File size: 22,211 Bytes
ca7a2c2 14208c6 ca7a2c2 9e98b5a 51ba917 9e98b5a 51ba917 9e98b5a ca7a2c2 9e98b5a ca7a2c2 45b1ef5 ca7a2c2 455d644 14208c6 ca7a2c2 51ba917 ca7a2c2 51ba917 ca7a2c2 14208c6 ca7a2c2 14208c6 ca7a2c2 455d644 14208c6 ca7a2c2 45b1ef5 ca7a2c2 51ba917 ca7a2c2 51ba917 ca7a2c2 51ba917 ca7a2c2 51ba917 ca7a2c2 51ba917 45b1ef5 51ba917 45b1ef5 51ba917 ca7a2c2 51ba917 ca7a2c2 51ba917 ca7a2c2 51ba917 ca7a2c2 45b1ef5 ca7a2c2 14208c6 9e98b5a 14208c6 9e98b5a 14208c6 ca7a2c2 14208c6 ca7a2c2 14208c6 9e98b5a ca7a2c2 14208c6 ca7a2c2 14208c6 ca7a2c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
"""Multi-Modal Contextual Agent (MMCA) - ReAct Agent with MCP Tools.
Implements the Agent-Centric Orchestration pattern:
1. Parse user intent
2. Select appropriate MCP tool(s)
3. Execute tool(s) with logging
4. Synthesize final response with workflow trace
Supports multiple LLM providers: Google (Gemini) and MegaLLM (DeepSeek).
"""
import json
import re
import time
from dataclasses import dataclass, field
from typing import Any
from sqlalchemy.ext.asyncio import AsyncSession
from app.mcp.tools import mcp_tools
from app.shared.integrations.gemini_client import GeminiClient
from app.shared.integrations.megallm_client import MegaLLMClient
from app.shared.logger import agent_logger, AgentWorkflow, WorkflowStep
from app.shared.prompts import (
MMCA_SYSTEM_PROMPT as SYSTEM_PROMPT,
GREETING_SYSTEM_PROMPT,
INTENT_SYSTEM_PROMPT,
build_greeting_prompt,
build_intent_prompt,
build_synthesis_prompt,
)
# Default coordinates for Da Nang (if no location specified)
DANANG_CENTER = (16.0544, 108.2022)
# SYSTEM_PROMPT is imported from app.shared.prompts
@dataclass
class ChatMessage:
"""Chat message model."""
role: str # "user" or "assistant"
content: str
@dataclass
class ToolCall:
"""Tool call with arguments and results."""
tool_name: str
arguments: dict
result: list | None = None
duration_ms: float = 0
@dataclass
class ChatResult:
"""Complete chat result with response and workflow."""
response: str
workflow: AgentWorkflow
tools_used: list[str] = field(default_factory=list)
total_duration_ms: float = 0
tool_results: list = field(default_factory=list) # List of ToolCall with results
selected_place_ids: list[str] = field(default_factory=list) # LLM-selected place IDs
class MMCAAgent:
"""
Multi-Modal Contextual Agent with Logging and Workflow Tracing.
Implements ReAct (Reasoning + Acting) pattern:
1. Observe: Parse user message and intent
2. Think: Decide which tool(s) to use
3. Act: Execute MCP tools
4. Synthesize: Generate final response
Supports multiple LLM providers:
- Google: Gemini models
- MegaLLM: DeepSeek models (OpenAI-compatible)
"""
def __init__(self, provider: str = "MegaLLM", model: str | None = None):
"""
Initialize agent with LLM provider and model.
Args:
provider: "Google" or "MegaLLM"
model: Model name (uses default if None)
"""
self.provider = provider
self.model = model
self.tools = mcp_tools
self.conversation_history: list[ChatMessage] = []
# Initialize LLM client based on provider
if provider == "Google":
self.llm_client = GeminiClient(model=model)
else:
self.llm_client = MegaLLMClient(model=model)
agent_logger.workflow_step("Agent initialized", f"Provider: {provider}, Model: {model}")
async def chat(
self,
message: str,
db: AsyncSession,
image_url: str | None = None,
history: str | None = None,
) -> ChatResult:
"""
Process a chat message and return response with workflow trace.
