Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeUni-MMMU: A Massive Multi-discipline Multimodal Unified Benchmark
Unified multimodal models aim to jointly enable visual understanding and generation, yet current benchmarks rarely examine their true integration. Existing evaluations either treat the two abilities in isolation or overlook tasks that inherently couple them. To address this gap, we present Uni-MMMU, a comprehensive and discipline-aware benchmark that systematically unfolds the bidirectional synergy between generation and understanding across eight reasoning-centric domains, including science, coding, mathematics, and puzzles. Each task is bidirectionally coupled, demanding models to (i) leverage conceptual understanding to guide precise visual synthesis, or (ii) utilize generation as a cognitive scaffold for analytical reasoning. Uni-MMMU incorporates verifiable intermediate reasoning steps, unique ground truths, and a reproducible scoring protocol for both textual and visual outputs. Through extensive evaluation of state-of-the-art unified, generation-only, and understanding-only models, we reveal substantial performance disparities and cross-modal dependencies, offering new insights into when and how these abilities reinforce one another, and establishing a reliable foundation for advancing unified models.
CAPO: Towards Enhancing LLM Reasoning through Verifiable Generative Credit Assignment
Reinforcement Learning with Verifiable Rewards (RLVR) has improved the reasoning abilities of Large Language Models (LLMs) by using rule-based binary feedback, helping to mitigate reward hacking. However, current RLVR methods typically treat whole responses as single actions, assigning the same reward to every token. This coarse-grained feedback hampers precise credit assignment, making it hard for models to identify which reasoning steps lead to success or failure, and often results in suboptimal policies and inefficient learning. Methods like PPO provide credit assignment through value estimation, but often yield inaccurate and unverifiable signals due to limited sampling. On the other hand, methods using Process Reward Models can provide step-by-step judgments for each reasoning step, but they require high-quality process supervision labels and are time-consuming when applied in online reinforcement learning (RL). To overcome these limitations, we introduce a simple but efficient method Credit Assignment Policy Optimization (CAPO). Given a reasoning response rollout from the policy model, CAPO directly leverages an off-the-shelf, general-purpose LLM as a Generative Process Reward Model (LLM-as-GenPRM) to generate all step-wise critique by one pass, thereby providing verifiable token-level rewards to refine the tokens that were originally assigned identical rule-based rewards. This enables more fine-grained credit assignment in an effective way. Furthermore, to enhance the accuracy and robustness of CAPO, we employ voting mechanisms that scale with the number of generated critiques. Extensive experiments using different backbones like Llama and Qwen models and in different sizes show that CAPO consistently outperforms supervised learning-based and RL-based fine-tuning methods across six challenging mathematical benchmarks and three out-of-domain benchmarks.
MedReason: Eliciting Factual Medical Reasoning Steps in LLMs via Knowledge Graphs
Medical tasks such as diagnosis and treatment planning require precise and complex reasoning, particularly in life-critical domains. Unlike mathematical reasoning, medical reasoning demands meticulous, verifiable thought processes to ensure reliability and accuracy. However, there is a notable lack of datasets that provide transparent, step-by-step reasoning to validate and enhance the medical reasoning ability of AI models. To bridge this gap, we introduce MedReason, a large-scale high-quality medical reasoning dataset designed to enable faithful and explainable medical problem-solving in large language models (LLMs). We utilize a structured medical knowledge graph (KG) to convert clinical QA pairs into logical chains of reasoning, or ``thinking paths'', which trace connections from question elements to answers via relevant KG entities. Each path is validated for consistency with clinical logic and evidence-based medicine. Our pipeline generates detailed reasoning for various medical questions from 7 medical datasets, resulting in a dataset of 32,682 question-answer pairs, each with detailed, step-by-step explanations. Experiments demonstrate that fine-tuning with our dataset consistently boosts medical problem-solving capabilities, achieving significant gains of up to 7.7% for DeepSeek-Ditill-8B. Our top-performing model, MedReason-8B, outperforms the Huatuo-o1-8B, a state-of-the-art medical reasoning model, by up to 4.2% on the clinical benchmark MedBullets. We also engage medical professionals from diverse specialties to assess our dataset's quality, ensuring MedReason offers accurate and coherent medical reasoning. Our data, models, and code will be publicly available.
FinChain: A Symbolic Benchmark for Verifiable Chain-of-Thought Financial Reasoning
Multi-step symbolic reasoning is critical for advancing downstream performance on financial tasks. Yet, benchmarks for systematically evaluating this capability are lacking. Existing datasets like FinQA and ConvFinQA supervise only final numerical answers, without assessing intermediate reasoning steps. To address this, we introduce FinChain, the first symbolic benchmark designed for verifiable Chain-of- Thought (CoT) financial reasoning. Spanning 54 topics across 12 financial domains, Fin- Chain offers five parameterized templates per topic, each varying in reasoning complexity and domain expertise required. Each dataset instance includes an executable Python trace, enabling automatic generation of extensive training data and easy adaptation to other domains. We also introduce ChainEval, a new metric for automatic evaluation of both final answers and intermediate reasoning. Benchmarking 30 LLMs on our dataset, we find that even state-of-the-art models have considerable room for improvement in multi-step financial reasoning. All templates and evaluation metrics for FinChain are available at https: //github.com/mbzuai-nlp/finchain.
DeepSearch: Overcome the Bottleneck of Reinforcement Learning with Verifiable Rewards via Monte Carlo Tree Search
Although RLVR has become an essential component for developing advanced reasoning skills in LLMs, contemporary studies have documented training plateaus that emerge following thousands of optimization steps, demonstrating notable decreases in performance gains despite increased computational investment. This limitation stems from the sparse exploration patterns inherent in current RLVR practices, where models rely on limited rollouts that often miss critical reasoning paths and fail to provide systematic coverage of the solution space. We present DeepSearch, a framework that integrates Monte Carlo Tree Search directly into RLVR training. In contrast to existing methods that rely on tree search only at inference, DeepSearch embeds structured search into the training loop, enabling systematic exploration and fine-grained credit assignment across reasoning steps. Through training-time exploration, DeepSearch addresses the fundamental bottleneck of insufficient exploration, which leads to diminishing performance improvements over prolonged training steps. Our contributions include: (1) a global frontier selection strategy that prioritizes promising nodes across the search tree, (2) selection with entropy-based guidance that identifies confident paths for supervision, and (3) adaptive replay buffer training with solution caching for efficiency. Experiments on mathematical reasoning benchmarks show that DeepSearch achieves 62.95% average accuracy and establishes a new state-of-the-art for 1.5B reasoning models - using 5.7x fewer GPU hours than extended training approaches. These results highlight the importance of strategic exploration over brute-force scaling and demonstrate the promise of algorithmic innovation for advancing RLVR methodologies. DeepSearch establishes a new direction for scaling reasoning capabilities through systematic search rather than prolonged computation.
On Verifiable Legal Reasoning: A Multi-Agent Framework with Formalized Knowledge Representations
Legal reasoning requires both precise interpretation of statutory language and consistent application of complex rules, presenting significant challenges for AI systems. This paper introduces a modular multi-agent framework that decomposes legal reasoning into distinct knowledge acquisition and application stages. In the first stage, specialized agents extract legal concepts and formalize rules to create verifiable intermediate representations of statutes. The second stage applies this knowledge to specific cases through three steps: analyzing queries to map case facts onto the ontology schema, performing symbolic inference to derive logically entailed conclusions, and generating final answers using a programmatic implementation that operationalizes the ontological knowledge. This bridging of natural language understanding with symbolic reasoning provides explicit and verifiable inspection points, significantly enhancing transparency compared to end-to-end approaches. Evaluation on statutory tax calculation tasks demonstrates substantial improvements, with foundational models achieving 76.4\% accuracy compared to 18.8\% baseline performance, effectively narrowing the performance gap between reasoning and foundational models. These findings suggest that modular architectures with formalized knowledge representations can make sophisticated legal reasoning more accessible through computationally efficient models while enhancing consistency and explainability in AI legal reasoning, establishing a foundation for future research into more transparent, trustworthy, and effective AI systems for legal domain.
MedMMV: A Controllable Multimodal Multi-Agent Framework for Reliable and Verifiable Clinical Reasoning
Recent progress in multimodal large language models (MLLMs) has demonstrated promising performance on medical benchmarks and in preliminary trials as clinical assistants. Yet, our pilot audit of diagnostic cases uncovers a critical failure mode: instability in early evidence interpretation precedes hallucination, creating branching reasoning trajectories that cascade into globally inconsistent conclusions. This highlights the need for clinical reasoning agents that constrain stochasticity and hallucination while producing auditable decision flows. We introduce MedMMV, a controllable multimodal multi-agent framework for reliable and verifiable clinical reasoning. MedMMV stabilizes reasoning through diversified short rollouts, grounds intermediate steps in a structured evidence graph under the supervision of a Hallucination Detector, and aggregates candidate paths with a Combined Uncertainty scorer. On six medical benchmarks, MedMMV improves accuracy by up to 12.7% and, more critically, demonstrates superior reliability. Blind physician evaluations confirm that MedMMV substantially increases reasoning truthfulness without sacrificing informational content. By controlling instability through a verifiable, multi-agent process, our framework provides a robust path toward deploying trustworthy AI systems in high-stakes domains like clinical decision support.
Promoting Efficient Reasoning with Verifiable Stepwise Reward
Large reasoning models (LRMs) have recently achieved significant progress in complex reasoning tasks, aided by reinforcement learning with verifiable rewards. However, LRMs often suffer from overthinking, expending excessive computation on simple problems and reducing efficiency. Existing efficient reasoning methods typically require accurate task assessment to preset token budgets or select reasoning modes, which limits their flexibility and reliability. In this work, we revisit the essence of overthinking and identify that encouraging effective steps while penalizing ineffective ones is key to its solution. To this end, we propose a novel rule-based verifiable stepwise reward mechanism (VSRM), which assigns rewards based on the performance of intermediate states in the reasoning trajectory. This approach is intuitive and naturally fits the step-by-step nature of reasoning tasks. We conduct extensive experiments on standard mathematical reasoning benchmarks, including AIME24 and AIME25, by integrating VSRM with PPO and Reinforce++. Results show that our method achieves substantial output length reduction while maintaining original reasoning performance, striking an optimal balance between efficiency and accuracy. Further analysis of overthinking frequency and pass@k score before and after training demonstrates that our approach in deed effectively suppresses ineffective steps and encourages effective reasoning, fundamentally alleviating the overthinking problem. All code will be released upon acceptance.
SATORI-R1: Incentivizing Multimodal Reasoning with Spatial Grounding and Verifiable Rewards
DeepSeek-R1 has demonstrated powerful reasoning capabilities in the text domain through stable reinforcement learning (RL). Recently, in the multimodal domain, works have begun to directly apply RL to generate R1-like free-form reasoning for Visual Question Answering (VQA) tasks. However, multimodal tasks share an intrinsically different nature from textual tasks, which heavily rely on the understanding of the input image to solve the problem. Therefore, such free-form reasoning faces two critical limitations in the VQA task: (1) Extended reasoning chains diffuse visual focus away from task-critical regions, degrading answer accuracy. (2) Unverifiable intermediate steps amplify policy-gradient variance and computational costs overhead. To address these issues, in this paper, we introduce SATORI (Spatially Anchored Task Optimization with ReInforcement Learning), which decomposes VQA into three verifiable stages, including global image captioning, region localization, and answer prediction, each supplying explicit reward signals. Furthermore, we also introduce VQA-Verify, a 12k dataset annotated with answer-aligned captions and bounding-boxes to facilitate training. Experiments demonstrate consistent performance improvements across seven VQA benchmarks, achieving up to 15.7% improvement in accuracy in accuracy compared to the R1-like baseline. Our analysis of the attention map confirms enhanced focus on critical regions, which brings improvements in accuracy. Our code is available at https://github.com/justairr/SATORI-R1.
Phi-4-Mini-Reasoning: Exploring the Limits of Small Reasoning Language Models in Math
Chain-of-Thought (CoT) significantly enhances formal reasoning capabilities in Large Language Models (LLMs) by training them to explicitly generate intermediate reasoning steps. While LLMs readily benefit from such techniques, improving reasoning in Small Language Models (SLMs) remains challenging due to their limited model capacity. Recent work by Deepseek-R1 demonstrates that distillation from LLM-generated synthetic data can substantially improve the reasoning ability of SLM. However, the detailed modeling recipe is not disclosed. In this work, we present a systematic training recipe for SLMs that consists of four steps: (1) large-scale mid-training on diverse distilled long-CoT data, (2) supervised fine-tuning on high-quality long-CoT data, (3) Rollout DPO leveraging a carefully curated preference dataset, and (4) Reinforcement Learning (RL) with Verifiable Reward. We apply our method on Phi-4-Mini, a compact 3.8B-parameter model. The resulting Phi-4-Mini-Reasoning model exceeds, on math reasoning tasks, much larger reasoning models, e.g., outperforming DeepSeek-R1-Distill-Qwen-7B by 3.2 points and DeepSeek-R1-Distill-Llama-8B by 7.7 points on Math-500. Our results validate that a carefully designed training recipe, with large-scale high-quality CoT data, is effective to unlock strong reasoning capabilities even in resource-constrained small models.
An Agentic System for Rare Disease Diagnosis with Traceable Reasoning
Rare diseases collectively affect over 300 million individuals worldwide, yet timely and accurate diagnosis remains a pervasive challenge. This is largely due to their clinical heterogeneity, low individual prevalence, and the limited familiarity most clinicians have with rare conditions. Here, we introduce DeepRare, the first rare disease diagnosis agentic system powered by a large language model (LLM), capable of processing heterogeneous clinical inputs. The system generates ranked diagnostic hypotheses for rare diseases, each accompanied by a transparent chain of reasoning that links intermediate analytic steps to verifiable medical evidence. DeepRare comprises three key components: a central host with a long-term memory module; specialized agent servers responsible for domain-specific analytical tasks integrating over 40 specialized tools and web-scale, up-to-date medical knowledge sources, ensuring access to the most current clinical information. This modular and scalable design enables complex diagnostic reasoning while maintaining traceability and adaptability. We evaluate DeepRare on eight datasets. The system demonstrates exceptional diagnostic performance among 2,919 diseases, achieving 100% accuracy for 1013 diseases. In HPO-based evaluations, DeepRare significantly outperforms other 15 methods, like traditional bioinformatics diagnostic tools, LLMs, and other agentic systems, achieving an average Recall@1 score of 57.18% and surpassing the second-best method (Reasoning LLM) by a substantial margin of 23.79 percentage points. For multi-modal input scenarios, DeepRare achieves 70.60% at Recall@1 compared to Exomiser's 53.20% in 109 cases. Manual verification of reasoning chains by clinical experts achieves 95.40% agreements. Furthermore, the DeepRare system has been implemented as a user-friendly web application http://raredx.cn/doctor.
Stop Summation: Min-Form Credit Assignment Is All Process Reward Model Needs for Reasoning
Process reward models (PRMs) have proven effective for test-time scaling of Large Language Models (LLMs) on challenging reasoning tasks. However, reward hacking issues with PRMs limit their successful application in reinforcement fine-tuning. In this paper, we identify the main cause of PRM-induced reward hacking: the canonical summation-form credit assignment in reinforcement learning (RL), which defines the value as cumulative gamma-decayed future rewards, easily induces LLMs to hack steps with high rewards. To address this, we propose PURE: Process sUpervised Reinforcement lEarning. The key innovation of PURE is a min-form credit assignment that formulates the value function as the minimum of future rewards. This method significantly alleviates reward hacking by limiting the value function range and distributing advantages more reasonably. Through extensive experiments on 3 base models, we show that PRM-based approaches enabling min-form credit assignment achieve comparable reasoning performance to verifiable reward-based methods within only 30% steps. In contrast, the canonical sum-form credit assignment collapses training even at the beginning! Additionally, when we supplement PRM-based fine-tuning with just 10% verifiable rewards, we further alleviate reward hacking and produce the best fine-tuned model based on Qwen2.5-Math-7B in our experiments, achieving 82.5% accuracy on AMC23 and 53.3% average accuracy across 5 benchmarks. Moreover, we summarize the observed reward hacking cases and analyze the causes of training collapse. Code and models are available at https://github.com/CJReinforce/PURE.
Explainable Rule Application via Structured Prompting: A Neural-Symbolic Approach
Large Language Models (LLMs) excel in complex reasoning tasks but struggle with consistent rule application, exception handling, and explainability, particularly in domains like legal analysis that require both natural language understanding and precise logical inference. This paper introduces a structured prompting framework that decomposes reasoning into three verifiable steps: entity identification, property extraction, and symbolic rule application. By integrating neural and symbolic approaches, our method leverages LLMs' interpretive flexibility while ensuring logical consistency through formal verification. The framework externalizes task definitions, enabling domain experts to refine logical structures without altering the architecture. Evaluated on the LegalBench hearsay determination task, our approach significantly outperformed baselines, with OpenAI o-family models showing substantial improvements - o1 achieving an F1 score of 0.929 and o3-mini reaching 0.867 using structured decomposition with complementary predicates, compared to their few-shot baselines of 0.714 and 0.74 respectively. This hybrid neural-symbolic system offers a promising pathway for transparent and consistent rule-based reasoning, suggesting potential for explainable AI applications in structured legal reasoning tasks.
