pushdown automata (EPDA). We define semiring-weighted versions of the above two-level formalisms, and we design new algorithms for computing their stringsums (the weight of all derivations of a string) and allsums (the weight of all derivations). From these, we also immediately obtain stringsum and allsum algorithms for TAG, LIG, PAA, and EPDA. For LIG, our algorithm is more time-efficient by a factor of O(n|N|) (where n is the string length and |N| is the size of the nonterminal set) and more space-efficient by a factor of O(|Gamma|) (where |Gamma| is the size of the stack alphabet) than the algorithm of Vijay-Shanker and Weir (1989). For EPDA, our algorithm is both more space-efficient and time-efficient than the algorithm of Alonso et al. (2001) by factors of O(|Gamma|^2) and O(|Gamma|^3), respectively. Finally, we give the first PAA stringsum and allsum algorithms.
Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets
We prove rich algebraic structures of the solution space for 2-layer neural networks with quadratic activation and L_2 loss, trained on reasoning tasks in Abelian group (e.g., modular addition). Such a rich structure enables analytical construction of global optimal solutions from partial solutions that only satisfy part of the loss, despite its high nonlinearity. We coin the framework as CoGO (Composing Global Optimizers). Specifically, we show that the weight space over different numbers of hidden nodes of the 2-layer network is equipped with a semi-ring algebraic structure, and the loss function to be optimized consists of monomial potentials, which are ring homomorphism, allowing partial solutions to be composed into global ones by ring addition and multiplication. Our experiments show that around 95% of the solutions obtained by gradient descent match exactly our theoretical constructions. Although the global optimizers constructed only required a small number of hidden nodes, our analysis on gradient dynamics shows that over-parameterization asymptotically decouples training dynamics and is beneficial. We further show that training dynamics favors simpler solutions under weight decay, and thus high-order global optimizers such as perfect memorization are unfavorable.
Flat matrix models for quantum permutation groups
We study the matrix models pi:C(S_N^+)to M_N(C(X)) which are flat, in the sense that the standard generators of C(S_N^+) are mapped to rank 1 projections. Our first result is a generalization of the Pauli matrix construction at N=4, using finite groups and 2-cocycles. Our second result is the construction of a universal representation of C(S_N^+), inspired from the Sinkhorn algorithm, that we conjecture to be inner faithful.
On the generation of periodic discrete structures with identical two-point correlation
Strategies for the generation of periodic discrete structures with identical two-point correlation are developed. Starting from a pair of root structures, which are not related by translation, phase inversion or axis reflections, child structures of arbitrary resolution (i.e., pixel or voxel numbers) and number of phases (i.e., material phases/species) can be generated by means of trivial embedding based phase extension, application of kernels and/or phase coalescence, such that the generated structures inherit the two-point-correlation equivalence. Proofs of the inheritance property are provided by means of the Discrete Fourier Transform theory. A Python 3 implementation of the results is offered by the authors through the Github repository https://github.com/DataAnalyticsEngineering/EQ2PC in order to make the provided results reproducible and useful for all interested readers. Examples for the generation of structures are demonstrated, together with applications in the homogenization theory of periodic media.
Partial Optimality in Cubic Correlation Clustering
The higher-order correlation clustering problem is an expressive model, and recently, local search heuristics have been proposed for several applications. Certifying optimality, however, is NP-hard and practically hampered already by the complexity of the problem statement. Here, we focus on establishing partial optimality conditions for the special case of complete graphs and cubic objective functions. In addition, we define and implement algorithms for testing these conditions and examine their effect numerically, on two datasets.
Learners' Languages
In "Backprop as functor", the authors show that the fundamental elements of deep learning -- gradient descent and backpropagation -- can be conceptualized as a strong monoidal functor Para(Euc)toLearn from the category of parameterized Euclidean spaces to that of learners, a category developed explicitly to capture parameter update and backpropagation. It was soon realized that there is an isomorphism LearncongPara(Slens), where Slens is the symmetric monoidal category of simple lenses as used in functional programming. In this note, we observe that Slens is a full subcategory of Poly, the category of polynomial functors in one variable, via the functor Amapsto Ay^A. Using the fact that (Poly,otimes) is monoidal closed, we show that a map Ato B in Para(Slens) has a natural interpretation in terms of dynamical systems (more precisely, generalized Moore machines) whose interface is the internal-hom type [Ay^A,By^B]. Finally, we review the fact that the category p-Coalg of dynamical systems on any p in Poly forms a topos, and consider the logical propositions that can be stated in its internal language. We give gradient descent as an example, and we conclude by discussing some directions for future work.
An Algorithm for Computing with Brauer's Group Equivariant Neural Network Layers
The learnable, linear neural network layers between tensor power spaces of R^{n} that are equivariant to the orthogonal group, O(n), the special orthogonal group, SO(n), and the symplectic group, Sp(n), were characterised in arXiv:2212.08630. We present an algorithm for multiplying a vector by any weight matrix for each of these groups, using category theoretic constructions to implement the procedure. We achieve a significant reduction in computational cost compared with a naive implementation by making use of Kronecker product matrices to perform the multiplication. We show that our approach extends to the symmetric group, S_n, recovering the algorithm of arXiv:2303.06208 in the process.
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products
Developing equivariant neural networks for the E(3) group plays an important role in modeling 3D data across real-world applications. Enforcing this equivariance primarily involves the tensor products of irreducible representations (irreps). However, the computational complexity of such operations increases significantly as higher-order tensors are used. In this work, we propose a systematic approach to substantially accelerate the computation of the tensor products of irreps. We mathematically connect the commonly used Clebsch-Gordan coefficients to the Gaunt coefficients, which are integrals of products of three spherical harmonics. Through Gaunt coefficients, the tensor product of irreps becomes equivalent to the multiplication between spherical functions represented by spherical harmonics. This perspective further allows us to change the basis for the equivariant operations from spherical harmonics to a 2D Fourier basis. Consequently, the multiplication between spherical functions represented by a 2D Fourier basis can be efficiently computed via the convolution theorem and Fast Fourier Transforms. This transformation reduces the complexity of full tensor products of irreps from O(L^6) to O(L^3), where L is the max degree of irreps. Leveraging this approach, we introduce the Gaunt Tensor Product, which serves as a new method to construct efficient equivariant operations across different model architectures. Our experiments on the Open Catalyst Project and 3BPA datasets demonstrate both the increased efficiency and improved performance of our approach.
Benefits of depth in neural networks
For any positive integer k, there exist neural networks with Θ(k^3) layers, Θ(1) nodes per layer, and Θ(1) distinct parameters which can not be approximated by networks with O(k) layers unless they are exponentially large --- they must possess Ω(2^k) nodes. This result is proved here for a class of nodes termed "semi-algebraic gates" which includes the common choices of ReLU, maximum, indicator, and piecewise polynomial functions, therefore establishing benefits of depth against not just standard networks with ReLU gates, but also convolutional networks with ReLU and maximization gates, sum-product networks, and boosted decision trees (in this last case with a stronger separation: Ω(2^{k^3}) total tree nodes are required).
Simple steps are all you need: Frank-Wolfe and generalized self-concordant functions
Generalized self-concordance is a key property present in the objective function of many important learning problems. We establish the convergence rate of a simple Frank-Wolfe variant that uses the open-loop step size strategy gamma_t = 2/(t+2), obtaining a O(1/t) convergence rate for this class of functions in terms of primal gap and Frank-Wolfe gap, where t is the iteration count. This avoids the use of second-order information or the need to estimate local smoothness parameters of previous work. We also show improved convergence rates for various common cases, e.g., when the feasible region under consideration is uniformly convex or polyhedral.
