File size: 14,104 Bytes
47a0ec7
 
 
 
 
 
 
 
 
 
 
92f4b7f
 
 
 
 
 
 
 
 
 
47a0ec7
36b8400
47a0ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92f4b7f
47a0ec7
92f4b7f
 
47a0ec7
8e80fc8
08cd4bd
8e80fc8
 
 
47a0ec7
92f4b7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47a0ec7
 
 
 
 
 
 
 
 
 
92f4b7f
03420c4
 
6fe6d2e
47a0ec7
 
92f4b7f
 
 
aab4ba6
92f4b7f
47a0ec7
92f4b7f
47a0ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e80fc8
aab4ba6
3d3a1e3
 
 
4263bec
df751e6
3d3a1e3
 
47a0ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92f4b7f
 
47a0ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6286d5f
 
 
47a0ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92f4b7f
47a0ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce2892c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47a0ec7
ce2892c
47a0ec7
 
 
36b8400
 
47a0ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e0469
5c0f2ff
 
fed7c5a
e3e0469
47a0ec7
8e80fc8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import subprocess
import shlex
import sys
import os
import tempfile
import numpy as np
import io
import base64
import json
import uvicorn
import torch
from PIL import Image

# Install the custom component if needed
subprocess.run(
    shlex.split(
        "pip install ./gradio_magicquillv2-0.0.1-py3-none-any.whl"
    )
)

import gradio as gr
from fastapi import FastAPI, Request
from fastapi.concurrency import run_in_threadpool
from fastapi.middleware.cors import CORSMiddleware
from gradio_client import Client, handle_file
from gradio_magicquillv2 import MagicQuillV2

from util import (
    read_base64_image as read_base64_image_utils,
    tensor_to_base64,
    get_mask_bbox
)

# --- Configuration ---
# Set this to the URL of your backend Space (running app_backend.py)
BACKEND_URL = "LiuZichen/MagicQuillV2"
SAM_URL = "LiuZichen/MagicQuillHelper"

print(f"Target Backend URL: {BACKEND_URL}")

# We still initialize SAM client globally as it might not require ZeroGPU quotas
# or is a helper CPU space.
print(f"Connecting to SAM client at: {SAM_URL}")
try:
    sam_client = Client(SAM_URL)
except Exception as e:
    print(f"Failed to connect to SAM client: {e}")
    sam_client = None

def get_zerogpu_headers(request_headers):
    """
    Extracts ZeroGPU specific headers from the incoming request headers.
    These are required to forward the user's quota token to the backend.
    """
    headers = {}
    if request_headers:
        # These are the headers HF injects for ZeroGPU authentication and tracking
        target_headers = [
            "x-ip-token", 
            "x-zerogpu-token", 
            "x-zerogpu-uuid", 
            "authorization", 
            "cookie"
        ]
        for h in target_headers:
            val = request_headers.get(h)
            if val:
                headers[h] = val
    return headers

def generate_image_handler(x, negative_prompt, fine_edge, fix_perspective, grow_size, edge_strength, color_strength, local_strength, seed, steps, cfg, request: gr.Request):
    """
    Handler for the Gradio UI. 
    Note the 'request: gr.Request' argument - Gradio automatically injects this.
    """
    merged_image = x['from_frontend']['img']
    total_mask = x['from_frontend']['total_mask']
    original_image = x['from_frontend']['original_image']
    add_color_image = x['from_frontend']['add_color_image']
    add_edge_mask = x['from_frontend']['add_edge_mask']
    remove_edge_mask = x['from_frontend']['remove_edge_mask']
    fill_mask = x['from_frontend']['fill_mask']
    add_prop_image = x['from_frontend']['add_prop_image']
    positive_prompt = x['from_backend']['prompt']

    forward_headers = get_zerogpu_headers(request.headers)
    
    print(f"Debug: Received headers keys: {list(request.headers.keys())}")
    print(forward_headers)

    try:
        # 2. Instantiate a client specifically for this request with the forwarded headers.
        # This ensures the backend sees the 'x-zerogpu-token' of the user, not the server.
        # gradio_client caches schemas, so re-init is relatively cheap but necessary for headers.
        client = Client(BACKEND_URL, headers=forward_headers)