Enhancing Step-by-Step and Verifiable Medical Reasoning in MLLMs
Multimodal large language models (MLLMs) have begun to demonstrate robust reasoning capabilities on general tasks, yet their application in the medical domain remains in its early stages. Constructing chain-of-thought (CoT) training data is essential for bolstering the reasoning abilities of medical MLLMs. However, existing approaches exhibit a deficiency in offering a comprehensive framework for searching and evaluating effective reasoning paths towards critical diagnosis. To address this challenge, we propose Mentor-Intern Collaborative Search (MICS), a novel reasoning-path searching scheme to generate rigorous and effective medical CoT data. MICS first leverages mentor models to initialize the reasoning, one step at a time, then prompts each intern model to continue the thinking along those initiated paths, and finally selects the optimal reasoning path according to the overall reasoning performance of multiple intern models. The reasoning performance is determined by an MICS-Score, which assesses the quality of generated reasoning paths. Eventually, we construct MMRP, a multi-task medical reasoning dataset with ranked difficulty, and Chiron-o1, a new medical MLLM devised via a curriculum learning strategy, with robust visual question-answering and generalizable reasoning capabilities. Extensive experiments demonstrate that Chiron-o1, trained on our CoT dataset constructed using MICS, achieves state-of-the-art performance across a list of medical visual question answering and reasoning benchmarks. Codes are available at GitHub - manglu097/Chiron-o1: Enhancing Step-by-Step and Verifiable Medical Reasoning in MLLMs
DeepSeekMath-V2: Towards Self-Verifiable Mathematical Reasoning
Large language models have made significant progress in mathematical reasoning, which serves as an important testbed for AI and could impact scientific research if further advanced. By scaling reasoning with reinforcement learning that rewards correct final answers, LLMs have improved from poor performance to saturating quantitative reasoning competitions like AIME and HMMT in one year. However, this approach faces fundamental limitations. Pursuing higher final answer accuracy doesn't address a key issue: correct answers don't guarantee correct reasoning. Moreover, many mathematical tasks like theorem proving require rigorous step-by-step derivation rather than numerical answers, making final answer rewards inapplicable. To push the limits of deep reasoning, we believe it is necessary to verify the comprehensiveness and rigor of mathematical reasoning. Self-verification is particularly important for scaling test-time compute, especially for open problems without known solutions. Towards self-verifiable mathematical reasoning, we investigate how to train an accurate and faithful LLM-based verifier for theorem proving. We then train a proof generator using the verifier as the reward model, and incentivize the generator to identify and resolve as many issues as possible in their own proofs before finalizing them. To maintain the generation-verification gap as the generator becomes stronger, we propose to scale verification compute to automatically label new hard-to-verify proofs, creating training data to further improve the verifier. Our resulting model, DeepSeekMath-V2, demonstrates strong theorem-proving capabilities, achieving gold-level scores on IMO 2025 and CMO 2024 and a near-perfect 118/120 on Putnam 2024 with scaled test-time compute.
Perception-Aware Policy Optimization for Multimodal Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) has proven to be a highly effective strategy for endowing Large Language Models (LLMs) with robust multi-step reasoning abilities. However, its design and optimizations remain tailored to purely textual domains, resulting in suboptimal performance when applied to multimodal reasoning tasks. In particular, we observe that a major source of error in current multimodal reasoning lies in the perception of visual inputs. To address this bottleneck, we propose Perception-Aware Policy Optimization (PAPO), a simple yet effective extension of GRPO that encourages the model to learn to perceive while learning to reason, entirely from internal supervision signals. Notably, PAPO does not rely on additional data curation, external reward models, or proprietary models. Specifically, we introduce the Implicit Perception Loss in the form of a KL divergence term to the GRPO objective, which, despite its simplicity, yields significant overall improvements (4.4%) on diverse multimodal benchmarks. The improvements are more pronounced, approaching 8.0%, on tasks with high vision dependency. We also observe a substantial reduction (30.5%) in perception errors, indicating improved perceptual capabilities with PAPO. We conduct comprehensive analysis of PAPO and identify a unique loss hacking issue, which we rigorously analyze and mitigate through a Double Entropy Loss. Overall, our work introduces a deeper integration of perception-aware supervision into RLVR learning objectives and lays the groundwork for a new RL framework that encourages visually grounded reasoning. Project page: https://mikewangwzhl.github.io/PAPO.
MM-PRM: Enhancing Multimodal Mathematical Reasoning with Scalable Step-Level Supervision
While Multimodal Large Language Models (MLLMs) have achieved impressive progress in vision-language understanding, they still struggle with complex multi-step reasoning, often producing logically inconsistent or partially correct solutions. A key limitation lies in the lack of fine-grained supervision over intermediate reasoning steps. To address this, we propose MM-PRM, a process reward model trained within a fully automated, scalable framework. We first build MM-Policy, a strong multimodal model trained on diverse mathematical reasoning data. Then, we construct MM-K12, a curated dataset of 10,000 multimodal math problems with verifiable answers, which serves as seed data. Leveraging a Monte Carlo Tree Search (MCTS)-based pipeline, we generate over 700k step-level annotations without human labeling. The resulting PRM is used to score candidate reasoning paths in the Best-of-N inference setup and achieves significant improvements across both in-domain (MM-K12 test set) and out-of-domain (OlympiadBench, MathVista, etc.) benchmarks. Further analysis confirms the effectiveness of soft labels, smaller learning rates, and path diversity in optimizing PRM performance. MM-PRM demonstrates that process supervision is a powerful tool for enhancing the logical robustness of multimodal reasoning systems. We release all our codes and data at https://github.com/ModalMinds/MM-PRM.
Supervised Reinforcement Learning: From Expert Trajectories to Step-wise Reasoning
Large Language Models (LLMs) often struggle with problems that require multi-step reasoning. For small-scale open-source models, Reinforcement Learning with Verifiable Rewards (RLVR) fails when correct solutions are rarely sampled even after many attempts, while Supervised Fine-Tuning (SFT) tends to overfit long demonstrations through rigid token-by-token imitation. To address this gap, we propose Supervised Reinforcement Learning (SRL), a framework that reformulates problem solving as generating a sequence of logical "actions". SRL trains the model to generate an internal reasoning monologue before committing to each action. It provides smoother rewards based on the similarity between the model's actions and expert actions extracted from the SFT dataset in a step-wise manner. This supervision offers richer learning signals even when all rollouts are incorrect, while encouraging flexible reasoning guided by expert demonstrations. As a result, SRL enables small models to learn challenging problems previously unlearnable by SFT or RLVR. Moreover, initializing training with SRL before refining with RLVR yields the strongest overall performance. Beyond reasoning benchmarks, SRL generalizes effectively to agentic software engineering tasks, establishing it as a robust and versatile training framework for reasoning-oriented LLMs.
GroundedPRM: Tree-Guided and Fidelity-Aware Process Reward Modeling for Step-Level Reasoning
Process Reward Models (PRMs) aim to improve multi-step reasoning in Large Language Models (LLMs) by supervising intermediate steps and identifying errors. However, building effective PRMs remains challenging due to the lack of scalable, high-quality annotations. Existing approaches rely on costly human labeling, LLM-based self-evaluation that is prone to hallucination, or Monte Carlo (MC) estimation, which infers step quality solely from rollout outcomes and often introduces noisy, misaligned supervision due to credit misattribution. These issues result in three core limitations: noisy rewards, low factual fidelity, and misalignment with step-level reasoning objectives. To address these challenges, we introduce GroundedPRM, a tree-guided and fidelity-aware framework for automatic process supervision. To reduce reward noise and enable fine-grained credit assignment, we construct structured reasoning paths via Monte Carlo Tree Search (MCTS). To eliminate hallucinated supervision, we validate each intermediate step using an external tool, providing execution-grounded correctness signals. To combine both step-level validation and global outcome assessment, we design a hybrid reward aggregation mechanism that fuses tool-based verification with MCTS-derived feedback. Finally, we format the reward signal into a rationale-enhanced, generative structure to promote interpretability and compatibility with instruction-tuned LLMs. GroundedPRM is trained on only 40K automatically labeled samples, amounting to just 10% of the data used by the best-performing PRM trained with auto-labeled supervision. Nevertheless, it achieves up to a 26% relative improvement in average performance on ProcessBench. When used for reward-guided greedy search, GroundedPRM outperforms even PRMs trained with human-labeled supervision, offering a scalable and verifiable path toward high-quality process-level reasoning.
Think Socially via Cognitive Reasoning
LLMs trained for logical reasoning excel at step-by-step deduction to reach verifiable answers. However, this paradigm is ill-suited for navigating social situations, which induce an interpretive process of analyzing ambiguous cues that rarely yield a definitive outcome. To bridge this gap, we introduce Cognitive Reasoning, a paradigm modeled on human social cognition. It formulates the interpretive process into a structured cognitive flow of interconnected cognitive units (e.g., observation or attribution), which combine adaptively to enable effective social thinking and responses. We then propose CogFlow, a complete framework that instills this capability in LLMs. CogFlow first curates a dataset of cognitive flows by simulating the associative and progressive nature of human thought via tree-structured planning. After instilling the basic cognitive reasoning capability via supervised fine-tuning, CogFlow adopts reinforcement learning to enable the model to improve itself via trial and error, guided by a multi-objective reward that optimizes both cognitive flow and response quality. Extensive experiments show that CogFlow effectively enhances the social cognitive capabilities of LLMs, and even humans, leading to more effective social decision-making.
Safe: Enhancing Mathematical Reasoning in Large Language Models via Retrospective Step-aware Formal Verification
Chain-of-Thought (CoT) prompting has become the de facto method to elicit reasoning capabilities from large language models (LLMs). However, to mitigate hallucinations in CoT that are notoriously difficult to detect, current methods such as process reward models (PRMs) or self-consistency operate as opaque boxes and do not provide checkable evidence for their judgments, possibly limiting their effectiveness. To address this issue, we draw inspiration from the idea that "the gold standard for supporting a mathematical claim is to provide a proof". We propose a retrospective, step-aware formal verification framework Safe. Rather than assigning arbitrary scores, we strive to articulate mathematical claims in formal mathematical language Lean 4 at each reasoning step and provide formal proofs to identify hallucinations. We evaluate our framework Safe across multiple language models and various mathematical datasets, demonstrating a significant performance improvement while offering interpretable and verifiable evidence. We also propose FormalStep as a benchmark for step correctness theorem proving with 30,809 formal statements. To the best of our knowledge, our work represents the first endeavor to utilize formal mathematical language Lean 4 for verifying natural language content generated by LLMs, aligning with the reason why formal mathematical languages were created in the first place: to provide a robust foundation for hallucination-prone human-written proofs.
Orcust: Stepwise-Feedback Reinforcement Learning for GUI Agent
Recent advances in GUI agents have achieved remarkable grounding and action-prediction performance, yet existing models struggle with unreliable reward signals and limited online trajectory generation. In this paper, we introduce Orcust, a framework that integrates Principle-Constrained Reward Modeling (PCRM) and Online VM-Grounded Trajectory Construction (OVTC) to enhance reasoning reliability and data efficiency in interactive GUI tasks. We leverages environment-verifiable and LLM-derived principle to enforce interpretable reward signals that constrain long chain-of-thought reasoning and rule-based feedback. OVTC spins up instrumented virtual machines to autonomously collect structured GUI interaction trajectories with explicit procedural and structural objectives, enabling the training of a stepwise reward model that robustly captures human preferences and adheres to task-specific constraints. Extensive experiments on standard GUI benchmarks covering perceptual grounding, foundational operations, and end-to-end task execution reveal that Orcust achieves state-of-the-art performance, improving by 22.2\% on ScreenSpot and 23.9\% on ScreenSpot-Pro over the base model (i.e. Qwen2.5-VL-7B). The results demonstrate Orcust's effectiveness in enhancing the reasoning, adaptability and scalability of GUI agents across various environments and task complexities.
Open Vision Reasoner: Transferring Linguistic Cognitive Behavior for Visual Reasoning
The remarkable reasoning capability of large language models (LLMs) stems from cognitive behaviors that emerge through reinforcement with verifiable rewards. This work investigates how to transfer this principle to Multimodal LLMs (MLLMs) to unlock advanced visual reasoning. We introduce a two-stage paradigm built on Qwen2.5-VL-7B: a massive linguistic cold-start fine-tuning, followed by multimodal reinforcement learning (RL) spanning nearly 1,000 steps, surpassing all previous open-source efforts in scale. This pioneering work reveals three fundamental insights: 1) Behavior transfer emerges surprisingly early in cold start due to linguistic mental imagery. 2) Cold start broadly memorizes visual behaviors, while RL critically discerns and scales up effective patterns. 3) Transfer strategically favors high-utility behaviors such as visual reflection. Our resulting model, Open-Vision-Reasoner (OVR), achieves state-of-the-art performance on a suite of reasoning benchmarks, including 95.3% on MATH500, 51.8% on MathVision and 54.6% on MathVerse. We release our model, data, and training dynamics to catalyze the development of more capable, behavior-aligned multimodal reasoners.
PROPA: Toward Process-level Optimization in Visual Reasoning via Reinforcement Learning
Despite significant progress, Vision-Language Models (VLMs) still struggle with complex visual reasoning, where multi-step dependencies cause early errors to cascade through the reasoning chain. Existing post-training paradigms are limited: Supervised Fine-Tuning (SFT) relies on costly step-level annotations, while Reinforcement Learning with Verifiable Rewards (RLVR) methods like GRPO provide only sparse, outcome-level feedback, hindering stable optimization. We introduce PROPA (Process-level Reasoning Optimization with interleaved Policy Alignment), a novel framework that integrates Monte Carlo Tree Search (MCTS) with GRPO to generate dense, process-level rewards and optimize reasoning at each intermediate step without human annotations. To overcome the cold-start problem, PROPA interleaves GRPO updates with SFT, enabling the model to learn from both successful and failed reasoning trajectories. A Process Reward Model (PRM) is further trained to guide inference-time search, aligning the test-time search with the training signal. Across seven benchmarks and four VLM backbones, PROPA consistently outperforms both SFT- and RLVR-based baselines. It achieves up to 17.0% gains on in-domain tasks and 21.0% gains on out-of-domain tasks compared to existing state-of-the-art, establishing a strong reasoning and generalization capability for visual reasoning tasks. The code isavailable at: https://github.com/YanbeiJiang/PROPA.
Lookahead Tree-Based Rollouts for Enhanced Trajectory-Level Exploration in Reinforcement Learning with Verifiable Rewards
Reinforcement Learning with Verifiable Rewards (RLVR), particularly with algorithms like Group Relative Policy Optimization (GRPO), has proven highly effective in enhancing the reasoning capabilities of large language models. However, a critical bottleneck in current pipelines lies in the limited diversity of sampled trajectories during group rollouts. Homogeneous trajectories and their associated rewards would diminish the return signals for policy updates, thereby hindering effective policy learning. This lack of diversity stems primarily from token-level stochastic sampling, where local variations are likely to collapse into near-identical reasoning paths. To address this limitation, we propose Lookahead Tree-Based Rollouts (LATR), a novel rollout strategy designed to explicitly promotes trajectory-level diversity by enforcing branching into different candidate tokens likely to yield distinct continuations. Specifically, LATR iteratively operates in three stages: (1) branching at high-uncertainty generation steps, (2) performing lookahead simulation for each new branch, and (3) pruning branches that exhibits prolonged similarity during simulation. Compared with stochastic Sampling, LATR accelerates policy learning by 131% on average and improves final pass@1 performance by 4.2% on both GRPO and Dynamic sAmpling Policy Optimization (DAPO) algorithms across different reasoning tasks. Our code and data are publicly available at https://github.com/starreeze/latr.
Artemis: Structured Visual Reasoning for Perception Policy Learning
Recent reinforcement-learning frameworks for visual perception policy have begun to incorporate intermediate reasoning chains expressed in natural language. Empirical observations indicate that such purely linguistic intermediate reasoning often reduces performance on perception tasks. We argue that the core issue lies not in reasoning per se but in the form of reasoning: while these chains perform semantic reasoning in an unstructured linguistic space, visual perception requires reasoning in a spatial and object-centric space. In response, we introduce Artemis, a perception-policy learning framework that performs structured proposal-based reasoning, where each intermediate step is represented as a (label, bounding-box) pair capturing a verifiable visual state. This design enables explicit tracking of intermediate states, direct supervision for proposal quality, and avoids ambiguity introduced by language-based reasoning. Artemis is built on Qwen2.5-VL-3B, achieves strong performance on grounding and detection task and exhibits substantial generalization to counting and geometric-perception tasks. The consistent improvements across these diverse settings confirm that aligning reasoning with spatial representations enhances perception-policy learning. Owing to its strengthened visual reasoning, Artemis also achieves competitive performance on general MLLM benchmarks, illustrating that spatially grounded reasoning provides a principled route toward scalable and general perception policies.
Can LLM Agents Really Debate? A Controlled Study of Multi-Agent Debate in Logical Reasoning
Multi-agent debate (MAD) has recently emerged as a promising framework for improving the reasoning performance of large language models (LLMs). Yet, whether LLM agents can genuinely engage in deliberative reasoning, beyond simple ensembling or majority voting, remains unclear. We address this question through a controlled study using the Knight--Knave--Spy logic puzzle, which enables precise, step-wise evaluation of debate outcomes and processes under verifiable ground truth. We systematically set up six structural and cognitive factors, including agent team size, composition, confidence visibility, debate order, debate depth, and task difficulty, to disentangle their respective effects on collective reasoning. Our results show that intrinsic reasoning strength and group diversity are the dominant drivers of debate success, while structural parameters such as order or confidence visibility offer limited gains. Beyond outcomes, process-level analyses identify key behavioral patterns: majority pressure suppresses independent correction, effective teams overturn incorrect consensus, and rational, validity-aligned reasoning most strongly predicts improvement. These findings provide valuable insights into how and why LLM debates succeed or fail, offering guidance for designing interpretable and truth-seeking multi-agent reasoning systems.