PauliComposer: Compute Tensor Products of Pauli Matrices Efficiently
We introduce a simple algorithm that efficiently computes tensor products of Pauli matrices. This is done by tailoring the calculations to this specific case, which allows to avoid unnecessary calculations. The strength of this strategy is benchmarked against state-of-the-art techniques, showing a remarkable acceleration. As a side product, we provide an optimized method for one key calculus in quantum simulations: the Pauli basis decomposition of Hamiltonians.
Connecting Permutation Equivariant Neural Networks and Partition Diagrams
We show how the Schur-Weyl duality that exists between the partition algebra and the symmetric group results in a stronger theoretical foundation for characterising all of the possible permutation equivariant neural networks whose layers are some tensor power of the permutation representation M_n of the symmetric group S_n. In doing so, we unify two separate bodies of literature, and we correct some of the major results that are now widely quoted by the machine learning community. In particular, we find a basis of matrices for the learnable, linear, permutation equivariant layer functions between such tensor power spaces in the standard basis of M_n by using an elegant graphical representation of a basis of set partitions for the partition algebra and its related vector spaces. Also, we show how we can calculate the number of weights that must appear in these layer functions by looking at certain paths through the McKay quiver for M_n. Finally, we describe how our approach generalises to the construction of neural networks that are equivariant to local symmetries.
Shadow Cones: A Generalized Framework for Partial Order Embeddings
Hyperbolic space has proven to be well-suited for capturing hierarchical relations in data, such as trees and directed acyclic graphs. Prior work introduced the concept of entailment cones, which uses partial orders defined by nested cones in the Poincar\'e ball to model hierarchies. Here, we introduce the ``shadow cones" framework, a physics-inspired entailment cone construction. Specifically, we model partial orders as subset relations between shadows formed by a light source and opaque objects in hyperbolic space. The shadow cones framework generalizes entailment cones to a broad class of formulations and hyperbolic space models beyond the Poincar\'e ball. This results in clear advantages over existing constructions: for example, shadow cones possess better optimization properties over constructions limited to the Poincar\'e ball. Our experiments on datasets of various sizes and hierarchical structures show that shadow cones consistently and significantly outperform existing entailment cone constructions. These results indicate that shadow cones are an effective way to model partial orders in hyperbolic space, offering physically intuitive and novel insights about the nature of such structures.
Building Neural Networks on Matrix Manifolds: A Gyrovector Space Approach
Matrix manifolds, such as manifolds of Symmetric Positive Definite (SPD) matrices and Grassmann manifolds, appear in many applications. Recently, by applying the theory of gyrogroups and gyrovector spaces that is a powerful framework for studying hyperbolic geometry, some works have attempted to build principled generalizations of Euclidean neural networks on matrix manifolds. However, due to the lack of many concepts in gyrovector spaces for the considered manifolds, e.g., the inner product and gyroangles, techniques and mathematical tools provided by these works are still limited compared to those developed for studying hyperbolic geometry. In this paper, we generalize some notions in gyrovector spaces for SPD and Grassmann manifolds, and propose new models and layers for building neural networks on these manifolds. We show the effectiveness of our approach in two applications, i.e., human action recognition and knowledge graph completion.
L-Mosaics and Bounded Join-Semilattices in Isabelle/HOL
We present a complete formalization in Isabelle/HOL of the object part of an equivalence between L-mosaics and bounded join-semilattices, employing an AI-assisted methodology that integrates large language models as reasoning assistants throughout the proof development process. The equivalence was originally established by Cangiotti, Linzi, and Talotti in their study of hypercompositional structures related to orthomodular lattices and quantum logic. Our formalization rigorously verifies the main theoretical result and demonstrates the mutual inverse property of the transformations establishing this equivalence. The development showcases both the mathematical depth of multivalued algebraic operations and the potential for AI-enhanced interactive theorem proving in tackling complex formalization projects.
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Graph neural networks that model 3D data, such as point clouds or atoms, are typically desired to be SO(3) equivariant, i.e., equivariant to 3D rotations. Unfortunately equivariant convolutions, which are a fundamental operation for equivariant networks, increase significantly in computational complexity as higher-order tensors are used. In this paper, we address this issue by reducing the SO(3) convolutions or tensor products to mathematically equivalent convolutions in SO(2) . This is accomplished by aligning the node embeddings' primary axis with the edge vectors, which sparsifies the tensor product and reduces the computational complexity from O(L^6) to O(L^3), where L is the degree of the representation. We demonstrate the potential implications of this improvement by proposing the Equivariant Spherical Channel Network (eSCN), a graph neural network utilizing our novel approach to equivariant convolutions, which achieves state-of-the-art results on the large-scale OC-20 and OC-22 datasets.
Categories of Differentiable Polynomial Circuits for Machine Learning
Reverse derivative categories (RDCs) have recently been shown to be a suitable semantic framework for studying machine learning algorithms. Whereas emphasis has been put on training methodologies, less attention has been devoted to particular model classes: the concrete categories whose morphisms represent machine learning models. In this paper we study presentations by generators and equations of classes of RDCs. In particular, we propose polynomial circuits as a suitable machine learning model. We give an axiomatisation for these circuits and prove a functional completeness result. Finally, we discuss the use of polynomial circuits over specific semirings to perform machine learning with discrete values.
Fat Polygonal Partitions with Applications to Visualization and Embeddings
Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in R^d. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space: we give a rm polylog(Delta)-approximation algorithm for embedding n-point ultrametrics into R^d with minimum distortion, where Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.
Fast, Expressive SE(n) Equivariant Networks through Weight-Sharing in Position-Orientation Space
Based on the theory of homogeneous spaces we derive geometrically optimal edge attributes to be used within the flexible message-passing framework. We formalize the notion of weight sharing in convolutional networks as the sharing of message functions over point-pairs that should be treated equally. We define equivalence classes of point-pairs that are identical up to a transformation in the group and derive attributes that uniquely identify these classes. Weight sharing is then obtained by conditioning message functions on these attributes. As an application of the theory, we develop an efficient equivariant group convolutional network for processing 3D point clouds. The theory of homogeneous spaces tells us how to do group convolutions with feature maps over the homogeneous space of positions R^3, position and orientations R^3 {times} S^2, and the group SE(3) itself. Among these, R^3 {times} S^2 is an optimal choice due to the ability to represent directional information, which R^3 methods cannot, and it significantly enhances computational efficiency compared to indexing features on the full SE(3) group. We support this claim with state-of-the-art results -- in accuracy and speed -- on five different benchmarks in 2D and 3D, including interatomic potential energy prediction, trajectory forecasting in N-body systems, and generating molecules via equivariant diffusion models.
Lenses and Learners
Lenses are a well-established structure for modelling bidirectional transformations, such as the interactions between a database and a view of it. Lenses may be symmetric or asymmetric, and may be composed, forming the morphisms of a monoidal category. More recently, the notion of a learner has been proposed: these provide a compositional way of modelling supervised learning algorithms, and again form the morphisms of a monoidal category. In this paper, we show that the two concepts are tightly linked. We show both that there is a faithful, identity-on-objects symmetric monoidal functor embedding a category of asymmetric lenses into the category of learners, and furthermore there is such a functor embedding the category of learners into a category of symmetric lenses.