Args:
message: User's natural language message
db: Database session for pgvector queries
image_url: Optional image URL for visual search
history: Optional conversation history string
Returns:
ChatResult with response, workflow, and metadata
"""
start_time = time.time()
# Initialize workflow tracking
workflow = AgentWorkflow(query=message)
# Log incoming request
agent_logger.api_request(
endpoint="/chat",
method="POST",
body={"message": message[:100], "has_image": bool(image_url), "has_history": bool(history)}
)
# Add user message to internal history
self.conversation_history.append(ChatMessage(role="user", content=message))
# Step 1: Analyze intent and plan tools (LLM-based)
workflow.add_step(WorkflowStep(
step_name="Intent Analysis",
purpose="Phân tích câu hỏi để chọn tool phù hợp"
))
agent_logger.workflow_step("Step 1: Intent Analysis", message[:80])
tool_calls = await self._plan_tool_calls(message, image_url)
# Set intent based on selected tools (from LLM)
if not tool_calls:
intent = "greeting"
else:
intent = " + ".join([tc.tool_name for tc in tool_calls])
workflow.intent_detected = intent
agent_logger.workflow_step("Intent detected", intent)
workflow.add_step(WorkflowStep(
step_name="Tool Planning",
purpose=f"Chọn {len(tool_calls)} tool(s) để thực thi",
output_summary=", ".join([tc.tool_name for tc in tool_calls])
))
# Step 2: Execute tools
agent_logger.workflow_step("Step 2: Execute Tools", f"{len(tool_calls)} tool(s)")
tool_results = []
for tool_call in tool_calls:
tool_start = time.time()
agent_logger.tool_call(tool_call.tool_name, tool_call.arguments)
result = await self._execute_tool(tool_call, db)
result.duration_ms = (time.time() - tool_start) * 1000
result_count = len(result.result) if result.result else 0
agent_logger.tool_result(
tool_call.tool_name,
result_count,
result.result[0] if result.result else None
)
# Add to workflow
workflow.add_step(WorkflowStep(
step_name=f"Execute {tool_call.tool_name}",
tool_name=tool_call.tool_name,
purpose=self._get_tool_purpose(tool_call.tool_name),
input_summary=json.dumps(tool_call.arguments, ensure_ascii=False)[:100],
result_count=result_count,
duration_ms=result.duration_ms
))
tool_results.append(result)
# Step 3: Synthesize response with history context
agent_logger.workflow_step("Step 3: Synthesize Response")
llm_start = time.time()
response, selected_place_ids = await self._synthesize_response(message, tool_results, image_url, history)
llm_duration = (time.time() - llm_start) * 1000
agent_logger.llm_response(self.provider, response[:100], tokens=None)
workflow.add_step(WorkflowStep(
step_name="LLM Synthesis",
purpose="Tổng hợp kết quả và tạo phản hồi",
duration_ms=llm_duration
))
# Add assistant response to internal history
self.conversation_history.append(ChatMessage(role="assistant", content=response))
# Calculate total duration
total_duration = (time.time() - start_time) * 1000
workflow.total_duration_ms = total_duration
# Log complete
agent_logger.api_response("/chat", 200, {"response_len": len(response), "places": len(selected_place_ids)}, total_duration)
return ChatResult(
response=response,
workflow=workflow,
tools_used=workflow.tools_used,
total_duration_ms=total_duration,
tool_results=tool_results,
selected_place_ids=selected_place_ids,
)
def _get_tool_purpose(self, tool_name: str) -> str:
"""Get human-readable purpose for tool."""
purposes = {
"retrieve_context_text": "Tìm kiếm semantic trong văn bản (review, mô tả)",
"retrieve_similar_visuals": "Tìm địa điểm có hình ảnh tương tự",
"find_nearby_places": "Tìm địa điểm gần vị trí được nhắc đến",
"search_social_media": "Tìm kiếm thông tin từ mạng xã hội (news, trends)",
}
return purposes.get(tool_name, tool_name)
async def _plan_tool_calls(
self,
message: str,
image_url: str | None = None,
) -> list[ToolCall]:
"""
Use LLM to analyze message and plan which tools to call.
Returns list of ToolCall objects with tool_name and arguments.
Returns empty list for greetings/small-talk (LLM detects via is_greeting).