        # Call the backend API
        res_base64 = client.predict(
            merged_image,       # merged_image
            total_mask,         # total_mask
            original_image,     # original_image
            add_color_image,    # add_color_image
            add_edge_mask,      # add_edge_mask
            remove_edge_mask,   # remove_edge_mask
            fill_mask,          # fill_mask
            add_prop_image,     # add_prop_image
            positive_prompt,    # positive_prompt
            negative_prompt,    # negative_prompt
            fine_edge,          # fine_edge
            fix_perspective,    # fix_perspective
            grow_size,          # grow_size
            edge_strength,      # edge_strength
            color_strength,     # color_strength
            local_strength,     # local_strength
            seed,               # seed
            steps,              # steps
            cfg,                # cfg
            api_name="/generate"
        )
        x["from_backend"]["generated_image"] = res_base64
    except Exception as e:
        print(f"Error in generation: {e}")
        x["from_backend"]["generated_image"] = None
    
    return x

# --- Gradio UI ---

with gr.Blocks(title="MagicQuill V2") as demo:
    with gr.Row(elem_classes="row"):
        text = gr.Markdown(
        """
        # Welcome to MagicQuill V2! Give us a [GitHub star](https://github.com/zliucz/magicquillv2) if you are interested. 
        Click the [link](https://magicquill.art/v2) to view our demo and tutorial. The paper is on [ArXiv](https://arxiv.org/abs/2512.03046) now. The [ZeroGPU](https://huggingface.co/docs/hub/spaces-zerogpu) quota is 4 minutes per day for normal users and 25 minutes per day for pro users.
        """)
        
    with gr.Row():
        ms = MagicQuillV2()

    with gr.Row():
        with gr.Column():
            btn = gr.Button("Run", variant="primary")
        with gr.Column():
            with gr.Accordion("parameters", open=False):
                negative_prompt = gr.Textbox(label="Negative Prompt", value="", interactive=True)
                fine_edge = gr.Radio(label="Fine Edge", choices=['enable', 'disable'], value='disable', interactive=True)
                fix_perspective = gr.Radio(label="Fix Perspective", choices=['enable', 'disable'], value='disable', interactive=True)
                grow_size = gr.Slider(label="Grow Size", minimum=10, maximum=100, value=50, step=1, interactive=True)
                edge_strength = gr.Slider(label="Edge Strength", minimum=0.0, maximum=5.0, value=0.6, step=0.01, interactive=True)
                color_strength = gr.Slider(label="Color Strength", minimum=0.0, maximum=5.0, value=1.5, step=0.01, interactive=True)
                local_strength = gr.Slider(label="Local Strength", minimum=0.0, maximum=5.0, value=1.0, step=0.01, interactive=True)
                seed = gr.Number(label="Seed", value=-1, precision=0, interactive=True)
                steps = gr.Slider(label="Steps", minimum=0, maximum=50, value=20, interactive=True)
                cfg = gr.Slider(label="CFG", minimum=0.0, maximum=20.0, value=3.5, step=0.1, interactive=True)

    btn.click(
        generate_image_handler, 
        # Note: We do NOT need to explicitly add 'request' to inputs here.
        # Gradio handles type hinting for gr.Request automatically.
        inputs=[ms, negative_prompt, fine_edge, fix_perspective, grow_size, edge_strength, color_strength, local_strength, seed, steps, cfg], 
        outputs=ms
    )

# --- FastAPI App ---

app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=['*'],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

def get_root_url(request: Request, route_path: str, root_path: str | None):
    return root_path
gr.route_utils.get_root_url = get_root_url

@app.post("/magic_quill/process_background_img")
async def process_background_img(request: Request):
    img = await request.json()
    from util import process_background
    # process_background returns tensor [1, H, W, 3] in uint8 or float
    resized_img_tensor = process_background(img)
    
    # tensor_to_base64 from util expects tensor
    resized_img_base64 = "data:image/webp;base64," + tensor_to_base64(
        resized_img_tensor, 
        quality=80,
        method=6
    )
    return resized_img_base64

@app.post("/magic_quill/segmentation")
async def segmentation(request: Request):
    json_data = await request.json()
    image_base64 = json_data.get("image", None)
    coordinates_positive = json_data.get("coordinates_positive", None)
    coordinates_negative = json_data.get("coordinates_negative", None)
    bboxes = json_data.get("bboxes", None)

    if sam_client is None:
        return {"error": "sam client not initialized"}

    # Process coordinates and bboxes
    pos_coordinates = None
    if coordinates_positive and len(coordinates_positive) > 0:
        pos_coordinates = []
        for coord in coordinates_positive:
            coord['x'] = int(round(coord['x']))
            coord['y'] = int(round(coord['y']))
            pos_coordinates.append({'x': coord['x'], 'y': coord['y']})
        pos_coordinates = json.dumps(pos_coordinates)
        
    neg_coordinates = None
    if coordinates_negative and len(coordinates_negative) > 0:
        neg_coordinates = []
        for coord in coordinates_negative:
            coord['x'] = int(round(coord['x']))
            coord['y'] = int(round(coord['y']))
            neg_coordinates.append({'x': coord['x'], 'y': coord['y']})
        neg_coordinates = json.dumps(neg_coordinates)
        