Sample Complexity Bounds for Learning High-dimensional Simplices in Noisy Regimes
In this paper, we find a sample complexity bound for learning a simplex from noisy samples. Assume a dataset of size n is given which includes i.i.d. samples drawn from a uniform distribution over an unknown simplex in R^K, where samples are assumed to be corrupted by a multi-variate additive Gaussian noise of an arbitrary magnitude. We prove the existence of an algorithm that with high probability outputs a simplex having a ell_2 distance of at most varepsilon from the true simplex (for any varepsilon>0). Also, we theoretically show that in order to achieve this bound, it is sufficient to have ngeleft(K^2/varepsilon^2right)e^{Omegaleft(K/SNR^2right)} samples, where SNR stands for the signal-to-noise ratio. This result solves an important open problem and shows as long as SNRgeOmegaleft(K^{1/2}right), the sample complexity of the noisy regime has the same order to that of the noiseless case. Our proofs are a combination of the so-called sample compression technique in ashtiani2018nearly, mathematical tools from high-dimensional geometry, and Fourier analysis. In particular, we have proposed a general Fourier-based technique for recovery of a more general class of distribution families from additive Gaussian noise, which can be further used in a variety of other related problems.
Limits and Powers of Koopman Learning
Dynamical systems provide a comprehensive way to study complex and changing behaviors across various sciences. Many modern systems are too complicated to analyze directly or we do not have access to models, driving significant interest in learning methods. Koopman operators have emerged as a dominant approach because they allow the study of nonlinear dynamics using linear techniques by solving an infinite-dimensional spectral problem. However, current algorithms face challenges such as lack of convergence, hindering practical progress. This paper addresses a fundamental open question: When can we robustly learn the spectral properties of Koopman operators from trajectory data of dynamical systems, and when can we not? Understanding these boundaries is crucial for analysis, applications, and designing algorithms. We establish a foundational approach that combines computational analysis and ergodic theory, revealing the first fundamental barriers -- universal for any algorithm -- associated with system geometry and complexity, regardless of data quality and quantity. For instance, we demonstrate well-behaved smooth dynamical systems on tori where non-trivial eigenfunctions of the Koopman operator cannot be determined by any sequence of (even randomized) algorithms, even with unlimited training data. Additionally, we identify when learning is possible and introduce optimal algorithms with verification that overcome issues in standard methods. These results pave the way for a sharp classification theory of data-driven dynamical systems based on how many limits are needed to solve a problem. These limits characterize all previous methods, presenting a unified view. Our framework systematically determines when and how Koopman spectral properties can be learned.
Tight High Probability Bounds for Linear Stochastic Approximation with Fixed Stepsize
This paper provides a non-asymptotic analysis of linear stochastic approximation (LSA) algorithms with fixed stepsize. This family of methods arises in many machine learning tasks and is used to obtain approximate solutions of a linear system Atheta = b for which A and b can only be accessed through random estimates {({bf A}_n, {bf b}_n): n in N^*}. Our analysis is based on new results regarding moments and high probability bounds for products of matrices which are shown to be tight. We derive high probability bounds on the performance of LSA under weaker conditions on the sequence {({bf A}_n, {bf b}_n): n in N^*} than previous works. However, in contrast, we establish polynomial concentration bounds with order depending on the stepsize. We show that our conclusions cannot be improved without additional assumptions on the sequence of random matrices {{bf A}_n: n in N^*}, and in particular that no Gaussian or exponential high probability bounds can hold. Finally, we pay a particular attention to establishing bounds with sharp order with respect to the number of iterations and the stepsize and whose leading terms contain the covariance matrices appearing in the central limit theorems.
Conditionally Strongly Log-Concave Generative Models
There is a growing gap between the impressive results of deep image generative models and classical algorithms that offer theoretical guarantees. The former suffer from mode collapse or memorization issues, limiting their application to scientific data. The latter require restrictive assumptions such as log-concavity to escape the curse of dimensionality. We partially bridge this gap by introducing conditionally strongly log-concave (CSLC) models, which factorize the data distribution into a product of conditional probability distributions that are strongly log-concave. This factorization is obtained with orthogonal projectors adapted to the data distribution. It leads to efficient parameter estimation and sampling algorithms, with theoretical guarantees, although the data distribution is not globally log-concave. We show that several challenging multiscale processes are conditionally log-concave using wavelet packet orthogonal projectors. Numerical results are shown for physical fields such as the varphi^4 model and weak lensing convergence maps with higher resolution than in previous works.
Construction of simplicial complexes with prescribed degree-size sequences
We study the realizability of simplicial complexes with a given pair of integer sequences, representing the node degree distribution and the facet size distribution, respectively. While the s-uniform variant of the problem is NP-complete when s geq 3, we identify two populations of input sequences, most of which can be solved in polynomial time using a recursive algorithm that we contribute. Combining with a sampler for the simplicial configuration model [J.-G. Young et al., Phys. Rev. E 96, 032312 (2017)], we facilitate the efficient sampling of simplicial ensembles from arbitrary degree and size distributions. We find that, contrary to expectations based on dyadic networks, increasing the nodes' degrees reduces the number of loops in simplicial complexes. Our work unveils a fundamental constraint on the degree-size sequences and sheds light on further analysis of higher-order phenomena based on local structures.
Information structures and their cohomology
We introduce the category of information structures, whose objects are suitable diagrams of measurable sets that encode the possible outputs of a given family of observables and their mutual relationships of refinement; they serve as mathematical models of contextuality in classical and quantum settings. Each information structure can be regarded as a ringed site with trivial topology; the structure ring is generated by the observables themselves and its multiplication corresponds to joint measurement. We extend Baudot and Bennequin's definition of information cohomology to this setting, as a derived functor in the category of modules over the structure ring, and show explicitly that the bar construction gives a projective resolution in that category, recovering in this way the cochain complexes previously considered in the literature. Finally, we study the particular case of a one-parameter family of coefficients made of functions of probability distributions. The only 1-cocycles are Shannon entropy or Tsallis alpha-entropy, depending on the value of the parameter.
Hardest Monotone Functions for Evolutionary Algorithms
The study of hardest and easiest fitness landscapes is an active area of research. Recently, Kaufmann, Larcher, Lengler and Zou conjectured that for the self-adjusting (1,lambda)-EA, Adversarial Dynamic BinVal (ADBV) is the hardest dynamic monotone function to optimize. We introduce the function Switching Dynamic BinVal (SDBV) which coincides with ADBV whenever the number of remaining zeros in the search point is strictly less than n/2, where n denotes the dimension of the search space. We show, using a combinatorial argument, that for the (1+1)-EA with any mutation rate p in [0,1], SDBV is drift-minimizing among the class of dynamic monotone functions. Our construction provides the first explicit example of an instance of the partially-ordered evolutionary algorithm (PO-EA) model with parameterized pessimism introduced by Colin, Doerr and F\'erey, building on work of Jansen. We further show that the (1+1)-EA optimizes SDBV in Theta(n^{3/2}) generations. Our simulations demonstrate matching runtimes for both static and self-adjusting (1,lambda) and (1+lambda)-EA. We further show, using an example of fixed dimension, that drift-minimization does not equal maximal runtime.