VeriCoT: Neuro-symbolic Chain-of-Thought Validation via Logical Consistency Checks
LLMs can perform multi-step reasoning through Chain-of-Thought (CoT), but they cannot reliably verify their own logic. Even when they reach correct answers, the underlying reasoning may be flawed, undermining trust in high-stakes scenarios. To mitigate this issue, we introduce VeriCoT, a neuro-symbolic method that extracts and verifies formal logical arguments from CoT reasoning. VeriCoT formalizes each CoT reasoning step into first-order logic and identifies premises that ground the argument in source context, commonsense knowledge, or prior reasoning steps. The symbolic representation enables automated solvers to verify logical validity while the NL premises allow humans and systems to identify ungrounded or fallacious reasoning steps. Experiments on the ProofWriter, LegalBench, and BioASQ datasets show VeriCoT effectively identifies flawed reasoning, and serves as a strong predictor of final answer correctness. We also leverage VeriCoT's verification signal for (1) inference-time self-reflection, (2) supervised fine-tuning (SFT) on VeriCoT-distilled datasets and (3) preference fine-tuning (PFT) with direct preference optimization (DPO) using verification-based pairwise rewards, further improving reasoning validity and accuracy.
Deductive Verification of Chain-of-Thought Reasoning
Large Language Models (LLMs) significantly benefit from Chain-of-Thought (CoT) prompting in performing various reasoning tasks. While CoT allows models to produce more comprehensive reasoning processes, its emphasis on intermediate reasoning steps can inadvertently introduce hallucinations and accumulated errors, thereby limiting models' ability to solve complex reasoning tasks. Inspired by how humans engage in careful and meticulous deductive logical reasoning processes to solve tasks, we seek to enable language models to perform explicit and rigorous deductive reasoning, and also ensure the trustworthiness of their reasoning process through self-verification. However, directly verifying the validity of an entire deductive reasoning process is challenging, even with advanced models like ChatGPT. In light of this, we propose to decompose a reasoning verification process into a series of step-by-step subprocesses, each only receiving their necessary context and premises. To facilitate this procedure, we propose Natural Program, a natural language-based deductive reasoning format. Our approach enables models to generate precise reasoning steps where subsequent steps are more rigorously grounded on prior steps. It also empowers language models to carry out reasoning self-verification in a step-by-step manner. By integrating this verification process into each deductive reasoning stage, we significantly enhance the rigor and trustfulness of generated reasoning steps. Along this process, we also improve the answer correctness on complex reasoning tasks. Code will be released at https://github.com/lz1oceani/verify_cot.
Advancing Process Verification for Large Language Models via Tree-Based Preference Learning
Large Language Models (LLMs) have demonstrated remarkable potential in handling complex reasoning tasks by generating step-by-step rationales.Some methods have proven effective in boosting accuracy by introducing extra verifiers to assess these paths. However, existing verifiers, typically trained on binary-labeled reasoning paths, fail to fully utilize the relative merits of intermediate steps, thereby limiting the effectiveness of the feedback provided. To overcome this limitation, we propose Tree-based Preference Learning Verifier (Tree-PLV), a novel approach that constructs reasoning trees via a best-first search algorithm and collects step-level paired data for preference training. Compared to traditional binary classification, step-level preferences more finely capture the nuances between reasoning steps, allowing for a more precise evaluation of the complete reasoning path. We empirically evaluate Tree-PLV across a range of arithmetic and commonsense reasoning tasks, where it significantly outperforms existing benchmarks. For instance, Tree-PLV achieved substantial performance gains over the Mistral-7B self-consistency baseline on GSM8K (67.55% to 82.79%), MATH (17.00% to 26.80%), CSQA (68.14% to 72.97%), and StrategyQA (82.86% to 83.25%).Additionally, our study explores the appropriate granularity for applying preference learning, revealing that step-level guidance provides feedback that better aligns with the evaluation of the reasoning process.
A Chain-of-Thought Is as Strong as Its Weakest Link: A Benchmark for Verifiers of Reasoning Chains
Prompting language models to provide step-by-step answers (e.g., "Chain-of-Thought") is the prominent approach for complex reasoning tasks, where more accurate reasoning chains typically improve downstream task performance. Recent literature discusses automatic methods to verify reasoning steps to evaluate and improve their correctness. However, no fine-grained step-level datasets are available to enable thorough evaluation of such verification methods, hindering progress in this direction. We introduce Reveal: Reasoning Verification Evaluation, a new dataset to benchmark automatic verifiers of complex Chain-of-Thought reasoning in open-domain question answering settings. Reveal includes comprehensive labels for the relevance, attribution to evidence passages, and logical correctness of each reasoning step in a language model's answer, across a wide variety of datasets and state-of-the-art language models.
VerifiAgent: a Unified Verification Agent in Language Model Reasoning
Large language models demonstrate remarkable reasoning capabilities but often produce unreliable or incorrect responses. Existing verification methods are typically model-specific or domain-restricted, requiring significant computational resources and lacking scalability across diverse reasoning tasks. To address these limitations, we propose VerifiAgent, a unified verification agent that integrates two levels of verification: meta-verification, which assesses completeness and consistency in model responses, and tool-based adaptive verification, where VerifiAgent autonomously selects appropriate verification tools based on the reasoning type, including mathematical, logical, or commonsense reasoning. This adaptive approach ensures both efficiency and robustness across different verification scenarios. Experimental results show that VerifiAgent outperforms baseline verification methods (e.g., deductive verifier, backward verifier) among all reasoning tasks. Additionally, it can further enhance reasoning accuracy by leveraging feedback from verification results. VerifiAgent can also be effectively applied to inference scaling, achieving better results with fewer generated samples and costs compared to existing process reward models in the mathematical reasoning domain. Code is available at https://github.com/Jiuzhouh/VerifiAgent
Token-Supervised Value Models for Enhancing Mathematical Reasoning Capabilities of Large Language Models
Large Language Models (LLMs) have demonstrated impressive problem-solving capabilities in mathematics through step-by-step reasoning chains. However, they are susceptible to reasoning errors that impact the quality of subsequent reasoning chains and the final answer due to language models' autoregressive token-by-token generating nature. Recent works have proposed adopting external verifiers to guide the generation of reasoning paths, but existing works utilize models that have been trained with step-by-step labels to assess the correctness of token-by-token reasoning chains. Consequently, they struggle to recognize discriminative details of tokens within a reasoning path and lack the ability to evaluate whether an intermediate reasoning path is on a promising track toward the correct final answer. To amend the lack of sound and token-grained math-verification signals, we devise a novel training scheme for verifiers that apply token-level supervision with the expected cumulative reward (i.e., value). Furthermore, we propose a practical formulation of the cumulative reward by reducing it to finding the probability of future correctness of the final answer and thereby enabling the empirical estimation of the value. Experimental results on mathematical reasoning benchmarks show that Token-Supervised Value Model (TVM) can outperform step-by-step verifiers on GSM8K and MATH with Mistral and Llama.
Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification
Despite significant advancements in the general capability of large language models (LLMs), they continue to struggle with consistent and accurate reasoning, especially in complex tasks such as mathematical and code reasoning. One key limitation is that LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors, which hampers their ability to reliably verify and rank outputs. To address this, we scale up the inference-time computation by generating multiple reasoning paths and employing verifiers to assess and rank the generated outputs by correctness. To facilitate this, we introduce a comprehensive dataset consisting of correct and incorrect solutions for math and code tasks, generated by multiple LLMs. This diverse set of solutions enables verifiers to more effectively distinguish and rank correct answers from erroneous outputs. The training methods for building verifiers were selected based on an extensive comparison of existing approaches. Moreover, to leverage the unique strengths of different reasoning strategies, we propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification. CoT provides a clear, step-by-step reasoning process that enhances interpretability, while PoT, being executable, offers a precise and error-sensitive validation mechanism. By taking both of their strengths, our approach significantly improves the accuracy and reliability of reasoning verification. Our verifiers, Math-Rev and Code-Rev, demonstrate substantial performance gains to existing LLMs, achieving state-of-the-art results on benchmarks such as GSM8k and MATH and even outperforming GPT-4o with Qwen-72B-Instruct as the reasoner.
Outcome-supervised Verifiers for Planning in Mathematical Reasoning
Large language models (LLMs) often struggle with maintaining accuracy across a sequence of intermediate reasoning steps in mathematical reasoning, leading to error propagation that undermines the final result. The current methodology to mitigate this issue primarily involves using a verifier model to assess the correctness of generated solution candidates, focusing either on the overall reasoning path or on an incomplete reasoning path. By rethinking this approach, we argue that assessing potentials of incomplete reasoning paths could be more advantageous as it guides towards correct final answers, transforming the task into a planning problem. Our proposed verifier, the Outcome-supervision Value Model (OVM), employs outcome supervision for training, offering an efficient and intuitive method for planning by prioritizing steps that lead to accurate conclusions over mere per-step correctness. Furthermore, the OVM eschews the need for labor-intensive annotations on step-level correctness, enhancing its scalability. Our experiments on two multi-step mathematical reasoning datasets, GSM8K and Game of 24, demonstrate the superior performance of the OVM model. Notably, in GSM8K, our OVM-7B model achieves state-of-the-art results among LLMs up to 13B parameters; especially it does not utilize GPT-4 or code execution. These findings offer a novel perspective on the role of outcome supervision in training verifiers for multi-step reasoning tasks and provide theoretical justification for its advantage in value estimation for planning.
MUSTARD: Mastering Uniform Synthesis of Theorem and Proof Data
Recent large language models (LLMs) have witnessed significant advancement in various tasks, including mathematical reasoning and theorem proving. As these two tasks require strict and formal multi-step inference, they are appealing domains for exploring the reasoning ability of LLMs but still face important challenges. Previous studies such as Chain-of-Thought (CoT) have revealed the effectiveness of intermediate steps guidance. However, such step-wise annotation requires heavy labor, leading to insufficient training steps for current benchmarks. To fill this gap, this work introduces MUSTARD, a data generation framework that masters uniform synthesis of theorem and proof data of high quality and diversity. MUSTARD synthesizes data in three stages: (1) It samples a few mathematical concept seeds as the problem category. (2) Then, it prompts a generative language model with the sampled concepts to obtain both the problems and their step-wise formal solutions. (3) Lastly, the framework utilizes a proof assistant (e.g., Lean Prover) to filter the valid proofs. With the proposed MUSTARD, we present a theorem-and-proof benchmark MUSTARDSAUCE with 5,866 valid data points. Each data point contains an informal statement, an informal proof, and a translated formal proof that passes the prover validation. We perform extensive analysis and demonstrate that MUSTARD generates validated high-quality step-by-step data. We further apply the MUSTARDSAUCE for fine-tuning smaller language models. The fine-tuned Llama 2-7B achieves a 15.41% average relative performance gain in automated theorem proving, and 8.18% in math word problems. Codes and data are available at https://github.com/Eleanor-H/MUSTARD.
Hard2Verify: A Step-Level Verification Benchmark for Open-Ended Frontier Math
Large language model (LLM)-based reasoning systems have recently achieved gold medal-level performance in the IMO 2025 competition, writing mathematical proofs where, to receive full credit, each step must be not only correct but also sufficiently supported. To train LLM-based reasoners in such challenging, open-ended settings, strong verifiers capable of catching step-level mistakes are necessary prerequisites. We introduce Hard2Verify, a human-annotated, step-level verification benchmark produced with over 500 hours of human labor. Hard2Verify is designed to rigorously assess step-level verifiers at the frontier: Verifiers must provide step-level annotations or identify the first error in responses generated by frontier LLMs for very recent, challenging, and open-ended math questions. We evaluate 29 generative critics and process reward models, demonstrating that, beyond a few standouts, open-source verifiers lag closed source models. We subsequently analyze what drives poor performance in step-level verification, the impacts of scaling verifier compute, as well as fundamental questions such as self-verification and verification-generation dynamics.
Language Models Are Greedy Reasoners: A Systematic Formal Analysis of Chain-of-Thought
Large language models (LLMs) have shown remarkable reasoning capabilities given chain-of-thought prompts (examples with intermediate reasoning steps). Existing benchmarks measure reasoning ability indirectly, by evaluating accuracy on downstream tasks such as mathematical reasoning. However, it is unclear how these models obtain the answers and whether they rely on simple heuristics rather than the generated chain-of-thought. To enable systematic exploration of the reasoning ability of LLMs, we present a new synthetic question-answering dataset called PrOntoQA, where each example is generated from a synthetic world model represented in first-order logic. This allows us to parse the generated chain-of-thought into symbolic proofs for formal analysis. Our analysis on InstructGPT and GPT-3 shows that LLMs are quite capable of making correct individual deduction steps, and so are generally capable of reasoning, even in fictional contexts. However, they have difficulty with proof planning: When multiple valid deduction steps are available, they are not able to systematically explore the different options.
Reviving DSP for Advanced Theorem Proving in the Era of Reasoning Models
Recent advancements, such as DeepSeek-Prover-V2-671B and Kimina-Prover-Preview-72B, demonstrate a prevailing trend in leveraging reinforcement learning (RL)-based large-scale training for automated theorem proving. Surprisingly, we discover that even without any training, careful neuro-symbolic coordination of existing off-the-shelf reasoning models and tactic step provers can achieve comparable performance. This paper introduces DSP+, an improved version of the Draft, Sketch, and Prove framework, featuring a fine-grained and integrated neuro-symbolic enhancement for each phase: (1) In the draft phase, we prompt reasoning models to generate concise natural-language subgoals to benefit the sketch phase, removing thinking tokens and references to human-written proofs; (2) In the sketch phase, subgoals are autoformalized with hypotheses to benefit the proving phase, and sketch lines containing syntactic errors are masked according to predefined rules; (3) In the proving phase, we tightly integrate symbolic search methods like Aesop with step provers to establish proofs for the sketch subgoals. Experimental results show that, without any additional model training or fine-tuning, DSP+ solves 80.7\%, 32.8\%, and 24 out of 644 problems from miniF2F, ProofNet, and PutnamBench, respectively, while requiring fewer budgets compared to state-of-the-arts. DSP+ proves imo\_2019\_p1, an IMO problem in miniF2F that is not solved by any prior work. Additionally, DSP+ generates proof patterns comprehensible by human experts, facilitating the identification of formalization errors; For example, eight wrongly formalized statements in miniF2F are discovered. Our results highlight the potential of classical reasoning patterns besides the RL-based training. All components will be open-sourced.
Search, Verify and Feedback: Towards Next Generation Post-training Paradigm of Foundation Models via Verifier Engineering
The evolution of machine learning has increasingly prioritized the development of powerful models and more scalable supervision signals. However, the emergence of foundation models presents significant challenges in providing effective supervision signals necessary for further enhancing their capabilities. Consequently, there is an urgent need to explore novel supervision signals and technical approaches. In this paper, we propose verifier engineering, a novel post-training paradigm specifically designed for the era of foundation models. The core of verifier engineering involves leveraging a suite of automated verifiers to perform verification tasks and deliver meaningful feedback to foundation models. We systematically categorize the verifier engineering process into three essential stages: search, verify, and feedback, and provide a comprehensive review of state-of-the-art research developments within each stage. We believe that verifier engineering constitutes a fundamental pathway toward achieving Artificial General Intelligence.
HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs
The breakthrough of OpenAI o1 highlights the potential of enhancing reasoning to improve LLM. Yet, most research in reasoning has focused on mathematical tasks, leaving domains like medicine underexplored. The medical domain, though distinct from mathematics, also demands robust reasoning to provide reliable answers, given the high standards of healthcare. However, verifying medical reasoning is challenging, unlike those in mathematics. To address this, we propose verifiable medical problems with a medical verifier to check the correctness of model outputs. This verifiable nature enables advancements in medical reasoning through a two-stage approach: (1) using the verifier to guide the search for a complex reasoning trajectory for fine-tuning LLMs, (2) applying reinforcement learning (RL) with verifier-based rewards to enhance complex reasoning further. Finally, we introduce HuatuoGPT-o1, a medical LLM capable of complex reasoning, which outperforms general and medical-specific baselines using only 40K verifiable problems. Experiments show complex reasoning improves medical problem-solving and benefits more from RL. We hope our approach inspires advancements in reasoning across medical and other specialized domains.
Reasoning with Confidence: Efficient Verification of LLM Reasoning Steps via Uncertainty Heads
Solving complex tasks usually requires LLMs to generate long multi-step reasoning chains. Previous work has shown that verifying the correctness of individual reasoning steps can further improve the performance and efficiency of LLMs on such tasks and enhance solution interpretability. However, existing verification approaches, such as Process Reward Models (PRMs), are either computationally expensive, limited to specific domains, or require large-scale human or model-generated annotations. Thus, we propose a lightweight alternative for step-level reasoning verification based on data-driven uncertainty scores. We train transformer-based uncertainty quantification heads (UHeads) that use the internal states of a frozen LLM to estimate the uncertainty of its reasoning steps during generation. The approach is fully automatic: target labels are generated either by another larger LLM (e.g., DeepSeek R1) or in a self-supervised manner by the original model itself. UHeads are both effective and lightweight, containing less than 10M parameters. Across multiple domains, including mathematics, planning, and general knowledge question answering, they match or even surpass the performance of PRMs that are up to 810x larger. Our findings suggest that the internal states of LLMs encode their uncertainty and can serve as reliable signals for reasoning verification, offering a promising direction toward scalable and generalizable introspective LLMs.
Adaptive Test-Time Reasoning via Reward-Guided Dual-Phase Search
Large Language Models (LLMs) have achieved significant advances in reasoning tasks. A key approach is tree-based search with verifiers, which expand candidate reasoning paths and use reward models to guide pruning and selection. Although effective in improving accuracy, these methods are not optimal in terms of efficiency: they perform simple decomposition on the reasoning process, but ignore the planning-execution nature of tasks such as math reasoning or code generation. This results in inefficient exploration of reasoning process. To address this, we propose a dual-phase test-time scaling framework that explicitly separates reasoning into planning and execution, and performs search over the two phases individually. Specifically, we decompose reasoning trajectories and develop reward models for each phase, enabling the search to explore and prune plans and executions separately. We further introduce a dynamic budget allocation mechanism that adaptively redistributes sampling effort based on reward feedback, allowing early stopping on confident steps and reallocation of computation to more challenging parts of the reasoning process. Experiments on both mathematical reasoning and code generation benchmarks demonstrate that our approach consistently improves accuracy while reducing redundant computation.