    bboxes_xyxy = None
    if bboxes and len(bboxes) > 0:
        valid_bboxes = []
        for bbox in bboxes:
            if (bbox.get("startX") is None or
                bbox.get("startY") is None or
                bbox.get("endX") is None or
                bbox.get("endY") is None):
                continue
            else:
                x_min = max(min(int(bbox["startX"]), int(bbox["endX"])), 0)
                y_min = max(min(int(bbox["startY"]), int(bbox["endY"])), 0)
                x_max = int(bbox["startX"]) if int(bbox["startX"]) > int(bbox["endX"]) else int(bbox["endX"])
                y_max = int(bbox["startY"]) if int(bbox["startY"]) > int(bbox["endY"]) else int(bbox["endY"])
                valid_bboxes.append((x_min, y_min, x_max, y_max))
        
        bboxes_xyxy = []
        for bbox in valid_bboxes:
            x_min, y_min, x_max, y_max = bbox
            bboxes_xyxy.append((x_min, y_min, x_max, y_max))
        
        if bboxes_xyxy:
            bboxes_xyxy = json.dumps(bboxes_xyxy)

    print(f"Segmentation request: pos={pos_coordinates}, neg={neg_coordinates}, bboxes={bboxes_xyxy}")

    try:
        # Save base64 image to temp file
        image_bytes = read_base64_image_utils(image_base64)
        pil_image = Image.open(image_bytes)

        # Resize for faster transmission (short side 512)
        original_size = pil_image.size
        w, h = original_size
        scale = 512 / min(w, h)
        if scale < 1:
             new_w = int(w * scale)
             new_h = int(h * scale)
             pil_image_resized = pil_image.resize((new_w, new_h), Image.LANCZOS)
             print(f"Resized image for segmentation: {original_size} -> {(new_w, new_h)}")
             
             # Adjust coordinates and bboxes according to scale
             if pos_coordinates:
                 pos_coords_list = json.loads(pos_coordinates)
                 for coord in pos_coords_list:
                     coord['x'] = int(coord['x'] * scale)
                     coord['y'] = int(coord['y'] * scale)
                 pos_coordinates = json.dumps(pos_coords_list)
                 
             if neg_coordinates:
                 neg_coords_list = json.loads(neg_coordinates)
                 for coord in neg_coords_list:
                     coord['x'] = int(coord['x'] * scale)
                     coord['y'] = int(coord['y'] * scale)
                 neg_coordinates = json.dumps(neg_coords_list)
                 
             if bboxes_xyxy:
                 bboxes_list = json.loads(bboxes_xyxy)
                 new_bboxes = []
                 for bbox in bboxes_list:
                     new_bboxes.append((
                         int(bbox[0] * scale),
                         int(bbox[1] * scale),
                         int(bbox[2] * scale),
                         int(bbox[3] * scale)
                     ))
                 bboxes_xyxy = json.dumps(new_bboxes)
        else:
             pil_image_resized = pil_image
             scale = 1.0

        with tempfile.NamedTemporaryFile(suffix=".webp", delete=False) as temp_in:
            pil_image_resized.save(temp_in.name, format="WEBP", quality=80)
            temp_in_path = temp_in.name

        # Execute segmentation via Client
        result_path = await run_in_threadpool(
            sam_client.predict,
            handle_file(temp_in_path), 
            pos_coordinates, 
            neg_coordinates, 
            bboxes_xyxy,
            api_name="/segment"
        )
        
        os.unlink(temp_in_path)

        if isinstance(result_path, (list, tuple)):
            result_path = result_path[0]
            
        if not result_path or not os.path.exists(result_path):
             raise RuntimeError("Client returned invalid result path")

        mask_pil = Image.open(result_path)
        if mask_pil.mode != 'L':
            mask_pil = mask_pil.convert('L')
            
        pil_image = pil_image.convert("RGB")
        if pil_image.size != mask_pil.size:
            mask_pil = mask_pil.resize(pil_image.size, Image.NEAREST)
            
        r, g, b = pil_image.split()
        res_pil = Image.merge("RGBA", (r, g, b, mask_pil))
        
        mask_tensor = torch.from_numpy(np.array(mask_pil) / 255.0).float().unsqueeze(0)
        mask_bbox = get_mask_bbox(mask_tensor)
        if mask_bbox:
            x_min, y_min, x_max, y_max = mask_bbox
            seg_bbox = {'startX': x_min, 'startY': y_min, 'endX': x_max, 'endY': y_max}
        else:
            seg_bbox = {'startX': 0, 'startY': 0, 'endX': 0, 'endY': 0}

        buffered = io.BytesIO()
        res_pil.save(buffered, format="PNG")
        image_base64_res = base64.b64encode(buffered.getvalue()).decode("utf-8")
        
        return {
            "error": False,
            "segmentation_image": "data:image/png;base64," + image_base64_res, 
            "segmentation_bbox": seg_bbox
        }

    except Exception as e:
        print(f"Error in segmentation: {e}")
        return {"error": str(e)}

# Mount the Gradio app
# Reduce concurrency for ZeroGPU to prevent rate limiting
demo.queue(default_concurrency_limit=10, max_size=20)
app = gr.mount_gradio_app(app, demo, path="/", root_path="/demo")

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)