A Compositional Atlas for Algebraic Circuits
Circuits based on sum-product structure have become a ubiquitous representation to compactly encode knowledge, from Boolean functions to probability distributions. By imposing constraints on the structure of such circuits, certain inference queries become tractable, such as model counting and most probable configuration. Recent works have explored analyzing probabilistic and causal inference queries as compositions of basic operators to derive tractability conditions. In this paper, we take an algebraic perspective for compositional inference, and show that a large class of queries - including marginal MAP, probabilistic answer set programming inference, and causal backdoor adjustment - correspond to a combination of basic operators over semirings: aggregation, product, and elementwise mapping. Using this framework, we uncover simple and general sufficient conditions for tractable composition of these operators, in terms of circuit properties (e.g., marginal determinism, compatibility) and conditions on the elementwise mappings. Applying our analysis, we derive novel tractability conditions for many such compositional queries. Our results unify tractability conditions for existing problems on circuits, while providing a blueprint for analysing novel compositional inference queries.
Reverse derivative categories
The reverse derivative is a fundamental operation in machine learning and automatic differentiation. This paper gives a direct axiomatization of a category with a reverse derivative operation, in a similar style to that given by Cartesian differential categories for a forward derivative. Intriguingly, a category with a reverse derivative also has a forward derivative, but the converse is not true. In fact, we show explicitly what a forward derivative is missing: a reverse derivative is equivalent to a forward derivative with a dagger structure on its subcategory of linear maps. Furthermore, we show that these linear maps form an additively enriched category with dagger biproducts.
Optimal Densification for Fast and Accurate Minwise Hashing
Minwise hashing is a fundamental and one of the most successful hashing algorithm in the literature. Recent advances based on the idea of densification~Proc:OneHashLSH_ICML14,Proc:Shrivastava_UAI14 have shown that it is possible to compute k minwise hashes, of a vector with d nonzeros, in mere (d + k) computations, a significant improvement over the classical O(dk). These advances have led to an algorithmic improvement in the query complexity of traditional indexing algorithms based on minwise hashing. Unfortunately, the variance of the current densification techniques is unnecessarily high, which leads to significantly poor accuracy compared to vanilla minwise hashing, especially when the data is sparse. In this paper, we provide a novel densification scheme which relies on carefully tailored 2-universal hashes. We show that the proposed scheme is variance-optimal, and without losing the runtime efficiency, it is significantly more accurate than existing densification techniques. As a result, we obtain a significantly efficient hashing scheme which has the same variance and collision probability as minwise hashing. Experimental evaluations on real sparse and high-dimensional datasets validate our claims. We believe that given the significant advantages, our method will replace minwise hashing implementations in practice.
Likelihood Adjusted Semidefinite Programs for Clustering Heterogeneous Data
Clustering is a widely deployed unsupervised learning tool. Model-based clustering is a flexible framework to tackle data heterogeneity when the clusters have different shapes. Likelihood-based inference for mixture distributions often involves non-convex and high-dimensional objective functions, imposing difficult computational and statistical challenges. The classic expectation-maximization (EM) algorithm is a computationally thrifty iterative method that maximizes a surrogate function minorizing the log-likelihood of observed data in each iteration, which however suffers from bad local maxima even in the special case of the standard Gaussian mixture model with common isotropic covariance matrices. On the other hand, recent studies reveal that the unique global solution of a semidefinite programming (SDP) relaxed K-means achieves the information-theoretically sharp threshold for perfectly recovering the cluster labels under the standard Gaussian mixture model. In this paper, we extend the SDP approach to a general setting by integrating cluster labels as model parameters and propose an iterative likelihood adjusted SDP (iLA-SDP) method that directly maximizes the exact observed likelihood in the presence of data heterogeneity. By lifting the cluster assignment to group-specific membership matrices, iLA-SDP avoids centroids estimation -- a key feature that allows exact recovery under well-separateness of centroids without being trapped by their adversarial configurations. Thus iLA-SDP is less sensitive than EM to initialization and more stable on high-dimensional data. Our numeric experiments demonstrate that iLA-SDP can achieve lower mis-clustering errors over several widely used clustering methods including K-means, SDP and EM algorithms.
Understanding Gradient Orthogonalization for Deep Learning via Non-Euclidean Trust-Region Optimization
Optimization with matrix gradient orthogonalization has recently demonstrated impressive results in the training of deep neural networks (Jordan et al., 2024; Liu et al., 2025). In this paper, we provide a theoretical analysis of this approach. In particular, we show that the orthogonalized gradient method can be seen as a first-order trust-region optimization method, where the trust-region is defined in terms of the matrix spectral norm. Motivated by this observation, we develop the stochastic non-Euclidean trust-region gradient method with momentum, which recovers the Muon optimizer (Jordan et al., 2024) as a special case, along with normalized SGD and signSGD with momentum (Cutkosky and Mehta, 2020; Sun et al., 2023). In addition, we prove state-of-the-art convergence results for the proposed algorithm in a range of scenarios, which involve arbitrary non-Euclidean norms, constrained and composite problems, and non-convex, star-convex, first- and second-order smooth functions. Finally, our theoretical findings provide an explanation for several practical observations, including the practical superiority of Muon compared to the Orthogonal-SGDM algorithm of Tuddenham et al. (2022) and the importance of weight decay in the training of large-scale language models.
Coordinate Descent Methods for Fractional Minimization
We consider a class of structured fractional minimization problems, in which the numerator part of the objective is the sum of a differentiable convex function and a convex non-smooth function, while the denominator part is a convex or concave function. This problem is difficult to solve since it is non-convex. By exploiting the structure of the problem, we propose two Coordinate Descent (CD) methods for solving this problem. The proposed methods iteratively solve a one-dimensional subproblem globally, and they are guaranteed to converge to coordinate-wise stationary points. In the case of a convex denominator, under a weak locally bounded non-convexity condition, we prove that the optimality of coordinate-wise stationary point is stronger than that of the standard critical point and directional point. Under additional suitable conditions, CD methods converge Q-linearly to coordinate-wise stationary points. In the case of a concave denominator, we show that any critical point is a global minimum, and CD methods converge to the global minimum with a sublinear convergence rate. We demonstrate the applicability of the proposed methods to some machine learning and signal processing models. Our experiments on real-world data have shown that our method significantly and consistently outperforms existing methods in terms of accuracy.
PartUV: Part-Based UV Unwrapping of 3D Meshes
UV unwrapping flattens 3D surfaces to 2D with minimal distortion, often requiring the complex surface to be decomposed into multiple charts. Although extensively studied, existing UV unwrapping methods frequently struggle with AI-generated meshes, which are typically noisy, bumpy, and poorly conditioned. These methods often produce highly fragmented charts and suboptimal boundaries, introducing artifacts and hindering downstream tasks. We introduce PartUV, a part-based UV unwrapping pipeline that generates significantly fewer, part-aligned charts while maintaining low distortion. Built on top of a recent learning-based part decomposition method PartField, PartUV combines high-level semantic part decomposition with novel geometric heuristics in a top-down recursive framework. It ensures each chart's distortion remains below a user-specified threshold while minimizing the total number of charts. The pipeline integrates and extends parameterization and packing algorithms, incorporates dedicated handling of non-manifold and degenerate meshes, and is extensively parallelized for efficiency. Evaluated across four diverse datasets, including man-made, CAD, AI-generated, and Common Shapes, PartUV outperforms existing tools and recent neural methods in chart count and seam length, achieves comparable distortion, exhibits high success rates on challenging meshes, and enables new applications like part-specific multi-tiles packing. Our project page is at https://www.zhaoningwang.com/PartUV.