Lean-STaR: Learning to Interleave Thinking and Proving
Traditional language model-based theorem proving assumes that by training on a sufficient amount of formal proof data, a model will learn to prove theorems. Our key observation is that a wealth of informal information that is not present in formal proofs can be useful for learning to prove theorems. For instance, humans think through steps of a proof, but this thought process is not visible in the resulting code. We present Lean-STaR, a framework for training language models to produce informal thoughts prior to each step of a proof, thereby boosting the model's theorem-proving capabilities. Lean-STaR uses retrospective ground-truth tactics to generate synthetic thoughts for training the language model. At inference time, the trained model directly generates the thoughts prior to the prediction of the tactics in each proof step. Building on the self-taught reasoner framework, we then apply expert iteration to further fine-tune the model on the correct proofs it samples and verifies using the Lean solver. Lean-STaR achieves state-of-the-art results on the miniF2F-test benchmark within the Lean theorem proving environment, significantly outperforming base models (43.4% rightarrow 46.3%, Pass@64). We also analyze the impact of the augmented thoughts on various aspects of the theorem proving process, providing insights into their effectiveness.
BMMR: A Large-Scale Bilingual Multimodal Multi-Discipline Reasoning Dataset
In this paper, we introduce BMMR, a large-scale bilingual, multimodal, multi-disciplinary reasoning dataset for the community to develop and evaluate large multimodal models (LMMs). BMMR comprises 110k college-level questions spanning 300 UNESCO-defined subjects, spanning diverse formats-multiple-choice, fill-in-the-blank, and open-ended QA-and sourced from both print and digital media such as books, exams, and quizzes. All data are curated and filtered via a human-in-the-loop and scalable framework, and each instance is paired with a high-quality reasoning path. The dataset is organized into two parts: BMMR-Eval that comprises 20,458 high-quality instances to comprehensively assess LMMs' knowledge and reasoning across multiple disciplines in both Chinese and English; and BMMR-Train that contains 88,991 instances to support further research and development, extending the current focus on mathematical reasoning to diverse disciplines and domains. In addition, we propose the process-based multi-discipline verifier (i.e., BMMR-Verifier) for accurate and fine-grained evaluation of reasoning paths. Extensive experiments on 24 models reveal that (i) even SOTA models (e.g., o3 and Gemini-2.5-Pro) leave substantial headroom on BMMR-Eval; (ii) reasoning models exhibit discipline bias and outperform LMMs only on specific subjects; (iii) open-source models still trail their proprietary counterparts; and (iv) fine-tuning on BMMR-Train narrows this gap. Additionally, we conduct reasoning-chain analyses using BMMR-Verifier and other in-depth studies, uncovering the challenges LMMs currently face in multidisciplinary reasoning. We will release the data, and we hope our work can offer insights and contributions to the community.
Deductive Beam Search: Decoding Deducible Rationale for Chain-of-Thought Reasoning
Recent advancements have significantly augmented the reasoning capabilities of Large Language Models (LLMs) through various methodologies, especially chain-of-thought (CoT) reasoning. However, previous methods fail to address reasoning errors in intermediate steps, leading to accumulative errors. In this paper, we propose Deductive Beam Search (DBS), which seamlessly integrates CoT and deductive reasoning with step-wise beam search for LLMs. Our approach deploys a verifier, verifying the deducibility of a reasoning step and its premises, thus alleviating the error accumulation. Furthermore, we introduce a scalable and labor-free data construction method to amplify our model's verification capabilities. Extensive experiments demonstrate that our approach significantly enhances the base performance of LLMs of various scales (7B, 13B, 70B, and ChatGPT) across 8 reasoning datasets from 3 diverse reasoning genres, including arithmetic, commonsense, and symbolic. Moreover, our analysis proves DBS's capability of detecting diverse and subtle reasoning errors and robustness on different model scales.
From Informal to Formal -- Incorporating and Evaluating LLMs on Natural Language Requirements to Verifiable Formal Proofs
The research in AI-based formal mathematical reasoning has shown an unstoppable growth trend. These studies have excelled in mathematical competitions like IMO, showing significant progress. However, these studies intertwined multiple skills simultaneously, i.e., problem-solving, reasoning, and writing formal specifications, making it hard to precisely identify the LLMs' strengths and weaknesses in each task. This paper focuses on formal verification, an immediate application scenario of formal reasoning, and decomposes it into six sub-tasks. We constructed 18k high-quality instruction-response pairs across five mainstream formal specification languages (Coq, Lean4, Dafny, ACSL, and TLA+) in six formal-verification-related tasks by distilling GPT-4o. They are split into a 14k+ fine-tuning dataset FM-alpaca and a 4k benchmark FM-Bench. We found that LLMs are good at writing proof segments when given either the code, or the detailed description of proof steps. Also, the fine-tuning brought about a nearly threefold improvement at most. Interestingly, we observed that fine-tuning with formal data also enhances mathematics, reasoning, and coding abilities. We hope our findings inspire further research. Fine-tuned models are released to facilitate subsequent studies
CoT-Self-Instruct: Building high-quality synthetic prompts for reasoning and non-reasoning tasks
We propose CoT-Self-Instruct, a synthetic data generation method that instructs LLMs to first reason and plan via Chain-of-Thought (CoT) based on the given seed tasks, and then to generate a new synthetic prompt of similar quality and complexity for use in LLM training, followed by filtering for high-quality data with automatic metrics. In verifiable reasoning, our synthetic data significantly outperforms existing training datasets, such as s1k and OpenMathReasoning, across MATH500, AMC23, AIME24 and GPQA-Diamond. For non-verifiable instruction-following tasks, our method surpasses the performance of human or standard self-instruct prompts on both AlpacaEval 2.0 and Arena-Hard.
Draft, Sketch, and Prove: Guiding Formal Theorem Provers with Informal Proofs
The formalization of existing mathematical proofs is a notoriously difficult process. Despite decades of research on automation and proof assistants, writing formal proofs remains arduous and only accessible to a few experts. While previous studies to automate formalization focused on powerful search algorithms, no attempts were made to take advantage of available informal proofs. In this work, we introduce Draft, Sketch, and Prove (DSP), a method that maps informal proofs to formal proof sketches, and uses the sketches to guide an automated prover by directing its search to easier sub-problems. We investigate two relevant setups where informal proofs are either written by humans or generated by a language model. Our experiments and ablation studies show that large language models are able to produce well-structured formal sketches that follow the same reasoning steps as the informal proofs. Guiding an automated prover with these sketches enhances its performance from 20.9% to 39.3% on a collection of mathematical competition problems.
Enhancing Reasoning Capabilities of Large Language Models: A Graph-Based Verification Approach
Large Language Models (LLMs) have showcased impressive reasoning capabilities, particularly when guided by specifically designed prompts in complex reasoning tasks such as math word problems. These models typically solve tasks using a chain-of-thought approach, which not only bolsters their reasoning abilities but also provides valuable insights into their problem-solving process. However, there is still significant room for enhancing the reasoning abilities of LLMs. Some studies suggest that the integration of an LLM output verifier can boost reasoning accuracy without necessitating additional model training. In this paper, we follow these studies and introduce a novel graph-based method to further augment the reasoning capabilities of LLMs. We posit that multiple solutions to a reasoning task, generated by an LLM, can be represented as a reasoning graph due to the logical connections between intermediate steps from different reasoning paths. Therefore, we propose the Reasoning Graph Verifier (RGV) to analyze and verify the solutions generated by LLMs. By evaluating these graphs, models can yield more accurate and reliable results.Our experimental results show that our graph-based verification method not only significantly enhances the reasoning abilities of LLMs but also outperforms existing verifier methods in terms of improving these models' reasoning performance.
Scaling Flaws of Verifier-Guided Search in Mathematical Reasoning
Large language models (LLMs) struggle with multi-step reasoning, where inference-time scaling has emerged as a promising strategy for performance improvement. Verifier-guided search outperforms repeated sampling when sample size is limited by selecting and prioritizing valid reasoning paths. However, we identify a critical limitation: scaling flaws, prevalent across different models (Mistral 7B and DeepSeekMath 7B), benchmarks (GSM8K and MATH), and verifiers (outcome value models and process reward models). As sample size increases, verifier-guided search exhibits diminishing advantages and eventually underperforms repeated sampling. Our analysis attributes this to verifier failures, where imperfect verifiers misrank candidates and erroneously prune all valid paths. These issues are further exacerbated in challenging and out-of-distribution problems, restricting search effectiveness. To mitigate verifier failures, we explore reducing reliance on verifiers and conduct preliminary investigations using two simple methods. Our findings reveal fundamental limitations in verifier-guided search and suggest future directions.
Concise and Organized Perception Facilitates Large Language Models for Deductive Reasoning
Exploiting large language models (LLMs) to tackle deductive reasoning has garnered growing attention. It still remains highly challenging to achieve satisfactory results in complex deductive problems, characterized by plenty of premises (i.e., facts or rules) entailing intricate relationships among entities and requiring multi-hop reasoning. One intuitive solution is to decompose the original task into smaller sub-tasks, and then chain the multiple casual reasoning steps together in a forward (e.g., Selection-Inference) or backward (e.g., LAMBADA) direction. However, these techniques inevitably necessitate a large number of overall stages, leading to computationally expensive operations and a higher possibility of making misleading steps. In addition to stage-by-stage decomposition, we draw inspiration from another aspect of human problem-solving. Humans tend to distill the most relevant information and organize their thoughts systematically (e.g., creating mind maps), which assists them in answering questions or drawing conclusions precisely and quickly. In light of this, we propose a novel reasoning approach named Concise and Organized Perception (COP). COP carefully analyzes the given statements to efficiently identify the most pertinent information while eliminating redundancy. It then prompts the LLMs in a more organized form that adapts to the model's inference process. By perceiving concise and organized proofs, the deductive reasoning abilities of LLMs can be better elicited, and the risk of acquiring errors caused by excessive reasoning stages is mitigated. Furthermore, our approach can be combined with the aforementioned ones to further boost their performance. Extensive experimental results on three popular deductive benchmarks (i.e., ProofWriter, PrOntoQA and PrOntoQA-OOD) show that COP significantly outperforms previous state-of-the-art methods.
Reasoning-CV: Fine-tuning Powerful Reasoning LLMs for Knowledge-Assisted Claim Verification
Claim verification is essential in combating misinformation, and large language models (LLMs) have recently emerged in this area as powerful tools for assessing the veracity of claims using external knowledge. Existing LLM-based methods for claim verification typically adopt a Decompose-Then-Verify paradigm, which involves decomposing complex claims into several independent sub-claims and verifying each sub-claim separately. However, this paradigm often introduces errors during the claim decomposition process. To mitigate these errors, we propose to develop the Chain-of-Thought (CoT)-Verify paradigm, which leverages LLM reasoning methods to generate CoT-verification paths for the original complex claim without requiring decompositions into sub-claims and separate verification stages. The CoT-Verify paradigm allows us to propose a natural fine-tuning method called Reasoning-CV to enhance the verification capabilities in LLMs. Reasoning-CV includes a supervised fine-tuning (SFT) stage and a self-improvement direct preference optimization (DPO) stage. Utilizing only an 8B pre-trained LLM, Reasoning-CV demonstrates superior knowledge-assisted claim verification performances compared to existing Decompose-Then-Verify methods, as well as powerful black-box LLMs such as GPT-4o+CoT and o1-preview. Our code is available.
Learning to Seek Evidence: A Verifiable Reasoning Agent with Causal Faithfulness Analysis
Explanations for AI models in high-stakes domains like medicine often lack verifiability, which can hinder trust. To address this, we propose an interactive agent that produces explanations through an auditable sequence of actions. The agent learns a policy to strategically seek external visual evidence to support its diagnostic reasoning. This policy is optimized using reinforcement learning, resulting in a model that is both efficient and generalizable. Our experiments show that this action-based reasoning process significantly improves calibrated accuracy, reducing the Brier score by 18\% compared to a non-interactive baseline. To validate the faithfulness of the agent's explanations, we introduce a causal intervention method. By masking the visual evidence the agent chooses to use, we observe a measurable degradation in its performance (DeltaBrier=+0.029), confirming that the evidence is integral to its decision-making process. Our work provides a practical framework for building AI systems with verifiable and faithful reasoning capabilities.
AutoPSV: Automated Process-Supervised Verifier
In this work, we propose a novel method named Automated Process-Supervised Verifier (\textsc{AutoPSV}) to enhance the reasoning capabilities of large language models (LLMs) by automatically annotating the reasoning steps. AutoPSV begins by training a verification model on the correctness of final answers, enabling it to generate automatic process annotations. This verification model assigns a confidence score to each reasoning step, indicating the probability of arriving at the correct final answer from that point onward. We detect relative changes in the verification's confidence scores across reasoning steps to automatically annotate the reasoning process, enabling error detection even in scenarios where ground truth answers are unavailable. This alleviates the need for numerous manual annotations or the high computational costs associated with model-induced annotation approaches. We experimentally validate that the step-level confidence changes learned by the verification model trained on the final answer correctness can effectively identify errors in the reasoning steps. We demonstrate that the verification model, when trained on process annotations generated by AutoPSV, exhibits improved performance in selecting correct answers from multiple LLM-generated outputs. Notably, we achieve substantial improvements across five datasets in mathematics and commonsense reasoning. The source code of AutoPSV is available at https://github.com/rookie-joe/AutoPSV.
Large Language Models Meet Symbolic Provers for Logical Reasoning Evaluation
First-order logic (FOL) reasoning, which involves sequential deduction, is pivotal for intelligent systems and serves as a valuable task for evaluating reasoning capabilities, particularly in chain-of-thought (CoT) contexts. Existing benchmarks often rely on extensive human annotation or handcrafted templates, making it difficult to achieve the necessary complexity, scalability, and diversity for robust evaluation. To address these limitations, we propose a novel framework called ProverGen that synergizes the generative strengths of Large Language Models (LLMs) with the rigor and precision of symbolic provers, enabling the creation of a scalable, diverse, and high-quality FOL reasoning dataset, ProverQA. ProverQA is also distinguished by its inclusion of accessible and logically coherent intermediate reasoning steps for each problem. Our evaluation shows that state-of-the-art LLMs struggle to solve ProverQA problems, even with CoT prompting, highlighting the dataset's challenging nature. We also finetune Llama3.1-8B-Instruct on a separate training set generated by our framework. The finetuned model demonstrates consistent improvements on both in-distribution and out-of-distribution test sets, suggesting the value of our proposed data generation framework. Code available at: https://github.com/opendatalab/ProverGen
Not All Votes Count! Programs as Verifiers Improve Self-Consistency of Language Models for Math Reasoning
Large language models (LLMs) have shown increasing competence in solving mathematical reasoning problems. However, many open-source LLMs still struggle with errors in calculation and semantic understanding during intermediate reasoning steps. In this work, we introduce Prove, a simple yet effective framework that leverages translated programs derived from natural language solutions as a verification mechanism to filter out potentially incorrect reasoning paths before aggregating final answers. Unlike vanilla majority voting, our approach filters out solutions whose corresponding program output is inconsistent with the generated solution, aggregating only those that pass verification. We conducted extensive experiments using 13 open-source LLMs from various model families and sizes, ranging from 0.5B to 13B parameters, across eight mathematical benchmarks. Our results show that Prove consistently outperforms vanilla majority voting as a heuristic for solving mathematical reasoning tasks across all model sizes and datasets, achieving improvements of up to 18% on GSM8K and 8% on MATH-500. Our codes are available at https://github.com/declare-lab/prove.
Hilbert: Recursively Building Formal Proofs with Informal Reasoning
Large Language Models (LLMs) demonstrate impressive mathematical reasoning abilities, but their solutions frequently contain errors that cannot be automatically verified. Formal theorem proving systems such as Lean 4 offer automated verification with complete accuracy, motivating recent efforts to build specialized prover LLMs that generate verifiable proofs in formal languages. However, a significant gap remains: current prover LLMs solve substantially fewer problems than general-purpose LLMs operating in natural language. We introduce Hilbert, an agentic framework that bridges this gap by combining the complementary strengths of informal reasoning and formal verification. Our system orchestrates four components: an informal LLM that excels at mathematical reasoning, a specialized prover LLM optimized for Lean 4 tactics, a formal verifier, and a semantic theorem retriever. Given a problem that the prover is unable to solve, Hilbert employs recursive decomposition to split the problem into subgoals that it solves with the prover or reasoner LLM. It leverages verifier feedback to refine incorrect proofs as necessary. Experimental results demonstrate that Hilbert substantially outperforms existing approaches on key benchmarks, achieving 99.2% on miniF2F, 6.6% points above the best publicly available method. Hilbert achieves the best known result on PutnamBench. It solves 462/660 problems (70.0%), outperforming proprietary approaches like SeedProver (50.4%) and achieving a 422% improvement over the best publicly available baseline. Thus, Hilbert effectively narrows the gap between informal reasoning and formal proof generation.