"""
# If image is provided, always use visual search (fast path)
if image_url:
return [ToolCall(
tool_name="retrieve_similar_visuals",
arguments={"image_url": image_url, "limit": 5},
)]
# Use LLM to detect intent and select tools
intent_prompt = build_intent_prompt(message, has_image=bool(image_url))
try:
intent_response = await self.llm_client.generate(
prompt=intent_prompt,
temperature=0.2, # Low temperature for consistent JSON
system_instruction=INTENT_SYSTEM_PROMPT,
)
agent_logger.workflow_step("LLM Intent Detection", intent_response[:200])
# Parse JSON response
tool_calls = self._parse_intent_response(intent_response, message)
return tool_calls
except Exception as e:
agent_logger.error(f"Intent detection failed: {e}", None)
# Fallback to text search
return [ToolCall(
tool_name="retrieve_context_text",
arguments={"query": message, "limit": 5},
)]
def _parse_intent_response(self, response: str, original_message: str) -> list[ToolCall]:
"""Parse LLM intent detection response into ToolCall list."""
try:
# Extract JSON from response
json_match = re.search(r'```(?:json)?\s*(\{.*?\})\s*```', response, re.DOTALL)
if json_match:
response = json_match.group(1)
# Find JSON object
json_start = response.find('{')
json_end = response.rfind('}')
if json_start != -1 and json_end != -1:
response = response[json_start:json_end + 1]
data = json.loads(response)
# Check if greeting
if data.get("is_greeting", False):
return []
# Parse tools
tools = data.get("tools", [])
tool_calls = []
for tool in tools:
name = tool.get("name")
arguments = tool.get("arguments", {})
# Validate tool name
valid_tools = ["retrieve_context_text", "find_nearby_places",
"search_social_media", "retrieve_similar_visuals"]
if name not in valid_tools:
continue
# Ensure required arguments
if name == "retrieve_context_text":
arguments.setdefault("query", original_message)
arguments.setdefault("limit", 5)
elif name == "find_nearby_places":
# Need to geocode location if provided
location = arguments.get("location", "")
arguments.setdefault("max_distance_km", 3.0)
arguments.setdefault("limit", 5)
# Will handle geocoding in execute step
elif name == "search_social_media":
arguments.setdefault("query", original_message)
arguments.setdefault("limit", 5)
arguments.setdefault("freshness", "pw")
tool_calls.append(ToolCall(tool_name=name, arguments=arguments))
# If no tools selected, default to text search
if not tool_calls:
tool_calls.append(ToolCall(
tool_name="retrieve_context_text",
arguments={"query": original_message, "limit": 5},
))
return tool_calls
except (json.JSONDecodeError, KeyError) as e:
agent_logger.error(f"Failed to parse intent JSON: {e}", None)
# Fallback to text search
return [ToolCall(
tool_name="retrieve_context_text",
arguments={"query": original_message, "limit": 5},
)]
async def _execute_tool(
self,
tool_call: ToolCall,
db: AsyncSession,
) -> ToolCall:
"""Execute a single tool and return results."""
try:
if tool_call.tool_name == "retrieve_context_text":
results = await self.tools.retrieve_context_text(
db=db,
query=tool_call.arguments.get("query", ""),
limit=tool_call.arguments.get("limit", 10),
)
tool_call.result = [
{
"place_id": r.place_id,
"name": r.name,
"category": r.category,
"rating": r.rating,
"similarity": r.similarity,
"description": r.description,
"source_text": r.source_text,
}
for r in results
]
elif tool_call.tool_name == "retrieve_similar_visuals":
results = await self.tools.retrieve_similar_visuals(
db=db,
image_url=tool_call.arguments.get("image_url"),
limit=tool_call.arguments.get("limit", 10),
)
tool_call.result = [
{
"place_id": r.place_id,
"name": r.name,
"category": r.category,
"rating": r.rating,
"similarity": r.similarity,
"matched_images": r.matched_images,
"image_url": r.image_url,
}
for r in results
]
elif tool_call.tool_name == "find_nearby_places":
# Handle geocoding if location name provided instead of lat/lng
lat = tool_call.arguments.get("lat")
lng = tool_call.arguments.get("lng")
if lat is None or lng is None:
# Try to geocode from location name
location = tool_call.arguments.get("location", "")
if location:
coords = await self.tools.get_location_coordinates(location)
if coords:
lat, lng = coords
else:
lat, lng = DANANG_CENTER
else:
lat, lng = DANANG_CENTER
results = await self.tools.find_nearby_places(
lat=lat,
lng=lng,
max_distance_km=tool_call.arguments.get("max_distance_km", 5.0),
category=tool_call.arguments.get("category"),
limit=tool_call.arguments.get("limit", 10),
)
tool_call.result = [
{
"place_id": r.place_id,
"name": r.name,
"category": r.category,
"distance_km": r.distance_km,
"rating": r.rating,
"description": r.description,
}
for r in results
]
elif tool_call.tool_name == "search_social_media":
results = await self.tools.search_social_media(
query=tool_call.arguments.get("query", ""),
limit=tool_call.arguments.get("limit", 10),
freshness=tool_call.arguments.get("freshness", "pw"),
platforms=tool_call.arguments.get("platforms"),
)
tool_call.result = [
{
"title": r.title,
"url": r.url,
"description": r.description,
"age": r.age,
"platform": r.platform,
}
for r in results
]
except Exception as e:
agent_logger.error(f"Tool execution failed: {tool_call.tool_name}", e)
tool_call.result = [{"error": str(e)}]
return tool_call
async def _synthesize_response(
self,
message: str,
tool_results: list[ToolCall],
image_url: str | None = None,
history: str | None = None,
) -> tuple[str, list[str]]:
"""
Synthesize final response from tool results with conversation history.