Near-Optimal Quantum Coreset Construction Algorithms for Clustering
k-Clustering in R^d (e.g., k-median and k-means) is a fundamental machine learning problem. While near-linear time approximation algorithms were known in the classical setting for a dataset with cardinality n, it remains open to find sublinear-time quantum algorithms. We give quantum algorithms that find coresets for k-clustering in R^d with O(nkd^{3/2}) query complexity. Our coreset reduces the input size from n to poly(kepsilon^{-1}d), so that existing alpha-approximation algorithms for clustering can run on top of it and yield (1 + epsilon)alpha-approximation. This eventually yields a quadratic speedup for various k-clustering approximation algorithms. We complement our algorithm with a nearly matching lower bound, that any quantum algorithm must make Omega(nk) queries in order to achieve even O(1)-approximation for k-clustering.
An information theoretic necessary condition for perfect reconstruction
A new information theoretic condition is presented for reconstructing a discrete random variable X based on the knowledge of a set of discrete functions of X. The reconstruction condition is derived from Shannon's 1953 lattice theory with two entropic metrics of Shannon and Rajski. Because such a theoretical material is relatively unknown and appears quite dispersed in different references, we first provide a synthetic description (with complete proofs) of its concepts, such as total, common and complementary informations. Definitions and properties of the two entropic metrics are also fully detailed and shown compatible with the lattice structure. A new geometric interpretation of such a lattice structure is then investigated that leads to a necessary (and sometimes sufficient) condition for reconstructing the discrete random variable X given a set { X_1,ldots,X_{n} } of elements in the lattice generated by X. Finally, this condition is illustrated in five specific examples of perfect reconstruction problems: reconstruction of a symmetric random variable from the knowledge of its sign and absolute value, reconstruction of a word from a set of linear combinations, reconstruction of an integer from its prime signature (fundamental theorem of arithmetic) and from its remainders modulo a set of coprime integers (Chinese remainder theorem), and reconstruction of the sorting permutation of a list from a minimal set of pairwise comparisons.
Tackling Prevalent Conditions in Unsupervised Combinatorial Optimization: Cardinality, Minimum, Covering, and More
Combinatorial optimization (CO) is naturally discrete, making machine learning based on differentiable optimization inapplicable. Karalias & Loukas (2020) adapted the probabilistic method to incorporate CO into differentiable optimization. Their work ignited the research on unsupervised learning for CO, composed of two main components: probabilistic objectives and derandomization. However, each component confronts unique challenges. First, deriving objectives under various conditions (e.g., cardinality constraints and minimum) is nontrivial. Second, the derandomization process is underexplored, and the existing derandomization methods are either random sampling or naive rounding. In this work, we aim to tackle prevalent (i.e., commonly involved) conditions in unsupervised CO. First, we concretize the targets for objective construction and derandomization with theoretical justification. Then, for various conditions commonly involved in different CO problems, we derive nontrivial objectives and derandomization to meet the targets. Finally, we apply the derivations to various CO problems. Via extensive experiments on synthetic and real-world graphs, we validate the correctness of our derivations and show our empirical superiority w.r.t. both optimization quality and speed.
Novel Quadratic Constraints for Extending LipSDP beyond Slope-Restricted Activations
Recently, semidefinite programming (SDP) techniques have shown great promise in providing accurate Lipschitz bounds for neural networks. Specifically, the LipSDP approach (Fazlyab et al., 2019) has received much attention and provides the least conservative Lipschitz upper bounds that can be computed with polynomial time guarantees. However, one main restriction of LipSDP is that its formulation requires the activation functions to be slope-restricted on [0,1], preventing its further use for more general activation functions such as GroupSort, MaxMin, and Householder. One can rewrite MaxMin activations for example as residual ReLU networks. However, a direct application of LipSDP to the resultant residual ReLU networks is conservative and even fails in recovering the well-known fact that the MaxMin activation is 1-Lipschitz. Our paper bridges this gap and extends LipSDP beyond slope-restricted activation functions. To this end, we provide novel quadratic constraints for GroupSort, MaxMin, and Householder activations via leveraging their underlying properties such as sum preservation. Our proposed analysis is general and provides a unified approach for estimating ell_2 and ell_infty Lipschitz bounds for a rich class of neural network architectures, including non-residual and residual neural networks and implicit models, with GroupSort, MaxMin, and Householder activations. Finally, we illustrate the utility of our approach with a variety of experiments and show that our proposed SDPs generate less conservative Lipschitz bounds in comparison to existing approaches.
Low Rank Matrix Completion via Robust Alternating Minimization in Nearly Linear Time
Given a matrix Min R^{mtimes n}, the low rank matrix completion problem asks us to find a rank-k approximation of M as UV^top for Uin R^{mtimes k} and Vin R^{ntimes k} by only observing a few entries specified by a set of entries Omegasubseteq [m]times [n]. In particular, we examine an approach that is widely used in practice -- the alternating minimization framework. Jain, Netrapalli and Sanghavi~jns13 showed that if M has incoherent rows and columns, then alternating minimization provably recovers the matrix M by observing a nearly linear in n number of entries. While the sample complexity has been subsequently improved~glz17, alternating minimization steps are required to be computed exactly. This hinders the development of more efficient algorithms and fails to depict the practical implementation of alternating minimization, where the updates are usually performed approximately in favor of efficiency. In this paper, we take a major step towards a more efficient and error-robust alternating minimization framework. To this end, we develop an analytical framework for alternating minimization that can tolerate moderate amount of errors caused by approximate updates. Moreover, our algorithm runs in time widetilde O(|Omega| k), which is nearly linear in the time to verify the solution while preserving the sample complexity. This improves upon all prior known alternating minimization approaches which require widetilde O(|Omega| k^2) time.
Robustifying State-space Models for Long Sequences via Approximate Diagonalization
State-space models (SSMs) have recently emerged as a framework for learning long-range sequence tasks. An example is the structured state-space sequence (S4) layer, which uses the diagonal-plus-low-rank structure of the HiPPO initialization framework. However, the complicated structure of the S4 layer poses challenges; and, in an effort to address these challenges, models such as S4D and S5 have considered a purely diagonal structure. This choice simplifies the implementation, improves computational efficiency, and allows channel communication. However, diagonalizing the HiPPO framework is itself an ill-posed problem. In this paper, we propose a general solution for this and related ill-posed diagonalization problems in machine learning. We introduce a generic, backward-stable "perturb-then-diagonalize" (PTD) methodology, which is based on the pseudospectral theory of non-normal operators, and which may be interpreted as the approximate diagonalization of the non-normal matrices defining SSMs. Based on this, we introduce the S4-PTD and S5-PTD models. Through theoretical analysis of the transfer functions of different initialization schemes, we demonstrate that the S4-PTD/S5-PTD initialization strongly converges to the HiPPO framework, while the S4D/S5 initialization only achieves weak convergences. As a result, our new models show resilience to Fourier-mode noise-perturbed inputs, a crucial property not achieved by the S4D/S5 models. In addition to improved robustness, our S5-PTD model averages 87.6% accuracy on the Long-Range Arena benchmark, demonstrating that the PTD methodology helps to improve the accuracy of deep learning models.
