- From two dimensions to wire networks in a dice-lattice Josephson array We investigate Josephson arrays consisting of a dice-lattice network of superconducting weak links surrounding rhombic plaquettes of proximitized semiconductor. Josephson coupling of the weak links and electron density in the plaquettes are independently controlled by separate electrostatic gates. Applied magnetic flux results in an intricate pattern of switching currents associated with frustration, f. For depleted plaquettes, the switching current is nearly periodic in f, expected for a phase-only description, while occupied plaquettes yield a decreasing envelope of switching currents with increasing f. A model of flux dependence based on ballistic small-area junctions and diffusive large-area plaquettes yields excellent agreement with experiment. 8 authors · Oct 8, 2025
- Enhanced proton parallel temperature inside patches of switchbacks in the inner heliosphere Switchbacks are discrete angular deflections in the solar wind magnetic field that have been observed throughout the heliosphere. Recent observations by Parker Solar Probe (PSP) have revealed the presence of patches of switchbacks on the scale of hours to days, separated by 'quieter' radial fields. We aim to further diagnose the origin of these patches using measurements of proton temperature anisotropy that can illuminate possible links to formation processes in the solar corona. We fitted 3D bi-Maxwellian functions to the core of proton velocity distributions measured by the SPAN-Ai instrument onboard PSP to obtain the proton parallel, T_{p,|}, and perpendicular, T_{p,perp}, temperature. We show that the presence of patches is highlighted by a transverse deflection in the flow and magnetic field away from the radial direction. These deflections are correlated with enhancements in T_{p,|}, while T_{p,perp} remains relatively constant. Patches sometimes exhibit small proton and electron density enhancements. We interpret that patches are not simply a group of switchbacks, but rather switchbacks are embedded within a larger-scale structure identified by enhanced T_{p,|} that is distinct from the surrounding solar wind. We suggest that these observations are consistent with formation by reconnection-associated mechanisms in the corona. 19 authors · Oct 20, 2020
- Graph Switching Dynamical Systems Dynamical systems with complex behaviours, e.g. immune system cells interacting with a pathogen, are commonly modelled by splitting the behaviour into different regimes, or modes, each with simpler dynamics, and then learning the switching behaviour from one mode to another. Switching Dynamical Systems (SDS) are a powerful tool that automatically discovers these modes and mode-switching behaviour from time series data. While effective, these methods focus on independent objects, where the modes of one object are independent of the modes of the other objects. In this paper, we focus on the more general interacting object setting for switching dynamical systems, where the per-object dynamics also depends on an unknown and dynamically changing subset of other objects and their modes. To this end, we propose a novel graph-based approach for switching dynamical systems, GRAph Switching dynamical Systems (GRASS), in which we use a dynamic graph to characterize interactions between objects and learn both intra-object and inter-object mode-switching behaviour. We introduce two new datasets for this setting, a synthesized ODE-driven particles dataset and a real-world Salsa Couple Dancing dataset. Experiments show that GRASS can consistently outperforms previous state-of-the-art methods. 4 authors · Jun 1, 2023
1 Dynamic processes in superconductors and the laws of thermodynamics The transition from the superconducting to the normal state in a magnetic field was considered as a irreversible thermodynamic process before 1933 because of Joule heating. But all physicists became to consider this transition as reversible after 1933 because of the obvious contradiction of the Meissner effect with the second law of thermodynamics if this transition is considered as a irreversible process. This radical change of the opinion contradicted logic since the dissipation of the kinetic energy of the surface screening current into Joule heat in the normal state cannot depend on how this current appeared in the superconducting state. The inconsistency of the conventional theory of superconductivity, created in the framework of the equilibrium thermodynamics, with Joule heating, on which Jorge Hirsch draws reader's attention, is a consequence of this history. In order to avoid contradiction with the second law of thermodynamics, physicists postulated in the thirties of the last century that the surface screening current is damped without the generation of Joule heat. This postulate contradicts not only logic and the conventional theory of superconductivity but also experimental results. 1 authors · Aug 23, 2021