Process Reward Models That Think
Step-by-step verifiers -- also known as process reward models (PRMs) -- are a key ingredient for test-time scaling. PRMs require step-level supervision, making them expensive to train. This work aims to build data-efficient PRMs as verbalized step-wise reward models that verify every step in the solution by generating a verification chain-of-thought (CoT). We propose ThinkPRM, a long CoT verifier fine-tuned on orders of magnitude fewer process labels than those required by discriminative PRMs. Our approach capitalizes on the inherent reasoning abilities of long CoT models, and outperforms LLM-as-a-Judge and discriminative verifiers -- using only 1% of the process labels in PRM800K -- across several challenging benchmarks. Specifically, ThinkPRM beats the baselines on ProcessBench, MATH-500, and AIME '24 under best-of-N selection and reward-guided search. In an out-of-domain evaluation on a subset of GPQA-Diamond and LiveCodeBench, our PRM surpasses discriminative verifiers trained on the full PRM800K by 8% and 4.5%, respectively. Lastly, under the same token budget, ThinkPRM scales up verification compute more effectively compared to LLM-as-a-Judge, outperforming it by 7.2% on a subset of ProcessBench. Our work highlights the value of generative, long CoT PRMs that can scale test-time compute for verification while requiring minimal supervision for training. Our code, data, and models will be released at https://github.com/mukhal/thinkprm.
Mathematical Proof as a Litmus Test: Revealing Failure Modes of Advanced Large Reasoning Models
Large reasoning models (e.g., R1, o3) have demonstrated remarkable mathematical problem-solving abilities. However, the high reported accuracy of these advanced models on popular datasets, reliance on purely numerical evaluation and potential benchmark leakage, often masks their true reasoning shortcomings. To address this, we propose leveraging the inherent rigor and methodological complexity of mathematical proofs as a diagnostic tool to expose these hidden failures. Specifically, we introduce the RFMDataset (Reveal Failure Modes), a collection of 200 diverse mathematical proof problems, and thoroughly evaluate advanced models' performance on it. Our in-depth analysis of their failures uncovers 10 fine-grained error types, which shows fundamental limitations in current large reasoning models: 1) large reasoning models grapple profoundly with mathematical proofs, with some generating entirely correct proofs for less than 20% of problems and failing even on basic ones; 2) models exhibit a diverse spectrum of reasoning failures, prominently demonstrating the lack of guarantees for the correctness and rigor of single-step reasoning; and 3) models show hallucination and incompleteness during the reasoning process. Our findings reveal that models' self-reflection is insufficient to resolve the current logical dilemmas, necessitating formalized and fine-grained logical training.
Beyond Theorem Proving: Formulation, Framework and Benchmark for Formal Problem-Solving
As a seemingly self-explanatory task, problem-solving has been a significant component of science and engineering. However, a general yet concrete formulation of problem-solving itself is missing. With the recent development of AI-based problem-solving agents, the demand for process-level verifiability is rapidly increasing yet underexplored. To fill these gaps, we present a principled formulation of problem-solving as a deterministic Markov decision process; a novel framework, FPS (Formal Problem-Solving), which utilizes existing FTP (formal theorem proving) environments to perform process-verified problem-solving; and D-FPS (Deductive FPS), decoupling solving and answer verification for better human-alignment. The expressiveness, soundness and completeness of the frameworks are proven. We construct three benchmarks on problem-solving: FormalMath500, a formalization of a subset of the MATH500 benchmark; MiniF2F-Solving and PutnamBench-Solving, adaptations of FTP benchmarks MiniF2F and PutnamBench. For faithful, interpretable, and human-aligned evaluation, we propose RPE (Restricted Propositional Equivalence), a symbolic approach to determine the correctness of answers by formal verification. We evaluate four prevalent FTP models and two prompting methods as baselines, solving at most 23.77% of FormalMath500, 27.47% of MiniF2F-Solving, and 0.31% of PutnamBench-Solving.
Saturation-Driven Dataset Generation for LLM Mathematical Reasoning in the TPTP Ecosystem
The scarcity of high-quality, logically sound data is a critical bottleneck for advancing the mathematical reasoning of Large Language Models (LLMs). Our work confronts this challenge by turning decades of automated theorem proving research into a scalable data engine. Rather than relying on error-prone LLMs or complex proof-assistant syntax like Lean and Isabelle, our framework leverages E-prover's saturation capabilities on the vast TPTP axiom library to derive a massive, guaranteed-valid corpus of theorems. Our pipeline is principled and simple: saturate axioms, filter for "interesting" theorems, and generate tasks. With no LLMs in the loop, we eliminate factual errors by construction. This purely symbolic data is then transformed into three difficulty-controlled challenges: entailment verification, premise selection, and proof reconstruction. Our zero-shot experiments on frontier models reveal a clear weakness: performance collapses on tasks requiring deep, structural reasoning. Our framework provides both the diagnostic tool to measure this gap and a scalable source of symbolic training data to address it. We make the code and data publicly available. https://github.com/sileod/reasoning_core https://hf.co/datasets/reasoning-core/rc1
CoSineVerifier: Tool-Augmented Answer Verification for Computation-Oriented Scientific Questions
Answer verification methods are widely employed in language model training pipelines spanning data curation, evaluation, and reinforcement learning with verifiable rewards (RLVR). While prior work focus on developing unified verifiers applicable across multiple reasoning scenarios, significant challenges remain in computation-oriented scientific domains, such as algebraic equivalence checking and physical constant substitution. In this paper, we introduce \model, a tool-augmented verifier that leverages external executors to perform precise computations and symbolic simplifications. \model enables robust verification that goes beyond simple semantic matching. We propose a novel two-stage pipeline, which begin with cold-start fine-tuning and followed by multi-turn reinforcement learning with tool integration. Extensive experiments conducted on STEM subjects, general QA, and long-form reasoning tasks demonstrates strong generalization of \model. The results shows that the \model achieves state-of-the-art performance on VerifyBench-Hard and SCI-Bench. And we also employ our \model in RLVR as a reward model, the results show that it consistently outperforms both rubric-based and model-based verifiers on AIME'24 and AIME'25, demonstrating strong potential to enhance reasoning capabilities of LLM. Our model is released at https://huggingface.co/Nanbeige/CoSineVerifier-Tool-4B{https://huggingface.co/Nanbeige/CoSineVerifier-Tool-4B}.
SCI-Verifier: Scientific Verifier with Thinking
As large language models (LLMs) are increasingly applied to scientific reasoning, the complexity of answer formats and the diversity of equivalent expressions make answer verification a critical yet challenging task. Existing verification studies in scientific domains suffer from two major limitations: (a) the absence of systematic evaluation standards and insufficient disciplinary coverage, which hinders their comprehensive assessment; and (b) heavy reliance on cumbersome rule design or prompt engineering, which reduces their effectiveness in complex reasoning scenarios or limits their cross-disciplinary generalization. To address these challenges, we propose solutions at both the data and model levels. On the data side, we construct SCI-VerifyBench, a cross-disciplinary benchmark covering mathematics, physics, biology, chemistry, and general scientific QA. The benchmark is built from real LLM responses and enhanced with domain-specific equivalence transformations that generate challenging and realistic data. Model-based and expert annotations ensure both quality and diversity, enabling rigorous evaluation of verification ability. On the model side, we emphasize the importance of reasoning for verification and introduce SCI-Verifier, a unified reasoning-augmented verifier for scientific domains. Through post-training, SCI-Verifier demonstrates strong logical reasoning and equivalence judgment capabilities while maintaining concise and stable outputs. Together, SCI-VerifyBench and SCI-Verifier provide a principled framework for scientific verification, offering both systematic evaluation and practical pathways to enhance the reliability and applicability of LLMs in scientific domains.
VerifyBench: Benchmarking Reference-based Reward Systems for Large Language Models
Large reasoning models such as OpenAI o1 and DeepSeek-R1 have achieved remarkable performance in the domain of reasoning. A key component of their training is the incorporation of verifiable rewards within reinforcement learning (RL). However, existing reward benchmarks do not evaluate reference-based reward systems, leaving researchers with limited understanding of the accuracy of verifiers used in RL. In this paper, we introduce two benchmarks, VerifyBench and VerifyBench-Hard, designed to assess the performance of reference-based reward systems. These benchmarks are constructed through meticulous data collection and curation, followed by careful human annotation to ensure high quality. Current models still show considerable room for improvement on both VerifyBench and VerifyBench-Hard, especially smaller-scale models. Furthermore, we conduct a thorough and comprehensive analysis of evaluation results, offering insights for understanding and developing reference-based reward systems. Our proposed benchmarks serve as effective tools for guiding the development of verifier accuracy and the reasoning capabilities of models trained via RL in reasoning tasks.
VERINA: Benchmarking Verifiable Code Generation
Large language models (LLMs) are increasingly integrated in software development, but ensuring correctness in LLM-generated code remains challenging and often requires costly manual review. Verifiable code generation -- jointly generating code, specifications, and proofs of code-specification alignment -- offers a promising path to address this limitation and further unleash LLMs' benefits in coding. Yet, there exists a significant gap in evaluation: current benchmarks often lack support for end-to-end verifiable code generation. In this paper, we introduce Verina (Verifiable Code Generation Arena), a high-quality benchmark enabling a comprehensive and modular evaluation of code, specification, and proof generation as well as their compositions. Verina consists of 189 manually curated coding tasks in Lean, with detailed problem descriptions, reference implementations, formal specifications, and extensive test suites. Our extensive evaluation of state-of-the-art LLMs reveals significant challenges in verifiable code generation, especially in proof generation, underscoring the need for improving LLM-based theorem provers in verification domains. The best model, OpenAI o4-mini, generates only 61.4% correct code, 51.0% sound and complete specifications, and 3.6% successful proofs, with one trial per task. We hope Verina will catalyze progress in verifiable code generation by providing a rigorous and comprehensive benchmark. We release our dataset on https://huggingface.co/datasets/sunblaze-ucb/verina and our evaluation code on https://github.com/sunblaze-ucb/verina.
Temporal Consistency for LLM Reasoning Process Error Identification
Verification is crucial for effective mathematical reasoning. We present a new temporal consistency method where verifiers iteratively refine their judgments based on the previous assessment. Unlike one-round verification or multi-model debate approaches, our method leverages consistency in a sequence of self-reflection actions to improve verification accuracy. Empirical evaluations across diverse mathematical process error identification benchmarks (Mathcheck, ProcessBench, and PRM800K) show consistent performance improvements over baseline methods. When applied to the recent DeepSeek R1 distilled models, our method demonstrates strong performance, enabling 7B/8B distilled models to outperform all 70B/72B models and GPT-4o on ProcessBench. Notably, the distilled 14B model with our method achieves performance comparable to Deepseek-R1. Our codes are available at https://github.com/jcguo123/Temporal-Consistency
Leanabell-Prover-V2: Verifier-integrated Reasoning for Formal Theorem Proving via Reinforcement Learning
We introduce our Leanabell-Prover-V2, a 7B large language models (LLMs) that can produce formal theorem proofs in Lean 4, with verifier-integrated Long Chain-of-Thoughts (CoT). Following our previous work Leanabell-Prover-V1, we continual to choose to posttrain existing strong prover models for further performance improvement. In our V2 version, we mainly upgrade the Reinforcement Learning (RL) with feedback provided by the Lean 4 verifier. Crucially, verifier feedback, such as indicating success or detailing specific errors, allows the LLM to become ``self-aware'' of the correctness of its own reasoning process and learn to reflexively correct errors. Leanabell-Prover-V2 directly optimizes LLM reasoning trajectories with multi-turn verifier interactions, together with feedback token masking for stable RL training and a simple reward strategy. Experiments show that Leanabell-Prover-V2 improves performance by 3.2% (pass@128) with Kimina-Prover-Preview-Distill-7B and 2.0% (pass@128) with DeepSeek-Prover-V2-7B on the MiniF2F test set. The source codes, curated data and models are available at: https://github.com/Leanabell-LM/Leanabell-Prover-V2.
Imitate, Explore, and Self-Improve: A Reproduction Report on Slow-thinking Reasoning Systems
Recently, slow-thinking reasoning systems, such as o1, have demonstrated remarkable capabilities in solving complex reasoning tasks. These systems typically engage in an extended thinking process before responding to a query, allowing them to generate more thorough, accurate, and well-reasoned solutions. These systems are primarily developed and maintained by industry, with their core techniques not publicly disclosed. In response, an increasing number of studies from the research community aim to explore the technical foundations underlying these powerful reasoning systems. Building on these prior efforts, this paper presents a reproduction report on implementing o1-like reasoning systems. We introduce an "imitate, explore, and self-improve" framework as our primary technical approach to train the reasoning model. In the initial phase, we use distilled long-form thought data to fine-tune the reasoning model, enabling it to invoke a slow-thinking mode. The model is then encouraged to explore challenging problems by generating multiple rollouts, which can result in increasingly more high-quality trajectories that lead to correct answers. Furthermore, the model undergoes self-improvement by iteratively refining its training dataset. To verify the effectiveness of this approach, we conduct extensive experiments on three challenging benchmarks. The experimental results demonstrate that our approach achieves competitive performance compared to industry-level reasoning systems on these benchmarks.
ProcBench: Benchmark for Multi-Step Reasoning and Following Procedure
Reasoning is central to a wide range of intellectual activities, and while the capabilities of large language models (LLMs) continue to advance, their performance in reasoning tasks remains limited. The processes and mechanisms underlying reasoning are not yet fully understood, but key elements include path exploration, selection of relevant knowledge, and multi-step inference. Problems are solved through the synthesis of these components. In this paper, we propose a benchmark that focuses on a specific aspect of reasoning ability: the direct evaluation of multi-step inference. To this end, we design a special reasoning task where multi-step inference is specifically focused by largely eliminating path exploration and implicit knowledge utilization. Our dataset comprises pairs of explicit instructions and corresponding questions, where the procedures necessary for solving the questions are entirely detailed within the instructions. This setup allows models to solve problems solely by following the provided directives. By constructing problems that require varying numbers of steps to solve and evaluating responses at each step, we enable a thorough assessment of state-of-the-art LLMs' ability to follow instructions. To ensure the robustness of our evaluation, we include multiple distinct tasks. Furthermore, by comparing accuracy across tasks, utilizing step-aware metrics, and applying separately defined measures of complexity, we conduct experiments that offer insights into the capabilities and limitations of LLMs in reasoning tasks. Our findings have significant implications for the development of LLMs and highlight areas for future research in advancing their reasoning abilities. Our dataset is available at https://huggingface.co/datasets/ifujisawa/procbench and code at https://github.com/ifujisawa/proc-bench.
Verifying Chain-of-Thought Reasoning via Its Computational Graph
Current Chain-of-Thought (CoT) verification methods predict reasoning correctness based on outputs (black-box) or activations (gray-box), but offer limited insight into why a computation fails. We introduce a white-box method: Circuit-based Reasoning Verification (CRV). We hypothesize that attribution graphs of correct CoT steps, viewed as execution traces of the model's latent reasoning circuits, possess distinct structural fingerprints from those of incorrect steps. By training a classifier on structural features of these graphs, we show that these traces contain a powerful signal of reasoning errors. Our white-box approach yields novel scientific insights unattainable by other methods. (1) We demonstrate that structural signatures of error are highly predictive, establishing the viability of verifying reasoning directly via its computational graph. (2) We find these signatures to be highly domain-specific, revealing that failures in different reasoning tasks manifest as distinct computational patterns. (3) We provide evidence that these signatures are not merely correlational; by using our analysis to guide targeted interventions on individual transcoder features, we successfully correct the model's faulty reasoning. Our work shows that, by scrutinizing a model's computational process, we can move from simple error detection to a deeper, causal understanding of LLM reasoning.
Towards Solving More Challenging IMO Problems via Decoupled Reasoning and Proving
Automated Theorem Proving (ATP) in formal languages is a foundational challenge for AI. While Large Language Models (LLMs) have driven remarkable progress, a significant gap remains between their powerful informal reasoning capabilities and their weak formal proving performance. Recent studies show that the informal accuracy exceeds 80% while formal success remains below 8% on benchmarks like PutnamBench. We argue this gap persists because current state-of-the-art provers, by tightly coupling reasoning and proving, are trained with paradigms that inadvertently punish deep reasoning in favor of shallow, tactic-based strategies. To bridge this fundamental gap, we propose a novel framework that decouples high-level reasoning from low-level proof generation. Our approach utilizes two distinct, specialized models: a powerful, general-purpose Reasoner to generate diverse, strategic subgoal lemmas, and an efficient Prover to rigorously verify them. This modular design liberates the model's full reasoning potential and bypasses the pitfalls of end-to-end training. We evaluate our method on a challenging set of post-2000 IMO problems, a problem set on which no prior open-source prover has reported success. Our decoupled framework successfully solves 5 of these problems, demonstrating a significant step towards automated reasoning on exceptionally difficult mathematical challenges. To foster future research, we release our full dataset of generated and verified lemmas for a wide range of IMO problems, available at https://tencent-imo.github.io/ .
From Explicit CoT to Implicit CoT: Learning to Internalize CoT Step by Step
When leveraging language models for reasoning tasks, generating explicit chain-of-thought (CoT) steps often proves essential for achieving high accuracy in final outputs. In this paper, we investigate if models can be taught to internalize these CoT steps. To this end, we propose a simple yet effective method for internalizing CoT steps: starting with a model trained for explicit CoT reasoning, we gradually remove the intermediate steps and finetune the model. This process allows the model to internalize the intermediate reasoning steps, thus simplifying the reasoning process while maintaining high performance. Our approach enables a GPT-2 Small model to solve 9-by-9 multiplication with up to 99% accuracy, whereas standard training cannot solve beyond 4-by-4 multiplication. Furthermore, our method proves effective on larger language models, such as Mistral 7B, achieving over 50% accuracy on GSM8K without producing any intermediate steps.