Fully Dynamic Submodular Maximization over Matroids
Maximizing monotone submodular functions under a matroid constraint is a classic algorithmic problem with multiple applications in data mining and machine learning. We study this classic problem in the fully dynamic setting, where elements can be both inserted and deleted in real-time. Our main result is a randomized algorithm that maintains an efficient data structure with an O(k^2) amortized update time (in the number of additions and deletions) and yields a 4-approximate solution, where k is the rank of the matroid.
Polynomial Preconditioning for Gradient Methods
We study first-order methods with preconditioning for solving structured nonlinear convex optimization problems. We propose a new family of preconditioners generated by symmetric polynomials. They provide first-order optimization methods with a provable improvement of the condition number, cutting the gaps between highest eigenvalues, without explicit knowledge of the actual spectrum. We give a stochastic interpretation of this preconditioning in terms of coordinate volume sampling and compare it with other classical approaches, including the Chebyshev polynomials. We show how to incorporate a polynomial preconditioning into the Gradient and Fast Gradient Methods and establish the corresponding global complexity bounds. Finally, we propose a simple adaptive search procedure that automatically chooses the best possible polynomial preconditioning for the Gradient Method, minimizing the objective along a low-dimensional Krylov subspace. Numerical experiments confirm the efficiency of our preconditioning strategies for solving various machine learning problems.
A Survey on Intrinsic Images: Delving Deep Into Lambert and Beyond
Intrinsic imaging or intrinsic image decomposition has traditionally been described as the problem of decomposing an image into two layers: a reflectance, the albedo invariant color of the material; and a shading, produced by the interaction between light and geometry. Deep learning techniques have been broadly applied in recent years to increase the accuracy of those separations. In this survey, we overview those results in context of well-known intrinsic image data sets and relevant metrics used in the literature, discussing their suitability to predict a desirable intrinsic image decomposition. Although the Lambertian assumption is still a foundational basis for many methods, we show that there is increasing awareness on the potential of more sophisticated physically-principled components of the image formation process, that is, optically accurate material models and geometry, and more complete inverse light transport estimations. We classify these methods in terms of the type of decomposition, considering the priors and models used, as well as the learning architecture and methodology driving the decomposition process. We also provide insights about future directions for research, given the recent advances in neural, inverse and differentiable rendering techniques.
A Nearly-Optimal Bound for Fast Regression with ell_infty Guarantee
Given a matrix Ain R^{ntimes d} and a vector bin R^n, we consider the regression problem with ell_infty guarantees: finding a vector x'in R^d such that |x'-x^*|_infty leq epsilon{d}cdot |Ax^*-b|_2cdot |A^dagger| where x^*=argmin_{xin R^d}|Ax-b|_2. One popular approach for solving such ell_2 regression problem is via sketching: picking a structured random matrix Sin R^{mtimes n} with mll n and SA can be quickly computed, solve the ``sketched'' regression problem argmin_{xin R^d} |SAx-Sb|_2. In this paper, we show that in order to obtain such ell_infty guarantee for ell_2 regression, one has to use sketching matrices that are dense. To the best of our knowledge, this is the first user case in which dense sketching matrices are necessary. On the algorithmic side, we prove that there exists a distribution of dense sketching matrices with m=epsilon^{-2}dlog^3(n/delta) such that solving the sketched regression problem gives the ell_infty guarantee, with probability at least 1-delta. Moreover, the matrix SA can be computed in time O(ndlog n). Our row count is nearly-optimal up to logarithmic factors, and significantly improves the result in [Price, Song and Woodruff, ICALP'17], in which a super-linear in d rows, m=Omega(epsilon^{-2}d^{1+gamma}) for gamma=Theta(frac{loglog n{log d}}) is required. We also develop a novel analytical framework for ell_infty guarantee regression that utilizes the Oblivious Coordinate-wise Embedding (OCE) property introduced in [Song and Yu, ICML'21]. Our analysis is arguably much simpler and more general than [Price, Song and Woodruff, ICALP'17], and it extends to dense sketches for tensor product of vectors.
Topological Quantum Compilation Using Mixed-Integer Programming
We introduce the Mixed-Integer Quadratically Constrained Quadratic Programming framework for the quantum compilation problem and apply it in the context of topological quantum computing. In this setting, quantum gates are realized by sequences of elementary braids of quasiparticles with exotic fractional statistics in certain two-dimensional topological condensed matter systems, described by effective topological quantum field theories. We specifically focus on a non-semisimple version of topological field theory, which provides a foundation for an extended theory of Ising anyons and which has recently been shown by Iulianelli et al., Nature Communications {\bf 16}, 6408 (2025), to permit universal quantum computation. While the proofs of this pioneering result are existential in nature, the mixed integer programming provides an approach to explicitly construct quantum gates in topological systems. We demonstrate this by focusing specifically on the entangling controlled-NOT operation, and its local equivalence class, using braiding operations in the non-semisimple Ising system. This illustrates the utility of the Mixed-Integer Quadratically Constrained Quadratic Programming for topological quantum compilation.
Space-time tradeoffs of lenses and optics via higher category theory
Optics and lenses are abstract categorical gadgets that model systems with bidirectional data flow. In this paper we observe that the denotational definition of optics - identifying two optics as equivalent by observing their behaviour from the outside - is not suitable for operational, software oriented approaches where optics are not merely observed, but built with their internal setups in mind. We identify operational differences between denotationally isomorphic categories of cartesian optics and lenses: their different composition rule and corresponding space-time tradeoffs, positioning them at two opposite ends of a spectrum. With these motivations we lift the existing categorical constructions and their relationships to the 2-categorical level, showing that the relevant operational concerns become visible. We define the 2-category 2-Optic(C) whose 2-cells explicitly track optics' internal configuration. We show that the 1-category Optic(C) arises by locally quotienting out the connected components of this 2-category. We show that the embedding of lenses into cartesian optics gets weakened from a functor to an oplax functor whose oplaxator now detects the different composition rule. We determine the difficulties in showing this functor forms a part of an adjunction in any of the standard 2-categories. We establish a conjecture that the well-known isomorphism between cartesian lenses and optics arises out of the lax 2-adjunction between their double-categorical counterparts. In addition to presenting new research, this paper is also meant to be an accessible introduction to the topic.
Modified Singly-Runge-Kutta-TASE methods for the numerical solution of stiff differential equations
Singly-TASE operators for the numerical solution of stiff differential equations were proposed by Calvo et al. in J.Sci. Comput. 2023 to reduce the computational cost of Runge-Kutta-TASE (RKTASE) methods when the involved linear systems are solved by some LU factorization. In this paper we propose a modification of these methods to improve the efficiency by considering different TASE operators for each stage of the Runge-Kutta. We prove that the resulting RKTASE methods are equivalent to W-methods (Steihaug and Wolfbrandt, Mathematics of Computation,1979) and this allows us to obtain the order conditions of the proposed Modified Singly-RKTASE methods (MSRKTASE) through the theory developed for the W-methods. We construct new MSRKTASE methods of order two and three and demonstrate their effectiveness through numerical experiments on both linear and nonlinear stiff systems. The results show that the MSRKTASE schemes significantly enhance efficiency and accuracy compared to previous Singly-RKTASE schemes.
A Bregman firmly nonexpansive proximal operator for baryconvex optimization
We present a generalization of the proximal operator defined through a convex combination of convex objectives, where the coefficients are updated in a minimax fashion. We prove that this new operator is Bregman firmly nonexpansive with respect to a Bregman divergence that combines Euclidean and information geometries.