Returns:
Tuple of (response_text, selected_place_ids)
"""
# Collect all available place_ids from tool results
all_place_ids = []
for tool_call in tool_results:
if tool_call.result:
for item in tool_call.result:
if isinstance(item, dict) and 'place_id' in item:
all_place_ids.append(item['place_id'])
# If no tool results (greeting case), return simple response
if not tool_results:
prompt = build_greeting_prompt(message, history)
response = await self.llm_client.generate(
prompt=prompt,
temperature=0.7,
system_instruction=GREETING_SYSTEM_PROMPT,
)
return response, []
# Build context from tool results
context_parts = []
for tool_call in tool_results:
if tool_call.result:
context_parts.append(
f"Kết quả từ {tool_call.tool_name}:\n{json.dumps(tool_call.result, ensure_ascii=False, indent=2)}"
)
context = "\n\n".join(context_parts)
# Generate response using LLM with JSON format for place selection
prompt = build_synthesis_prompt(message, context, history)
agent_logger.llm_call(self.provider, self.model or "default", prompt[:100])
raw_response = await self.llm_client.generate(
prompt=prompt,
temperature=0.7,
system_instruction=SYSTEM_PROMPT,
)
# Parse JSON response
try:
# Extract JSON from code blocks
json_match = re.search(r'```(?:json)?\s*(\{.*?\})\s*```', raw_response, re.DOTALL)
if json_match:
json_str = json_match.group(1)
else:
# Try to find raw JSON
json_start = raw_response.find('{')
json_end = raw_response.rfind('}')
if json_start != -1 and json_end != -1:
json_str = raw_response[json_start:json_end + 1]
else:
# No JSON found, return raw response
return raw_response, []
data = json.loads(json_str)
text_response = data.get("response", raw_response)
selected_ids = data.get("selected_place_ids", [])
# Validate selected_ids are in available places
valid_ids = [pid for pid in selected_ids if pid in all_place_ids]
return text_response, valid_ids
except (json.JSONDecodeError, KeyError) as e:
agent_logger.error("Failed to parse synthesis JSON", e)
# Fallback: return raw response with no places
return raw_response, []
def _extract_location(self, message: str) -> str | None:
"""Extract location name from message using pattern matching."""
known_locations = {
"mỹ khê": "My Khe Beach",
"my khe": "My Khe Beach",
"bãi biển mỹ khê": "My Khe Beach",
"cầu rồng": "Dragon Bridge",
"cau rong": "Dragon Bridge",
"dragon bridge": "Dragon Bridge",
"bà nà": "Ba Na Hills",
"ba na": "Ba Na Hills",
"bà nà hills": "Ba Na Hills",
"sơn trà": "Son Tra Peninsula",
"son tra": "Son Tra Peninsula",
"hội an": "Hoi An",
"hoi an": "Hoi An",
"ngũ hành sơn": "Marble Mountains",
"ngu hanh son": "Marble Mountains",
"marble mountains": "Marble Mountains",
}
message_lower = message.lower()
for pattern, location in known_locations.items():
if pattern in message_lower:
return location
return None
def _extract_category(self, message: str) -> str | None:
"""Extract place category from message."""
categories = {
"cafe": ["cafe", "cà phê", "coffee"],
"restaurant": ["nhà hàng", "quán ăn", "restaurant", "ăn"],
"beach": ["bãi biển", "beach", "biển"],
"attraction": ["điểm tham quan", "du lịch", "attraction"],
"hotel": ["khách sạn", "hotel", "lưu trú"],
"bar": ["bar", "pub", "quán bar"],
}
message_lower = message.lower()
for category, keywords in categories.items():
if any(kw in message_lower for kw in keywords):
return category
return None
def clear_history(self) -> None:
"""Clear conversation history."""
self.conversation_history = []
# Default agent instance (using MegaLLM)
mmca_agent = MMCAAgent()
|