Leaky Thoughts: Large Reasoning Models Are Not Private Thinkers
We study privacy leakage in the reasoning traces of large reasoning models used as personal agents. Unlike final outputs, reasoning traces are often assumed to be internal and safe. We challenge this assumption by showing that reasoning traces frequently contain sensitive user data, which can be extracted via prompt injections or accidentally leak into outputs. Through probing and agentic evaluations, we demonstrate that test-time compute approaches, particularly increased reasoning steps, amplify such leakage. While increasing the budget of those test-time compute approaches makes models more cautious in their final answers, it also leads them to reason more verbosely and leak more in their own thinking. This reveals a core tension: reasoning improves utility but enlarges the privacy attack surface. We argue that safety efforts must extend to the model's internal thinking, not just its outputs.
Leanabell-Prover: Posttraining Scaling in Formal Reasoning
Recent advances in automated theorem proving (ATP) through LLMs have highlighted the potential of formal reasoning with Lean 4 codes. However, ATP has not yet be revolutionized by the recent posttraining scaling as demonstrated by Open AI O1/O3 and Deepseek R1. In this work, we investigate the entire posttraining of ATP, aiming to align it with breakthroughs in reasoning models in natural languages.To begin, we continual train current ATP models with a hybrid dataset, which consists of numerous statement-proof pairs, and additional data aimed at incorporating cognitive behaviors that emulate human reasoning and hypothesis refinement. Next, we explore reinforcement learning with the use of outcome reward returned by Lean 4 compiler. Through our designed continual training and reinforcement learning processes, we have successfully improved existing formal provers, including both DeepSeek-Prover-v1.5 and Goedel-Prover, achieving state-of-the-art performance in the field of whole-proof generation. For example, we achieve a 59.8% pass rate (pass@32) on MiniF2F. This is an on-going project and we will progressively update our findings, release our data and training details.
FINEREASON: Evaluating and Improving LLMs' Deliberate Reasoning through Reflective Puzzle Solving
Many challenging reasoning tasks require not just rapid, intuitive responses, but a more deliberate, multi-step approach. Recent progress in large language models (LLMs) highlights an important shift from the "System 1" way of quick reactions to the "System 2" style of reflection-and-correction problem solving. However, current benchmarks heavily rely on the final-answer accuracy, leaving much of a model's intermediate reasoning steps unexamined. This fails to assess the model's ability to reflect and rectify mistakes within the reasoning process. To bridge this gap, we introduce FINEREASON, a logic-puzzle benchmark for fine-grained evaluation of LLMs' reasoning capabilities. Each puzzle can be decomposed into atomic steps, making it ideal for rigorous validation of intermediate correctness. Building on this, we introduce two tasks: state checking, and state transition, for a comprehensive evaluation of how models assess the current situation and plan the next move. To support broader research, we also provide a puzzle training set aimed at enhancing performance on general mathematical tasks. We show that models trained on our state checking and transition data demonstrate gains in math reasoning by up to 5.1% on GSM8K.
Solve-Detect-Verify: Inference-Time Scaling with Flexible Generative Verifier
Large Language Model (LLM) reasoning for complex tasks inherently involves a trade-off between solution accuracy and computational efficiency. The subsequent step of verification, while intended to improve performance, further complicates this landscape by introducing its own challenging trade-off: sophisticated Generative Reward Models (GenRMs) can be computationally prohibitive if naively integrated with LLMs at test-time, while simpler, faster methods may lack reliability. To overcome these challenges, we introduce FlexiVe, a novel generative verifier that flexibly balances computational resources between rapid, reliable fast thinking and meticulous slow thinking using a Flexible Allocation of Verification Budget strategy. We further propose the Solve-Detect-Verify pipeline, an efficient inference-time scaling framework that intelligently integrates FlexiVe, proactively identifying solution completion points to trigger targeted verification and provide focused solver feedback. Experiments show FlexiVe achieves superior accuracy in pinpointing errors within reasoning traces on ProcessBench. Furthermore, on challenging mathematical reasoning benchmarks (AIME 2024, AIME 2025, and CNMO), our full approach outperforms baselines like self-consistency in reasoning accuracy and inference efficiency. Our system offers a scalable and effective solution to enhance LLM reasoning at test time.
ReFIne: A Framework for Trustworthy Large Reasoning Models with Reliability, Faithfulness, and Interpretability
Recent advances in long chain-of-thought (CoT) reasoning have largely prioritized answer accuracy and token efficiency, while overlooking aspects critical to trustworthiness. We argue that usable reasoning systems must be trustworthy, characterized by three properties: interpretability, faithfulness, and reliability. To this end, we propose ReFIne, a new training framework that integrates supervised fine-tuning with GRPO to encourage models to: (i) improve interpretability by producing structured, tag-based traces with high-level planning that are easier for humans to follow; (ii) enhance faithfulness by explicitly disclosing the decisive information guiding each solution, with consistent cross-section references; and (iii) promote reliability by providing self-assessments of both the derivation's soundness and the confidence of the final answer. We apply ReFIne to the Qwen3 models at multiple scales (1.7B/4B/8B) and evaluate across mathematical benchmarks of varying difficulty. Our experimental results show that ReFIne models generate clearer and better-structured reasoning traces (interpretability +44.0%), more faithfully expose their underlying decision process (faithfulness +18.8%), and offer informative confidence estimates (reliability +42.4%). These findings highlight an overlooked but important direction: reasoning models should be optimized not only for accuracy, but also for broader dimensions of trustworthiness. Our code is available at: https://github.com/Trustworthy-ML-Lab/Training_Trustworthy_LRM_with_Refine
Measuring the Faithfulness of Thinking Drafts in Large Reasoning Models
Large Reasoning Models (LRMs) have significantly enhanced their capabilities in complex problem-solving by introducing a thinking draft that enables multi-path Chain-of-Thought explorations before producing final answers. Ensuring the faithfulness of these intermediate reasoning processes is crucial for reliable monitoring, interpretation, and effective control. In this paper, we propose a systematic counterfactual intervention framework to rigorously evaluate thinking draft faithfulness. Our approach focuses on two complementary dimensions: (1) Intra-Draft Faithfulness, which assesses whether individual reasoning steps causally influence subsequent steps and the final draft conclusion through counterfactual step insertions; and (2) Draft-to-Answer Faithfulness, which evaluates whether final answers are logically consistent with and dependent on the thinking draft, by perturbing the draft's concluding logic. We conduct extensive experiments across six state-of-the-art LRMs. Our findings show that current LRMs demonstrate selective faithfulness to intermediate reasoning steps and frequently fail to faithfully align with the draft conclusions. These results underscore the need for more faithful and interpretable reasoning in advanced LRMs.
Answer Convergence as a Signal for Early Stopping in Reasoning
Chain-of-thought (CoT) prompting enhances reasoning in large language models (LLMs) but often leads to verbose and redundant outputs, thus increasing inference cost. We hypothesize that many reasoning steps are unnecessary for producing correct answers. To investigate this, we start with a systematic study to examine what is the minimum reasoning required for a model to reach a stable decision. We find that on math reasoning tasks like math, models typically converge to their final answers after 60\% of the reasoning steps, suggesting substantial redundancy in the remaining content. Based on these insights, we propose three inference-time strategies to improve efficiency: (1) early stopping via answer consistency, (2) boosting the probability of generating end-of-reasoning signals, and (3) a supervised method that learns when to stop based on internal activations. Experiments across five benchmarks and five open-weights LLMs show that our methods significantly reduce token usage with little or no accuracy drop. In particular, on NaturalQuestions, Answer Consistency reduces tokens by over 40\% while further improving accuracy. Our work underscores the importance of cost-effective reasoning methods that operate at inference time, offering practical benefits for real-world applications.
Large Language Models are Better Reasoners with Self-Verification
Recently, with the chain of thought (CoT) prompting, large language models (LLMs), e.g., GPT-3, have shown strong reasoning ability in several natural language processing tasks such as arithmetic, commonsense, and logical reasoning. However, LLMs with CoT require multi-step prompting and multi-token prediction, which is highly sensitive to individual mistakes and vulnerable to error accumulation. The above issues make the LLMs need the ability to verify the answers. In fact, after inferring conclusions in some thinking decision tasks, people often check them by re-verifying steps to avoid some mistakes. In this paper, we propose and prove that LLMs also have similar self-verification abilities. We take the conclusion obtained by CoT as one of the conditions for solving the original problem. By taking turns masking the original conditions and predicting their results, we calculate an explainable answer verification score based on whether the re-predicted conditions are correct. Experimental results demonstrate that the proposed method can improve the reasoning performance on various arithmetic, commonsense, and logical reasoning datasets. Our code is publicly available at: https://github.com/WENGSYX/Self-Verification.
LeanProgress: Guiding Search for Neural Theorem Proving via Proof Progress Prediction
Mathematical reasoning remains a significant challenge for Large Language Models (LLMs) due to hallucinations. When combined with formal proof assistants like Lean, these hallucinations can be eliminated through rigorous verification, making theorem proving reliable. However, even with formal verification, LLMs still struggle with long proofs and complex mathematical formalizations. While Lean with LLMs offers valuable assistance with retrieving lemmas, generating tactics, or even complete proofs, it lacks a crucial capability: providing a sense of proof progress. This limitation particularly impacts the overall development efficiency in large formalization projects. We introduce LeanProgress, a method that predicts the progress in the proof. Training and evaluating our models made on a large corpus of Lean proofs from Lean Workbook Plus and Mathlib4 and how many steps remain to complete it, we employ data preprocessing and balancing techniques to handle the skewed distribution of proof lengths. Our experiments show that LeanProgress achieves an overall prediction accuracy of 75.1\% in predicting the amount of progress and, hence, the remaining number of steps. When integrated into a best-first search framework using Reprover, our method shows a 3.8\% improvement on Mathlib4 compared to baseline performances of 41.2\%, particularly for longer proofs. These results demonstrate how proof progress prediction can enhance both automated and interactive theorem proving, enabling users to make more informed decisions about proof strategies.
Kimina-Prover Preview: Towards Large Formal Reasoning Models with Reinforcement Learning
We introduce Kimina-Prover Preview, a large language model that pioneers a novel reasoning-driven exploration paradigm for formal theorem proving, as showcased in this preview release. Trained with a large-scale reinforcement learning pipeline from Qwen2.5-72B, Kimina-Prover demonstrates strong performance in Lean 4 proof generation by employing a structured reasoning pattern we term formal reasoning pattern. This approach allows the model to emulate human problem-solving strategies in Lean, iteratively generating and refining proof steps. Kimina-Prover sets a new state-of-the-art on the miniF2F benchmark, reaching 80.7% with pass@8192. Beyond improved benchmark performance, our work yields several key insights: (1) Kimina-Prover exhibits high sample efficiency, delivering strong results even with minimal sampling (pass@1) and scaling effectively with computational budget, stemming from its unique reasoning pattern and RL training; (2) we demonstrate clear performance scaling with model size, a trend previously unobserved for neural theorem provers in formal mathematics; (3) the learned reasoning style, distinct from traditional search algorithms, shows potential to bridge the gap between formal verification and informal mathematical intuition. We open source distilled versions with 1.5B and 7B parameters of Kimina-Prover
Evaluating Step-by-step Reasoning Traces: A Survey
Step-by-step reasoning is widely used to enhance the reasoning ability of large language models (LLMs) in complex problems. Evaluating the quality of reasoning traces is crucial for understanding and improving LLM reasoning. However, the evaluation criteria remain highly unstandardized, leading to fragmented efforts in developing metrics and meta-evaluation benchmarks. To address this gap, this survey provides a comprehensive overview of step-by-step reasoning evaluation, proposing a taxonomy of evaluation criteria with four top-level categories (groundedness, validity, coherence, and utility). We then categorize metrics based on their implementations, survey which metrics are used for assessing each criterion, and explore whether evaluator models can transfer across different criteria. Finally, we identify key directions for future research.
Scaling Generative Verifiers For Natural Language Mathematical Proof Verification And Selection
Large language models have achieved remarkable success on final-answer mathematical problems, largely due to the ease of applying reinforcement learning with verifiable rewards. However, the reasoning underlying these solutions is often flawed. Advancing to rigorous proof-based mathematics requires reliable proof verification capabilities. We begin by analyzing multiple evaluation setups and show that focusing on a single benchmark can lead to brittle or misleading conclusions. To address this, we evaluate both proof-based and final-answer reasoning to obtain a more reliable measure of model performance. We then scale two major generative verification methods (GenSelect and LLM-as-a-Judge) to millions of tokens and identify their combination as the most effective framework for solution verification and selection. We further show that the choice of prompt for LLM-as-a-Judge significantly affects the model's performance, but reinforcement learning can reduce this sensitivity. However, despite improving proof-level metrics, reinforcement learning does not enhance final-answer precision, indicating that current models often reward stylistic or procedural correctness rather than mathematical validity. Our results establish practical guidelines for designing and evaluating scalable proof-verification and selection systems.
Self-Steering Language Models
While test-time reasoning enables language models to tackle complex tasks, searching or planning in natural language can be slow, costly, and error-prone. But even when LMs struggle to emulate the precise reasoning steps needed to solve a problem, they often excel at describing its abstract structure--both how to verify solutions and how to search for them. This paper introduces DisCIPL, a method for "self-steering" LMs where a Planner model generates a task-specific inference program that is executed by a population of Follower models. Our approach equips LMs with the ability to write recursive search procedures that guide LM inference, enabling new forms of verifiable and efficient reasoning. When instantiated with a small Follower (e.g., Llama-3.2-1B), DisCIPL matches (and sometimes outperforms) much larger models, including GPT-4o and o1, on challenging constrained generation tasks. In decoupling planning from execution, our work opens up a design space of highly-parallelized Monte Carlo inference strategies that outperform standard best-of-N sampling, require no finetuning, and can be implemented automatically by existing LMs.
VerIF: Verification Engineering for Reinforcement Learning in Instruction Following
Reinforcement learning with verifiable rewards (RLVR) has become a key technique for enhancing large language models (LLMs), with verification engineering playing a central role. However, best practices for RL in instruction following remain underexplored. In this work, we explore the verification challenge in RL for instruction following and propose VerIF, a verification method that combines rule-based code verification with LLM-based verification from a large reasoning model (e.g., QwQ-32B). To support this approach, we construct a high-quality instruction-following dataset, VerInstruct, containing approximately 22,000 instances with associated verification signals. We apply RL training with VerIF to two models, achieving significant improvements across several representative instruction-following benchmarks. The trained models reach state-of-the-art performance among models of comparable size and generalize well to unseen constraints. We further observe that their general capabilities remain unaffected, suggesting that RL with VerIF can be integrated into existing RL recipes to enhance overall model performance. We have released our datasets, codes, and models to facilitate future research at https://github.com/THU-KEG/VerIF.
J1: Incentivizing Thinking in LLM-as-a-Judge via Reinforcement Learning
The progress of AI is bottlenecked by the quality of evaluation, and powerful LLM-as-a-Judge models have proved to be a core solution. Improved judgment ability is enabled by stronger chain-of-thought reasoning, motivating the need to find the best recipes for training such models to think. In this work we introduce J1, a reinforcement learning approach to training such models. Our method converts both verifiable and non-verifiable prompts to judgment tasks with verifiable rewards that incentivize thinking and mitigate judgment bias. In particular, our approach outperforms all other existing 8B or 70B models when trained at those sizes, including models distilled from DeepSeek-R1. J1 also outperforms o1-mini, and even R1 on some benchmarks, despite training a smaller model. We provide analysis and ablations comparing Pairwise-J1 vs Pointwise-J1 models, offline vs online training recipes, reward strategies, seed prompts, and variations in thought length and content. We find that our models make better judgments by learning to outline evaluation criteria, comparing against self-generated reference answers, and re-evaluating the correctness of model responses.
Pitfalls of Rule- and Model-based Verifiers -- A Case Study on Mathematical Reasoning
Trustworthy verifiers are essential for the success of reinforcement learning with verifiable reward (RLVR), which is the core methodology behind various large reasoning models such as DeepSeek-R1. In complex domains like mathematical reasoning, rule-based verifiers have been widely adopted in previous works to train strong reasoning models. However, the reliability of these verifiers and their impact on the RL training process remain poorly understood. In this work, we take mathematical reasoning as a case study and conduct a comprehensive analysis of various verifiers in both static evaluation and RL training scenarios. First, we find that current open-source rule-based verifiers often fail to recognize equivalent answers presented in different formats across multiple commonly used mathematical datasets, resulting in non-negligible false negative rates. This limitation adversely affects RL training performance and becomes more pronounced as the policy model gets stronger. Subsequently, we investigate model-based verifiers as a potential solution to address these limitations. While the static evaluation shows that model-based verifiers achieve significantly higher verification accuracy, further analysis and RL training results imply that they are highly susceptible to hacking, where they misclassify certain patterns in responses as correct (i.e., false positives). This vulnerability is exploited during policy model optimization, leading to artificially inflated rewards. Our findings underscore the unique risks inherent to both rule-based and model-based verifiers, aiming to offer valuable insights to develop more robust reward systems in reinforcement learning.
Proof Minimization in Neural Network Verification
The widespread adoption of deep neural networks (DNNs) requires efficient techniques for verifying their safety. DNN verifiers are complex tools, which might contain bugs that could compromise their soundness and undermine the reliability of the verification process. This concern can be mitigated using proofs: artifacts that are checkable by an external and reliable proof checker, and which attest to the correctness of the verification process. However, such proofs tend to be extremely large, limiting their use in many scenarios. In this work, we address this problem by minimizing proofs of unsatisfiability produced by DNN verifiers. We present algorithms that remove facts which were learned during the verification process, but which are unnecessary for the proof itself. Conceptually, our method analyzes the dependencies among facts used to deduce UNSAT, and removes facts that did not contribute. We then further minimize the proof by eliminating remaining unnecessary dependencies, using two alternative procedures. We implemented our algorithms on top of a proof producing DNN verifier, and evaluated them across several benchmarks. Our results show that our best-performing algorithm reduces proof size by 37%-82% and proof checking time by 30%-88%, while introducing a runtime overhead of 7%-20% to the verification process itself.