Approximating the Top Eigenvector in Random Order Streams
When rows of an n times d matrix A are given in a stream, we study algorithms for approximating the top eigenvector of the matrix {A}^TA (equivalently, the top right singular vector of A). We consider worst case inputs A but assume that the rows are presented to the streaming algorithm in a uniformly random order. We show that when the gap parameter R = σ_1(A)^2/σ_2(A)^2 = Ω(1), then there is a randomized algorithm that uses O(h cdot d cdot polylog(d)) bits of space and outputs a unit vector v that has a correlation 1 - O(1/R) with the top eigenvector v_1. Here h denotes the number of heavy rows in the matrix, defined as the rows with Euclidean norm at least |{A}|_F/d cdot operatorname{polylog(d)}. We also provide a lower bound showing that any algorithm using O(hd/R) bits of space can obtain at most 1 - Ω(1/R^2) correlation with the top eigenvector. Thus, parameterizing the space complexity in terms of the number of heavy rows is necessary for high accuracy solutions. Our results improve upon the R = Ω(log n cdot log d) requirement in a recent work of Price and Xun (FOCS 2024). We note that the algorithm of Price and Xun works for arbitrary order streams whereas our algorithm requires a stronger assumption that the rows are presented in a uniformly random order. We additionally show that the gap requirements in their analysis can be brought down to R = Ω(log^2 d) for arbitrary order streams and R = Ω(log d) for random order streams. The requirement of R = Ω(log d) for random order streams is nearly tight for their analysis as we obtain a simple instance with R = Ω(log d/loglog d) for which their algorithm, with any fixed learning rate, cannot output a vector approximating the top eigenvector v_1.
Multimarginal generative modeling with stochastic interpolants
Given a set of K probability densities, we consider the multimarginal generative modeling problem of learning a joint distribution that recovers these densities as marginals. The structure of this joint distribution should identify multi-way correspondences among the prescribed marginals. We formalize an approach to this task within a generalization of the stochastic interpolant framework, leading to efficient learning algorithms built upon dynamical transport of measure. Our generative models are defined by velocity and score fields that can be characterized as the minimizers of simple quadratic objectives, and they are defined on a simplex that generalizes the time variable in the usual dynamical transport framework. The resulting transport on the simplex is influenced by all marginals, and we show that multi-way correspondences can be extracted. The identification of such correspondences has applications to style transfer, algorithmic fairness, and data decorruption. In addition, the multimarginal perspective enables an efficient algorithm for reducing the dynamical transport cost in the ordinary two-marginal setting. We demonstrate these capacities with several numerical examples.
Cyclic Block Coordinate Descent With Variance Reduction for Composite Nonconvex Optimization
Nonconvex optimization is central in solving many machine learning problems, in which block-wise structure is commonly encountered. In this work, we propose cyclic block coordinate methods for nonconvex optimization problems with non-asymptotic gradient norm guarantees. Our convergence analysis is based on a gradient Lipschitz condition with respect to a Mahalanobis norm, inspired by a recent progress on cyclic block coordinate methods. In deterministic settings, our convergence guarantee matches the guarantee of (full-gradient) gradient descent, but with the gradient Lipschitz constant being defined w.r.t.~a Mahalanobis norm. In stochastic settings, we use recursive variance reduction to decrease the per-iteration cost and match the arithmetic operation complexity of current optimal stochastic full-gradient methods, with a unified analysis for both finite-sum and infinite-sum cases. We prove a faster linear convergence result when a Polyak-{\L}ojasiewicz (P{\L}) condition holds. To our knowledge, this work is the first to provide non-asymptotic convergence guarantees -- variance-reduced or not -- for a cyclic block coordinate method in general composite (smooth + nonsmooth) nonconvex settings. Our experimental results demonstrate the efficacy of the proposed cyclic scheme in training deep neural nets.
Automorphisms and subdivisions of Helly graphs
We study Helly graphs of finite combinatorial dimension, i.e. whose injective hull is finite-dimensional. We describe very simple fine simplicial subdivisions of the injective hull of a Helly graph, following work of Lang. We also give a very explicit simplicial model of the injective hull of a Helly graphs, in terms of cliques which are intersections of balls. We use these subdivisions to prove that any automorphism of a Helly graph with finite combinatorial dimension is either elliptic or hyperbolic. Moreover, every such hyperbolic automorphism has an axis in an appropriate Helly subdivision, and its translation length is rational with uniformly bounded denominator.
A mesh-free hybrid Chebyshev-Tucker tensor format with applications to multi-particle modelling
In this paper, we introduce a mesh-free two-level hybrid Tucker tensor format for approximation of multivariate functions, which combines the product Chebyshev interpolation with the ALS-based Tucker decomposition of the tensor of Chebyshev coefficients. It allows to avoid the expenses of the rank-structured approximation of function-related tensors defined on large spacial grids, while benefiting from the Tucker decomposition of the rather small core tensor of Chebyshev coefficients. This leads to nearly optimal Tucker rank parameters which are close to the results for well established Tucker-ALS algorithm applied to the large grid-based tensors. These rank parameters inherited from the Tucker-ALS decomposition of the coefficient tensor can be much less than the polynomial degrees of the initial Chebyshev interpolant via function independent basis set. Furthermore, the tensor product Chebyshev polynomials discretized on a tensor grid leads to a low-rank two-level orthogonal algebraic Tucker tensor that approximates the initial function with controllable accuracy. It is shown that our techniques could be gainfully applied to the long-range part of the electrostatic potential of multi-particle systems approximated in the range-separated tensor format. Error and complexity estimates of the proposed methods are presented. We demonstrate the efficiency of the suggested method numerically on examples of the long-range components of multi-particle interaction potentials generated by 3D Newton kernel for large bio-molecule systems and lattice-type compounds.
Information Shapes Koopman Representation
The Koopman operator provides a powerful framework for modeling dynamical systems and has attracted growing interest from the machine learning community. However, its infinite-dimensional nature makes identifying suitable finite-dimensional subspaces challenging, especially for deep architectures. We argue that these difficulties come from suboptimal representation learning, where latent variables fail to balance expressivity and simplicity. This tension is closely related to the information bottleneck (IB) dilemma: constructing compressed representations that are both compact and predictive. Rethinking Koopman learning through this lens, we demonstrate that latent mutual information promotes simplicity, yet an overemphasis on simplicity may cause latent space to collapse onto a few dominant modes. In contrast, expressiveness is sustained by the von Neumann entropy, which prevents such collapse and encourages mode diversity. This insight leads us to propose an information-theoretic Lagrangian formulation that explicitly balances this tradeoff. Furthermore, we propose a new algorithm based on the Lagrangian formulation that encourages both simplicity and expressiveness, leading to a stable and interpretable Koopman representation. Beyond quantitative evaluations, we further visualize the learned manifolds under our representations, observing empirical results consistent with our theoretical predictions. Finally, we validate our approach across a diverse range of dynamical systems, demonstrating improved performance over existing Koopman learning methods. The implementation is publicly available at https://github.com/Wenxuan52/InformationKoopman.
Conditional Generation of Periodic Signals with Fourier-Based Decoder
Periodic signals play an important role in daily lives. Although conventional sequential models have shown remarkable success in various fields, they still come short in modeling periodicity; they either collapse, diverge or ignore details. In this paper, we introduce a novel framework inspired by Fourier series to generate periodic signals. We first decompose the given signals into multiple sines and cosines and then conditionally generate periodic signals with the output components. We have shown our model efficacy on three tasks: reconstruction, imputation and conditional generation. Our model outperforms baselines in all tasks and shows more stable and refined results.
O-MMGP: Optimal Mesh Morphing Gaussian Process Regression for Solving PDEs with non-Parametric Geometric Variations
We address the computational challenges of solving parametric PDEs with non parametrized geometric variations and non-reducible problems, such as those involving shocks and discontinuities of variable positions. Traditional dimensionality reduction methods like POD struggle with these scenarios due to slowly decaying Kolmogorov widths. To overcome this, we propose a novel non-linear dimensionality reduction technique to reduce the required modes for representation. The non-linear reduction is obtained through a POD after applying a transformation on the fields, which we call optimal mappings, and is a solution to an optimization problem in infinite dimension. The proposed learning framework combines morphing techniques, non-linear dimensionality reduction, and Gaussian Process Regression (GPR). The problem is reformulated on a reference geometry before applying the dimensionality reduction. Our method learns both the optimal mapping, and the solution fields, using a series of GPR models, enabling efficient and accurate modeling of complex parametric PDEs with geometrical variability. The results obtained concur with current state-of-the-art models. We mainly compare our method with the winning solution of the ML4CFD NeurIPS 2024 competition.
Practical and Optimal LSH for Angular Distance
We show the existence of a Locality-Sensitive Hashing (LSH) family for the angular distance that yields an approximate Near Neighbor Search algorithm with the asymptotically optimal running time exponent. Unlike earlier algorithms with this property (e.g., Spherical LSH [Andoni, Indyk, Nguyen, Razenshteyn 2014], [Andoni, Razenshteyn 2015]), our algorithm is also practical, improving upon the well-studied hyperplane LSH [Charikar, 2002] in practice. We also introduce a multiprobe version of this algorithm, and conduct experimental evaluation on real and synthetic data sets. We complement the above positive results with a fine-grained lower bound for the quality of any LSH family for angular distance. Our lower bound implies that the above LSH family exhibits a trade-off between evaluation time and quality that is close to optimal for a natural class of LSH functions.
A Generic First-Order Algorithmic Framework for Bi-Level Programming Beyond Lower-Level Singleton
In recent years, a variety of gradient-based first-order methods have been developed to solve bi-level optimization problems for learning applications. However, theoretical guarantees of these existing approaches heavily rely on the simplification that for each fixed upper-level variable, the lower-level solution must be a singleton (a.k.a., Lower-Level Singleton, LLS). In this work, we first design a counter-example to illustrate the invalidation of such LLS condition. Then by formulating BLPs from the view point of optimistic bi-level and aggregating hierarchical objective information, we establish Bi-level Descent Aggregation (BDA), a flexible and modularized algorithmic framework for generic bi-level optimization. Theoretically, we derive a new methodology to prove the convergence of BDA without the LLS condition. Our investigations also demonstrate that BDA is indeed compatible to a verify of particular first-order computation modules. Additionally, as an interesting byproduct, we also improve these conventional first-order bi-level schemes (under the LLS simplification). Particularly, we establish their convergences with weaker assumptions. Extensive experiments justify our theoretical results and demonstrate the superiority of the proposed BDA for different tasks, including hyper-parameter optimization and meta learning.
Physically Compatible 3D Object Modeling from a Single Image
We present a computational framework that transforms single images into 3D physical objects. The visual geometry of a physical object in an image is determined by three orthogonal attributes: mechanical properties, external forces, and rest-shape geometry. Existing single-view 3D reconstruction methods often overlook this underlying composition, presuming rigidity or neglecting external forces. Consequently, the reconstructed objects fail to withstand real-world physical forces, resulting in instability or undesirable deformation -- diverging from their intended designs as depicted in the image. Our optimization framework addresses this by embedding physical compatibility into the reconstruction process. We explicitly decompose the three physical attributes and link them through static equilibrium, which serves as a hard constraint, ensuring that the optimized physical shapes exhibit desired physical behaviors. Evaluations on a dataset collected from Objaverse demonstrate that our framework consistently enhances the physical realism of 3D models over existing methods. The utility of our framework extends to practical applications in dynamic simulations and 3D printing, where adherence to physical compatibility is paramount.
Towards Gradient Free and Projection Free Stochastic Optimization
This paper focuses on the problem of constrained stochastic optimization. A zeroth order Frank-Wolfe algorithm is proposed, which in addition to the projection-free nature of the vanilla Frank-Wolfe algorithm makes it gradient free. Under convexity and smoothness assumption, we show that the proposed algorithm converges to the optimal objective function at a rate Oleft(1/T^{1/3}right), where T denotes the iteration count. In particular, the primal sub-optimality gap is shown to have a dimension dependence of Oleft(d^{1/3}right), which is the best known dimension dependence among all zeroth order optimization algorithms with one directional derivative per iteration. For non-convex functions, we obtain the Frank-Wolfe gap to be Oleft(d^{1/3}T^{-1/4}right). Experiments on black-box optimization setups demonstrate the efficacy of the proposed algorithm.
Lie Group Decompositions for Equivariant Neural Networks
Invariance and equivariance to geometrical transformations have proven to be very useful inductive biases when training (convolutional) neural network models, especially in the low-data regime. Much work has focused on the case where the symmetry group employed is compact or abelian, or both. Recent work has explored enlarging the class of transformations used to the case of Lie groups, principally through the use of their Lie algebra, as well as the group exponential and logarithm maps. The applicability of such methods to larger transformation groups is limited by the fact that depending on the group of interest G, the exponential map may not be surjective. Further limitations are encountered when G is neither compact nor abelian. Using the structure and geometry of Lie groups and their homogeneous spaces, we present a framework by which it is possible to work with such groups primarily focusing on the Lie groups G = GL^{+}(n, R) and G = SL(n, R), as well as their representation as affine transformations R^{n} rtimes G. Invariant integration as well as a global parametrization is realized by decomposing the `larger` groups into subgroups and submanifolds which can be handled individually. Under this framework, we show how convolution kernels can be parametrized to build models equivariant with respect to affine transformations. We evaluate the robustness and out-of-distribution generalisation capability of our model on the standard affine-invariant benchmark classification task, where we outperform all previous equivariant models as well as all Capsule Network proposals.
Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data
Modern deep neural networks have achieved impressive performance on tasks from image classification to natural language processing. Surprisingly, these complex systems with massive amounts of parameters exhibit the same structural properties in their last-layer features and classifiers across canonical datasets when training until convergence. In particular, it has been observed that the last-layer features collapse to their class-means, and those class-means are the vertices of a simplex Equiangular Tight Frame (ETF). This phenomenon is known as Neural Collapse (NC). Recent papers have theoretically shown that NC emerges in the global minimizers of training problems with the simplified "unconstrained feature model". In this context, we take a step further and prove the NC occurrences in deep linear networks for the popular mean squared error (MSE) and cross entropy (CE) losses, showing that global solutions exhibit NC properties across the linear layers. Furthermore, we extend our study to imbalanced data for MSE loss and present the first geometric analysis of NC under bias-free setting. Our results demonstrate the convergence of the last-layer features and classifiers to a geometry consisting of orthogonal vectors, whose lengths depend on the amount of data in their corresponding classes. Finally, we empirically validate our theoretical analyses on synthetic and practical network architectures with both balanced and imbalanced scenarios.