Reinforcing General Reasoning without Verifiers
The recent paradigm shift towards training large language models (LLMs) using DeepSeek-R1-Zero-style reinforcement learning (RL) on verifiable rewards has led to impressive advancements in code and mathematical reasoning. However, this methodology is limited to tasks where rule-based answer verification is possible and does not naturally extend to real-world domains such as chemistry, healthcare, engineering, law, biology, business, and economics. Current practical workarounds use an additional LLM as a model-based verifier; however, this introduces issues such as reliance on a strong verifier LLM, susceptibility to reward hacking, and the practical burden of maintaining the verifier model in memory during training. To address this and extend DeepSeek-R1-Zero-style training to general reasoning domains, we propose a verifier-free method (VeriFree) that bypasses answer verification and instead uses RL to directly maximize the probability of generating the reference answer. We compare VeriFree with verifier-based methods and demonstrate that, in addition to its significant practical benefits and reduced compute requirements, VeriFree matches and even surpasses verifier-based methods on extensive evaluations across MMLU-Pro, GPQA, SuperGPQA, and math-related benchmarks. Moreover, we provide insights into this method from multiple perspectives: as an elegant integration of training both the policy and implicit verifier in a unified model, and as a variational optimization approach. Code is available at https://github.com/sail-sg/VeriFree.
LLM Critics Help Catch Bugs in Mathematics: Towards a Better Mathematical Verifier with Natural Language Feedback
Mathematical verfier achieves success in mathematical reasoning tasks by validating the correctness of solutions. However, existing verifiers are trained with binary classification labels, which are not informative enough for the model to accurately assess the solutions. To mitigate the aforementioned insufficiency of binary labels, we introduce step-wise natural language feedbacks as rationale labels (i.e., the correctness of the current step and the explanations). In this paper, we propose Math-Minos, a natural language feedback enhanced verifier by constructing automatically-generated training data and a two-stage training paradigm for effective training and efficient inference. Our experiments reveal that a small set (30k) of natural language feedbacks can significantly boost the performance of the verifier by the accuracy of 1.6\% (86.6\% rightarrow 88.2\%) on GSM8K and 0.8\% (37.8\% rightarrow 38.6\%) on MATH. We have released our code and data for further exploration.
Step-KTO: Optimizing Mathematical Reasoning through Stepwise Binary Feedback
Large language models (LLMs) have recently demonstrated remarkable success in mathematical reasoning. Despite progress in methods like chain-of-thought prompting and self-consistency sampling, these advances often focus on final correctness without ensuring that the underlying reasoning process is coherent and reliable. This paper introduces Step-KTO, a training framework that combines process-level and outcome-level binary feedback to guide LLMs toward more trustworthy reasoning trajectories. By providing binary evaluations for both the intermediate reasoning steps and the final answer, Step-KTO encourages the model to adhere to logical progressions rather than relying on superficial shortcuts. Our experiments on challenging mathematical benchmarks show that Step-KTO significantly improves both final answer accuracy and the quality of intermediate reasoning steps. For example, on the MATH-500 dataset, Step-KTO achieves a notable improvement in Pass@1 accuracy over strong baselines. These results highlight the promise of integrating stepwise process feedback into LLM training, paving the way toward more interpretable and dependable reasoning capabilities.
Boosting Language Models Reasoning with Chain-of-Knowledge Prompting
Recently, Chain-of-Thought (CoT) prompting has delivered success on complex reasoning tasks, which aims at designing a simple prompt like ``Let's think step by step'' or multiple in-context exemplars with well-designed rationales to elicit Large Language Models (LLMs) to generate intermediate reasoning steps. However, the generated rationales often come with mistakes, making unfactual and unfaithful reasoning chains. To mitigate this brittleness, we propose a novel Chain-of-Knowledge (CoK) prompting, where we aim at eliciting LLMs to generate explicit pieces of knowledge evidence in the form of structure triple. This is inspired by our human behaviors, i.e., we can draw a mind map or knowledge map as the reasoning evidence in the brain before answering a complex question. Benefiting from CoK, we additionally introduce a F^2-Verification method to estimate the reliability of the reasoning chains in terms of factuality and faithfulness. For the unreliable response, the wrong evidence can be indicated to prompt the LLM to rethink. Extensive experiments demonstrate that our method can further improve the performance of commonsense, factual, symbolic, and arithmetic reasoning tasks.
Long-horizon Reasoning Agent for Olympiad-Level Mathematical Problem Solving
Large language models (LLMs) have achieved significant progress in solving complex reasoning tasks by Reinforcement Learning with Verifiable Rewards (RLVR). This advancement is also inseparable from the oversight automated by reliable verifiers. However, current outcome-based verifiers (OVs) are unable to inspect the unreliable intermediate steps in the long reasoning chains of thought (CoTs). Meanwhile, current process-based verifiers (PVs) have difficulties in reliably detecting errors in the complex long CoTs, limited by the scarcity of high-quality annotations due to the prohibitive costs of human annotations. Therefore, we propose the Outcome-based Process Verifier (OPV), which verifies the rationale process of summarized outcomes from long CoTs to achieve both accurate and efficient verification and enable large-scale annotation. To empower the proposed verifier, we adopt an iterative active learning framework with expert annotations to progressively improve the verification capability of OPV with fewer annotation costs. Specifically, in each iteration, the most uncertain cases of the current best OPV are annotated and then subsequently used to train a new OPV through Rejection Fine-Tuning (RFT) and RLVR for the next round. Extensive experiments demonstrate OPV's superior performance and broad applicability. It achieves new state-of-the-art results on our held-out \thisbench, outperforming much larger open-source models such as Qwen3-Max-Preview with an F1 score of 83.1 compared to 76.3. Furthermore, OPV effectively detects false positives within synthetic dataset, closely align with expert assessment. When collaborating with policy models, OPV consistently yields performance gains, e.g., raising the accuracy of DeepSeek-R1-Distill-Qwen-32B from 55.2\% to 73.3\% on AIME2025 as the compute budget scales.
Variation in Verification: Understanding Verification Dynamics in Large Language Models
Recent advances have shown that scaling test-time computation enables large language models (LLMs) to solve increasingly complex problems across diverse domains. One effective paradigm for test-time scaling (TTS) involves LLM generators producing multiple solution candidates, with LLM verifiers assessing the correctness of these candidates without reference answers. In this paper, we study generative verifiers, which perform verification by generating chain-of-thought (CoT) reasoning followed by a binary verdict. We systematically analyze verification dynamics across three dimensions - problem difficulty, generator capability, and verifier generation capability - with empirical studies on 12 benchmarks across mathematical reasoning, knowledge, and natural language reasoning tasks using 14 open-source models (2B to 72B parameter range) and GPT-4o. Our experiments reveal three key findings about verification effectiveness: (1) Easy problems allow verifiers to more reliably certify correct responses; (2) Weak generators produce errors that are easier to detect than strong generators; (3) Verification ability is generally correlated with the verifier's own problem-solving capability, but this relationship varies with problem difficulty. These findings reveal opportunities to optimize basic verification strategies in TTS applications. First, given the same verifier, some weak generators can nearly match stronger ones in post-verification TTS performance (e.g., the Gemma2-9B to Gemma2-27B performance gap shrinks by 75.5%). Second, we identify cases where strong verifiers offer limited advantage over weak ones, as both fail to provide meaningful verification gains, suggesting that verifier scaling alone cannot overcome fundamental verification challenges.
Toward Honest Language Models for Deductive Reasoning
Deductive reasoning is the process of deriving conclusions strictly from the given premises, without relying on external knowledge. We define honesty in this setting as a model's ability to respond only when the conclusion is logically entailed by the premises, and to abstain otherwise. However, current language models often fail to reason honestly, producing unwarranted answers when the input is insufficient. To study this challenge, we formulate honest deductive reasoning as multi-step tasks where models must either derive the correct conclusion or abstain. We curate two datasets from graph structures, one for linear algebra and one for logical inference, and introduce unanswerable cases by randomly perturbing an edge in half of the instances. We find that prompting and existing training methods, including GRPO with or without supervised fine-tuning initialization, struggle on these tasks. In particular, GRPO optimize only for final task outcomes, leaving models vulnerable to collapse when negative rewards dominate early training. To address this, we propose ACNCHOR, a reinforcement learning method that injects ground truth trajectories into rollouts, preventing early training collapse. Our results demonstrate that this method stabilizes learning and significantly improves the overall reasoning performance, underscoring the importance of training dynamics for enabling honest deductive reasoning in language models.
Adaptive Guidance Accelerates Reinforcement Learning of Reasoning Models
We study the process through which reasoning models trained with reinforcement learning on verifiable rewards (RLVR) can learn to solve new problems. We find that RLVR drives performance in two main ways: (1) by compressing pass@k into pass@1 and (2) via "capability gain" in which models learn to solve new problems that they previously could not solve even at high k. We find that while capability gain exists across model scales, learning to solve new problems is primarily driven through self-distillation. We demonstrate these findings across model scales ranging from 0.5B to 72B parameters on >500,000 reasoning problems with prompts and verifiable final answers across math, science, and code domains. We further show that we can significantly improve pass@k rates by leveraging natural language guidance for the model to consider within context while still requiring the model to derive a solution chain from scratch. Based of these insights, we derive Guide -- a new class of online training algorithms. Guide adaptively incorporates hints into the model's context on problems for which all rollouts were initially incorrect and adjusts the importance sampling ratio for the "off-policy" trajectories in order to optimize the policy for contexts in which the hints are no longer present. We describe variants of Guide for GRPO and PPO and empirically show that Guide-GRPO on 7B and 32B parameter models improves generalization over its vanilla counterpart with up to 4% macro-average improvement across math benchmarks. We include careful ablations to analyze Guide's components and theoretically analyze Guide's learning efficiency.
LAMBADA: Backward Chaining for Automated Reasoning in Natural Language
Remarkable progress has been made on automated reasoning with natural text, by using Language Models (LMs) and methods such as Chain-of-Thought and Selection-Inference. These techniques search for proofs in the forward direction from axioms to the conclusion, which suffers from a combinatorial explosion of the search space, and thus high failure rates for problems requiring longer chains of reasoning. The classical automated reasoning literature has shown that reasoning in the backward direction (i.e. from the intended conclusion to supporting axioms) is significantly more efficient at proof-finding. Importing this intuition into the LM setting, we develop a Backward Chaining algorithm, called LAMBADA, that decomposes reasoning into four sub-modules. These sub-modules are simply implemented by few-shot prompted LM inference. We show that LAMBADA achieves sizable accuracy boosts over state-of-the-art forward reasoning methods on challenging logical reasoning datasets, particularly when deep and accurate proof chains are required.
A Deductive Verification Infrastructure for Probabilistic Programs
This paper presents a quantitative program verification infrastructure for discrete probabilistic programs. Our infrastructure can be viewed as the probabilistic analogue of Boogie: its central components are an intermediate verification language (IVL) together with a real-valued logic. Our IVL provides a programming-language-style for expressing verification conditions whose validity implies the correctness of a program under investigation. As our focus is on verifying quantitative properties such as bounds on expected outcomes, expected run-times, or termination probabilities, off-the-shelf IVLs based on Boolean first-order logic do not suffice. Instead, a paradigm shift from the standard Boolean to a real-valued domain is required. Our IVL features quantitative generalizations of standard verification constructs such as assume- and assert-statements. Verification conditions are generated by a weakest-precondition-style semantics, based on our real-valued logic. We show that our verification infrastructure supports natural encodings of numerous verification techniques from the literature. With our SMT-based implementation, we automatically verify a variety of benchmarks. To the best of our knowledge, this establishes the first deductive verification infrastructure for expectation-based reasoning about probabilistic programs.
LeanDojo: Theorem Proving with Retrieval-Augmented Language Models
Large language models (LLMs) have shown promise in proving formal theorems using proof assistants such as Lean. However, existing methods are difficult to reproduce or build on, due to private code, data, and large compute requirements. This has created substantial barriers to research on machine learning methods for theorem proving. This paper removes these barriers by introducing LeanDojo: an open-source Lean playground consisting of toolkits, data, models, and benchmarks. LeanDojo extracts data from Lean and enables interaction with the proof environment programmatically. It contains fine-grained annotations of premises in proofs, providing valuable data for premise selection: a key bottleneck in theorem proving. Using this data, we develop ReProver (Retrieval-Augmented Prover): the first LLM-based prover that is augmented with retrieval for selecting premises from a vast math library. It is inexpensive and needs only one GPU week of training. Our retriever leverages LeanDojo's program analysis capability to identify accessible premises and hard negative examples, which makes retrieval much more effective. Furthermore, we construct a new benchmark consisting of 96,962 theorems and proofs extracted from Lean's math library. It features challenging data split requiring the prover to generalize to theorems relying on novel premises that are never used in training. We use this benchmark for training and evaluation, and experimental results demonstrate the effectiveness of ReProver over non-retrieval baselines and GPT-4. We thus provide the first set of open-source LLM-based theorem provers without any proprietary datasets and release it under a permissive MIT license to facilitate further research.
PuzzleClone: An SMT-Powered Framework for Synthesizing Verifiable Data
High-quality mathematical and logical datasets with verifiable answers are essential for strengthening the reasoning capabilities of large language models (LLMs). While recent data augmentation techniques have facilitated the creation of large-scale benchmarks, existing LLM-generated datasets often suffer from limited reliability, diversity, and scalability. To address these challenges, we introduce PuzzleClone, a formal framework for synthesizing verifiable data at scale using Satisfiability Modulo Theories (SMT). Our approach features three key innovations: (1) encoding seed puzzles into structured logical specifications, (2) generating scalable variants through systematic variable and constraint randomization, and (3) ensuring validity via a reproduction mechanism. Applying PuzzleClone, we construct a curated benchmark comprising over 83K diverse and programmatically validated puzzles. The generated puzzles span a wide spectrum of difficulty and formats, posing significant challenges to current state-of-the-art models. We conduct post training (SFT and RL) on PuzzleClone datasets. Experimental results show that training on PuzzleClone yields substantial improvements not only on PuzzleClone testset but also on logic and mathematical benchmarks. Post training raises PuzzleClone average from 14.4 to 56.2 and delivers consistent improvements across 7 logic and mathematical benchmarks up to 12.5 absolute percentage points (AMC2023 from 52.5 to 65.0). Our code and data are available at https://github.com/puzzleclone.
RLPR: Extrapolating RLVR to General Domains without Verifiers
Reinforcement Learning with Verifiable Rewards (RLVR) demonstrates promising potential in advancing the reasoning capabilities of LLMs. However, its success remains largely confined to mathematical and code domains. This primary limitation stems from the heavy reliance on domain-specific verifiers, which results in prohibitive complexity and limited scalability. To address the challenge, our key observation is that LLM's intrinsic probability of generating a correct free-form answer directly indicates its own evaluation of the reasoning reward (i.e., how well the reasoning process leads to the correct answer). Building on this insight, we propose RLPR, a simple verifier-free framework that extrapolates RLVR to broader general domains. RLPR uses the LLM's own token probability scores for reference answers as the reward signal and maximizes the expected reward during training. We find that addressing the high variance of this noisy probability reward is crucial to make it work, and propose prob-to-reward and stabilizing methods to ensure a precise and stable reward from LLM intrinsic probabilities. Comprehensive experiments in four general-domain benchmarks and three mathematical benchmarks show that RLPR consistently improves reasoning capabilities in both areas for Gemma, Llama, and Qwen based models. Notably, RLPR outperforms concurrent VeriFree by 7.6 points on TheoremQA and 7.5 points on Minerva, and even surpasses strong verifier-model-dependent approaches General-Reasoner by 1.6 average points across seven benchmarks.
Natural Logic-guided Autoregressive Multi-hop Document Retrieval for Fact Verification
A key component of fact verification is thevevidence retrieval, often from multiple documents. Recent approaches use dense representations and condition the retrieval of each document on the previously retrieved ones. The latter step is performed over all the documents in the collection, requiring storing their dense representations in an index, thus incurring a high memory footprint. An alternative paradigm is retrieve-and-rerank, where documents are retrieved using methods such as BM25, their sentences are reranked, and further documents are retrieved conditioned on these sentences, reducing the memory requirements. However, such approaches can be brittle as they rely on heuristics and assume hyperlinks between documents. We propose a novel retrieve-and-rerank method for multi-hop retrieval, that consists of a retriever that jointly scores documents in the knowledge source and sentences from previously retrieved documents using an autoregressive formulation and is guided by a proof system based on natural logic that dynamically terminates the retrieval process if the evidence is deemed sufficient. This method is competitive with current state-of-the-art methods on FEVER, HoVer and FEVEROUS-S, while using 5 to 10 times less memory than competing systems. Evaluation on an adversarial dataset indicates improved stability of our approach compared to commonly deployed threshold-based methods. Finally, the proof system helps humans predict model decisions correctly more often than using the evidence alone.
VeriThinker: Learning to Verify Makes Reasoning Model Efficient
Large Reasoning Models (LRMs) excel at complex tasks using Chain-of-Thought (CoT) reasoning. However, their tendency to overthinking leads to unnecessarily lengthy reasoning chains, dramatically increasing inference costs. To mitigate this issue, we introduce VeriThinker, a novel approach for CoT compression. Unlike conventional methods that fine-tune LRMs directly on the original reasoning task using synthetic concise CoT data, we innovatively fine-tune the model solely through an auxiliary verification task. By training LRMs to accurately verify the correctness of CoT solutions, the LRMs inherently become more discerning about the necessity of subsequent self-reflection steps, thereby effectively suppressing overthinking. Extensive experiments validate that VeriThinker substantially reduces reasoning chain lengths while maintaining or even slightly improving accuracy. When applied to DeepSeek-R1-Distill-Qwen-7B, our approach reduces reasoning tokens on MATH500 from 3790 to 2125 while improving accuracy by 0.8% (94.0% to 94.8%), and on AIME25, tokens decrease from 14321 to 10287 with a 2.1% accuracy gain (38.7% to 40.8%). Additionally, our experiments demonstrate that VeriThinker can also be zero-shot generalized to speculative reasoning. Code is available at https://github.com/czg1225/VeriThinker
TrimR: Verifier-based Training-Free Thinking Compression for Efficient Test-Time Scaling
Large Reasoning Models (LRMs) demonstrate exceptional capability in tackling complex mathematical, logical, and coding tasks by leveraging extended Chain-of-Thought (CoT) reasoning. Test-time scaling methods, such as prolonging CoT with explicit token-level exploration, can push LRMs' accuracy boundaries, but they incur significant decoding overhead. A key inefficiency source is LRMs often generate redundant thinking CoTs, which demonstrate clear structured overthinking and underthinking patterns. Inspired by human cognitive reasoning processes and numerical optimization theories, we propose TrimR, a verifier-based, training-free, efficient framework for dynamic CoT compression to trim reasoning and enhance test-time scaling, explicitly tailored for production-level deployment. Our method employs a lightweight, pretrained, instruction-tuned verifier to detect and truncate redundant intermediate thoughts of LRMs without any LRM or verifier fine-tuning. We present both the core algorithm and asynchronous online system engineered for high-throughput industrial applications. Empirical evaluations on Ascend NPUs and vLLM show that our framework delivers substantial gains in inference efficiency under large-batch workloads. In particular, on the four MATH500, AIME24, AIME25, and GPQA benchmarks, the reasoning runtime of Pangu Pro MoE, Pangu-R-38B, QwQ-32B, and DeepSeek-R1-Distill-Qwen-32B is improved by up to 70% with negligible impact on accuracy.
L0-Reasoning Bench: Evaluating Procedural Correctness in Language Models via Simple Program Execution
Complex reasoning tasks often rely on the ability to consistently and accurately apply simple rules across incremental steps, a foundational capability which we term "level-0" reasoning. To systematically evaluate this capability, we introduce L0-Bench, a language model benchmark for testing procedural correctness -- the ability to generate correct reasoning processes, complementing existing benchmarks that primarily focus on outcome correctness. Given synthetic Python functions with simple operations, L0-Bench grades models on their ability to generate step-by-step, error-free execution traces. The synthetic nature of L0-Bench enables systematic and scalable generation of test programs along various axes (e.g., number of trace steps). We evaluate a diverse array of recent closed-source and open-weight models on a baseline test set. All models exhibit degradation as the number of target trace steps increases, while larger models and reasoning-enhanced models better maintain correctness over multiple steps. Additionally, we use L0-Bench to explore test-time scaling along three dimensions: input context length, number of solutions for majority voting, and inference steps. Our results suggest substantial room to improve "level-0" reasoning and potential directions to build more reliable reasoning systems.
Generative Logic: A New Computer Architecture for Deterministic Reasoning and Knowledge Generation
We present Generative Logic (GL), a deterministic architecture that begins from user-supplied axiomatic definitions -- written in a minimalist Mathematical Programming Language (MPL) -- and systematically explores their deductive neighborhood. Definitions are compiled into a distributed grid of simple Logic Blocks (LBs) that exchange messages; any time several expressions unify under an inference rule, a new fact is emitted with full provenance to its sources, yielding replayable, auditable proof graphs. A prototype software implementation instantiates the workflow on first-order Peano arithmetic. Starting only from the Peano axioms, GL enumerates candidate implications, applies normalization and type filters, and automatically reconstructs machine-checkable proofs of foundational arithmetic laws including associativity and commutativity of addition, associativity and commutativity of multiplication, and distributivity. Generated proofs export to navigable HTML so that every inference step can be inspected independently. We outline a hardware-software co-design path toward massively parallel realizations and describe prospective integration with probabilistic models (e.g., Large Language Models (LLMs)) for autoformalization and conjecture seeding. The Python and MPL code to reproduce the Peano experiments, along with the full HTML proof graphs, are available in the project's GitHub repository at https://github.com/Generative-Logic/GL/tree/35a111ea9ba53afe051703d6050be0c3923e9724 and are permanently archived at https://doi.org/10.5281/zenodo.16408441. We invite community feedback and collaboration.
Question Decomposition Improves the Faithfulness of Model-Generated Reasoning
As large language models (LLMs) perform more difficult tasks, it becomes harder to verify the correctness and safety of their behavior. One approach to help with this issue is to prompt LLMs to externalize their reasoning, e.g., by having them generate step-by-step reasoning as they answer a question (Chain-of-Thought; CoT). The reasoning may enable us to check the process that models use to perform tasks. However, this approach relies on the stated reasoning faithfully reflecting the model's actual reasoning, which is not always the case. To improve over the faithfulness of CoT reasoning, we have models generate reasoning by decomposing questions into subquestions. Decomposition-based methods achieve strong performance on question-answering tasks, sometimes approaching that of CoT while improving the faithfulness of the model's stated reasoning on several recently-proposed metrics. By forcing the model to answer simpler subquestions in separate contexts, we greatly increase the faithfulness of model-generated reasoning over CoT, while still achieving some of the performance gains of CoT. Our results show it is possible to improve the faithfulness of model-generated reasoning; continued improvements may lead to reasoning that enables us to verify the correctness and safety of LLM behavior.
Neural Theorem Proving: Generating and Structuring Proofs for Formal Verification
Formally verifying properties of software code has been a highly desirable task, especially with the emergence of LLM-generated code. In the same vein, they provide an interesting avenue for the exploration of formal verification and mechanistic interpretability. Since the introduction of code-specific models, despite their successes in generating code in Lean4 and Isabelle, the task of generalized theorem proving still remains far from being fully solved and will be a benchmark for reasoning capability in LLMs. In this work, we introduce a framework that generates whole proofs in a formal language to be used within systems that utilize the power of built-in tactics and off-the-shelf automated theorem provers. Our framework includes 3 components: generating natural language statements of the code to be verified, an LLM that generates formal proofs for the given statement, and a module employing heuristics for building the final proof. To train the LLM, we employ a 2-stage fine-tuning process, where we first use SFT-based training to enable the model to generate syntactically correct Isabelle code and then RL-based training that encourages the model to generate proofs verified by a theorem prover. We validate our framework using the miniF2F-test benchmark and the Isabelle proof assistant and design a use case to verify the correctness of the AWS S3 bucket access policy code. We also curate a dataset based on the FVEL\textnormal{ER} dataset for future training tasks.
EvoSyn: Generalizable Evolutionary Data Synthesis for Verifiable Learning
Reliable verifiable data has become a key driver of capability gains in modern language models, enabling stable reinforcement learning with verifiable rewards and effective distillation that transfers competence across math, coding, and agentic tasks. Yet constructing generalizable synthetic verifiable data remains difficult due to hallucination-prone generation, and weak or trivial verification artifacts that fail to separate strong from weak solutions. Existing approaches often rely on task-specific heuristics or post-hoc filters that do not transfer across domains and lack a principled, universal evaluator of verifiability. In this work, we introduce an evolutionary, task-agnostic, strategy-guided, executably-checkable data synthesis framework that, from minimal seed supervision, jointly synthesizes problems, diverse candidate solutions, and verification artifacts, and iteratively discovers strategies via a consistency-based evaluator that enforces agreement between human-annotated and strategy-induced checks. This pipeline upgrades filtering into principled synthesis: it reliably assembles coherent, verifiable training instances and generalizes without domain-specific rules. Our experiments demonstrate the effectiveness of the proposed approach under both RLVR and model distillation training paradigms. The results show that training with our synthesized data yields significant improvements on both the LiveCodeBench and AgentBench-OS tasks, highlighting the robust generalization of our framework.
Interpretable Proof Generation via Iterative Backward Reasoning
We present IBR, an Iterative Backward Reasoning model to solve the proof generation tasks on rule-based Question Answering (QA), where models are required to reason over a series of textual rules and facts to find out the related proof path and derive the final answer. We handle the limitations of existed works in two folds: 1) enhance the interpretability of reasoning procedures with detailed tracking, by predicting nodes and edges in the proof path iteratively backward from the question; 2) promote the efficiency and accuracy via reasoning on the elaborate representations of nodes and history paths, without any intermediate texts that may introduce external noise during proof generation. There are three main modules in IBR, QA and proof strategy prediction to obtain the answer and offer guidance for the following procedure; parent node prediction to determine a node in the existing proof that a new child node will link to; child node prediction to find out which new node will be added to the proof. Experiments on both synthetic and paraphrased datasets demonstrate that IBR has better in-domain performance as well as cross-domain transferability than several strong baselines. Our code and models are available at https://github.com/find-knowledge/IBR .
Beyond the Last Answer: Your Reasoning Trace Uncovers More than You Think
Large Language Models (LLMs) leverage step-by-step reasoning to solve complex problems. Standard evaluation practice involves generating a complete reasoning trace and assessing the correctness of the final answer presented at its conclusion. In this paper, we challenge the reliance on the final answer by posing the following two questions: Does the final answer reliably represent the model's optimal conclusion? Can alternative reasoning paths yield different results? To answer these questions, we analyze intermediate reasoning steps, termed subthoughts, and propose a method based on our findings. Our approach involves segmenting a reasoning trace into sequential subthoughts based on linguistic cues. We start by prompting the model to generate continuations from the end-point of each intermediate subthought. We extract a potential answer from every completed continuation originating from different subthoughts. We find that aggregating these answers by selecting the most frequent one (the mode) often yields significantly higher accuracy compared to relying solely on the answer derived from the original complete trace. Analyzing the consistency among the answers derived from different subthoughts reveals characteristics that correlate with the model's confidence and correctness, suggesting potential for identifying less reliable answers. Our experiments across various LLMs and challenging mathematical reasoning datasets (AIME2024 and AIME2025) show consistent accuracy improvements, with gains reaching up to 13\% and 10\% respectively. Implementation is available at: https://github.com/hammoudhasan/SubthoughtReasoner.
Scoring Verifiers: Evaluating Synthetic Verification in Code and Reasoning
Code verification has recently found great success as a critical component in training large scale reasoning models for coding. Synthetic techniques such as self-generated test cases and reward models provide a way to enhance code capabilities beyond predefined tests. Building on these advancements, we propose new benchmarks designed to systematically evaluate the impact of synthetic verification methods on assessing solution correctness. We introduce HE-R, HE-R+, MBPP-R, and MBPP-R+, which transform existing coding benchmarks into scoring and ranking datasets to evaluate the effectiveness of synthetic verifiers. Using these benchmarks, we analyze synthetic verification methods in standard, reasoning-based, and reward-based LLMs. Our results show that recent reasoning models significantly improve test case generation and that scaling test cases enhances verification accuracy.
Can Aha Moments Be Fake? Identifying True and Decorative Thinking Steps in Chain-of-Thought
Recent large language models (LLMs) can generate long Chain-of-Thought (CoT) at test time, enabling them to solve complex tasks. These reasoning steps in CoT are often assumed as a faithful reflection of the model's internal thinking process, and used to monitor unsafe intentions. However, we find many reasoning steps don't truly contribute to LLMs' prediction. We measure the step-wise causal influence of each reasoning step on the model's final prediction with a proposed True Thinking Score (TTS). We reveal that LLMs often interleave between true-thinking steps (which are genuinely used to produce the final output) and decorative-thinking steps (which only give the appearance of reasoning but have minimal causal impact). Notably, only a small subset of the total reasoning steps have a high TTS that causally drive the model's prediction: e.g., for the AIME dataset, only an average of 2.3% of reasoning steps in CoT have a TTS >= 0.7 (range: 0-1) under the Qwen-2.5 model. Furthermore, we identify a TrueThinking direction in the latent space of LLMs. By steering along or against this direction, we can force the model to perform or disregard certain CoT steps when computing the final result. Finally, we highlight that self-verification steps in CoT (i.e., aha moments) can also be decorative, where LLMs do not truly verify their solution. Steering along the TrueThinking direction can force internal reasoning over these steps, resulting in a change in the final results. Overall, our work reveals that LLMs often verbalize reasoning steps without actually performing them internally, which undermines both the efficiency of LLM reasoning and the trustworthiness of CoT.
Verifying the Verifiers: Unveiling Pitfalls and Potentials in Fact Verifiers
Fact verification is essential for ensuring the reliability of LLM applications. In this study, we evaluate 12 pre-trained LLMs and one specialized fact-verifier, including frontier LLMs and open-weight reasoning LLMs, using a collection of examples from 14 fact-checking benchmarks. We share three findings intended to guide future development of more robust fact verifiers. First, we highlight the importance of addressing annotation errors and ambiguity in datasets, demonstrating that approximately 16\% of ambiguous or incorrectly labeled data substantially influences model rankings. Neglecting this issue may result in misleading conclusions during comparative evaluations, and we suggest using a systematic pipeline utilizing LLM-as-a-judge to help identify these issues at scale. Second, we discover that frontier LLMs with few-shot in-context examples, often overlooked in previous works, achieve top-tier performance. We therefore recommend future studies include comparisons with these simple yet highly effective baselines. Lastly, despite their effectiveness, frontier LLMs incur substantial costs, motivating the development of small, fine-tuned fact verifiers. We show that these small models still have room for improvement, particularly on instances that require complex reasoning. Encouragingly, we demonstrate that augmenting training with synthetic multi-hop reasoning data significantly enhances their capabilities in such instances. We release our code, model, and dataset at https://github.com/just1nseo/verifying-the-verifiers
OPV: Outcome-based Process Verifier for Efficient Long Chain-of-Thought Verification
Large language models (LLMs) have achieved significant progress in solving complex reasoning tasks by Reinforcement Learning with Verifiable Rewards (RLVR). This advancement is also inseparable from the oversight automated by reliable verifiers. However, current outcome-based verifiers (OVs) are unable to inspect the unreliable intermediate steps in the long reasoning chains of thought (CoTs). Meanwhile, current process-based verifiers (PVs) have difficulties in reliably detecting errors in the complex long CoTs, limited by the scarcity of high-quality annotations due to the prohibitive costs of human annotations. Therefore, we propose the Outcome-based Process Verifier (OPV), which verifies the rationale process of summarized outcomes from long CoTs to achieve both accurate and efficient verification and enable large-scale annotation. To empower the proposed verifier, we adopt an iterative active learning framework with expert annotations to progressively improve the verification capability of OPV with fewer annotation costs. Specifically, in each iteration, the most uncertain cases of the current best OPV are annotated and then subsequently used to train a new OPV through Rejection Fine-Tuning (RFT) and RLVR for the next round. Extensive experiments demonstrate OPV's superior performance and broad applicability. It achieves new state-of-the-art results on our held-out OPV-Bench, outperforming much larger open-source models such as Qwen3-Max-Preview with an F1 score of 83.1 compared to 76.3. Furthermore, OPV effectively detects false positives within synthetic dataset, closely align with expert assessment. When collaborating with policy models, OPV consistently yields performance gains, e.g., raising the accuracy of DeepSeek-R1-Distill-Qwen-32B from 55.2% to 73.3% on AIME2025 as the compute budget scales.
SATQuest: A Verifier for Logical Reasoning Evaluation and Reinforcement Fine-Tuning of LLMs
Recent advances in Large Language Models (LLMs) have demonstrated remarkable general reasoning capabilities. However, systematically evaluating and enhancing these reasoning capabilities is challenging due to the lack of controllable and scalable tools for fine-grained analysis. Existing benchmarks and datasets often lack the necessary variable control for multi-dimensional, systematic analysis and training, or have narrow problem types and formats. To address these limitations, we introduce SATQuest, a systematic verifier designed to evaluate and enhance logical reasoning in LLMs by generating diverse, Satisfiability-based logical reasoning problems directly from Conjunctive Normal Form (CNF) instances. SATQuest structures these problems along three orthogonal dimensions: instance scale, problem type, and question format, employing randomized, SAT-based problem generation and objective answer verification via PySAT. This design mitigates memorization issues, allows for nuanced insights into reasoning performance, and enables effective reinforcement fine-tuning. Our extensive evaluation of various LLMs using SATQuest identified significant limitations in their logical reasoning, particularly in generalizing beyond familiar mathematical formats. Furthermore, we show that reinforcement fine-tuning with SATQuest rewards substantially improves targeted task performance and generalizes to more complex instances, while highlighting remaining challenges in cross-format adaptation. Through these demonstrations, we showcase SATQuest's potential as a foundational tool and a valuable starting point for advancing LLM logical reasoning.
VeriGuard: Enhancing LLM Agent Safety via Verified Code Generation
The deployment of autonomous AI agents in sensitive domains, such as healthcare, introduces critical risks to safety, security, and privacy. These agents may deviate from user objectives, violate data handling policies, or be compromised by adversarial attacks. Mitigating these dangers necessitates a mechanism to formally guarantee that an agent's actions adhere to predefined safety constraints, a challenge that existing systems do not fully address. We introduce VeriGuard, a novel framework that provides formal safety guarantees for LLM-based agents through a dual-stage architecture designed for robust and verifiable correctness. The initial offline stage involves a comprehensive validation process. It begins by clarifying user intent to establish precise safety specifications. VeriGuard then synthesizes a behavioral policy and subjects it to both testing and formal verification to prove its compliance with these specifications. This iterative process refines the policy until it is deemed correct. Subsequently, the second stage provides online action monitoring, where VeriGuard operates as a runtime monitor to validate each proposed agent action against the pre-verified policy before execution. This separation of the exhaustive offline validation from the lightweight online monitoring allows formal guarantees to be practically applied, providing a robust safeguard that substantially improves the trustworthiness of LLM agents.
