File size: 17,267 Bytes
ca7a2c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac07893
 
 
 
 
 
 
 
 
 
 
 
 
ca7a2c2
ac07893
ca7a2c2
 
 
 
 
 
 
ac07893
ca7a2c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7a7993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca7a2c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac07893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca7a2c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac07893
 
ca7a2c2
 
 
 
 
 
 
 
ac07893
 
ca7a2c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14208c6
ac07893
14208c6
 
 
 
455d644
 
 
14208c6
 
 
 
 
ca7a2c2
 
 
 
 
 
 
 
ac07893
ca7a2c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7a7993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca7a2c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
"""API Router with /chat endpoint for Swagger testing."""

from enum import Enum
from pydantic import BaseModel, Field
from fastapi import APIRouter, Depends, UploadFile, File, Query, HTTPException
from sqlalchemy.ext.asyncio import AsyncSession

from app.agent.mmca_agent import MMCAAgent
from app.agent.react_agent import ReActAgent
from app.shared.db.session import get_db
from app.core.config import settings
from app.mcp.tools import mcp_tools
from app.shared.chat_history import chat_history


router = APIRouter()


class LLMProvider(str, Enum):
    """Available LLM providers."""

    GOOGLE = "Google"
    MEGALLM = "MegaLLM"


class ChatRequest(BaseModel):
    """Chat request model."""

    message: str = Field(
        ...,
        description="User message in natural language",
        examples=["Tìm quán cafe gần bãi biển Mỹ Khê"],
    )
    user_id: str = Field(
        default="anonymous",
        description="User ID for session management",
        examples=["user_123", "anonymous"],
    )
    session_id: str | None = Field(
        None,
        description="Session ID (optional, uses 'default' if not provided)",
        examples=["session_abc", "default"],
    )
    image_url: str | None = Field(
        None,
        description="Optional image URL for visual similarity search",
        examples=["https://example.com/cafe.jpg"],
    )
    provider: LLMProvider = Field(
        default=LLMProvider.MEGALLM,
        description="LLM provider to use: Google or MegaLLM",
    )
    model: str | None = Field(
        None,
        description=f"Model name. Defaults: Google={settings.default_gemini_model}, MegaLLM={settings.default_megallm_model}",
        examples=["gemini-2.0-flash", "deepseek-r1-distill-llama-70b"],
    )
    react_mode: bool = Field(
        default=False,
        description="Enable ReAct multi-step reasoning mode",
    )
    max_steps: int = Field(
        default=5,
        description="Maximum reasoning steps for ReAct mode",
        ge=1,
        le=10,
    )


class WorkflowStepResponse(BaseModel):
    """Workflow step info."""

    step: str = Field(..., description="Step name")
    tool: str | None = Field(None, description="Tool used")
    purpose: str = Field(default="", description="Purpose of this step")
    results: int = Field(default=0, description="Number of results")


class WorkflowResponse(BaseModel):
    """Workflow trace for debugging."""

    query: str = Field(..., description="Original query")
    intent_detected: str = Field(..., description="Detected intent")
    tools_used: list[str] = Field(default_factory=list, description="Tools used")
    steps: list[WorkflowStepResponse] = Field(default_factory=list, description="Workflow steps")
    total_duration_ms: float = Field(..., description="Total processing time")


class PlaceItem(BaseModel):
    """Place item for FE rendering."""
    place_id: str
    name: str
    category: str | None = None
    lat: float | None = None
    lng: float | None = None
    rating: float | None = None
    distance_km: float | None = None
    address: str | None = None
    image_url: str | None = None


class ChatResponse(BaseModel):
    """Chat response model."""

    response: str = Field(..., description="Agent's response")
    status: str = Field(default="success", description="Response status")
    provider: str = Field(..., description="LLM provider used")
    model: str = Field(..., description="Model used")
    user_id: str = Field(..., description="User ID")
    session_id: str = Field(..., description="Session ID used")
    places: list[PlaceItem] = Field(default_factory=list, description="LLM-selected places for FE rendering")
    tools_used: list[str] = Field(default_factory=list, description="MCP tools used")
    duration_ms: float = Field(default=0, description="Total processing time in ms")


class NearbyRequest(BaseModel):
    """Nearby places request model."""

    lat: float = Field(..., description="Latitude", examples=[16.0626442])
    lng: float = Field(..., description="Longitude", examples=[108.2462143])
    max_distance_km: float = Field(
        default=5.0,
        description="Maximum distance in kilometers",
        examples=[5.0, 18.72],
    )
    category: str | None = Field(
        None,
        description="Category filter (cafe, restaurant, attraction, etc.)",
        examples=["cafe", "restaurant"],
    )
    limit: int = Field(default=10, description="Maximum results", examples=[10, 20])


class PlaceResponse(BaseModel):
    """Place response model."""

    place_id: str
    name: str
    category: str | None = None
    lat: float | None = None
    lng: float | None = None
    distance_km: float | None = None
    rating: float | None = None
    description: str | None = None


class NearbyResponse(BaseModel):
    """Nearby places response model."""

    places: list[PlaceResponse]
    count: int
    query: dict


class ClearHistoryRequest(BaseModel):
    """Clear history request model."""

    user_id: str = Field(..., description="User ID to clear history for")
    session_id: str | None = Field(
        None,
        description="Session ID to clear (clears all if not provided)",
    )


class HistoryResponse(BaseModel):
    """Chat history response model."""

    user_id: str
    sessions: list[str]
    current_session: str | None
    message_count: int


class MessageItem(BaseModel):
    """Single chat message."""
    role: str
    content: str
    timestamp: str


class MessagesResponse(BaseModel):
    """Chat messages response."""
    user_id: str
    session_id: str
    messages: list[MessageItem]
    count: int


@router.post(
    "/nearby",
    response_model=NearbyResponse,
    summary="Find nearby places (Neo4j)",
    description="""
Find places near a given location using Neo4j spatial query.

This endpoint directly tests the `find_nearby_places` MCP tool.

## Test Cases
- Case 1: lat=16.0626442, lng=108.2462143, max_distance_km=18.72
- Case 2: lat=16.0623184, lng=108.2306049, max_distance_km=17.94
""",
)
async def find_nearby(request: NearbyRequest) -> NearbyResponse:
    """
    Find nearby places using Neo4j graph database.

    Directly calls the find_nearby_places MCP tool.
    """
    places = await mcp_tools.find_nearby_places(
        lat=request.lat,
        lng=request.lng,
        max_distance_km=request.max_distance_km,
        category=request.category,
        limit=request.limit,
    )

    return NearbyResponse(
        places=[
            PlaceResponse(
                place_id=p.place_id,
                name=p.name,
                category=p.category,
                lat=p.lat,
                lng=p.lng,
                distance_km=p.distance_km,
                rating=p.rating,
                description=p.description,
            )
            for p in places
        ],
        count=len(places),
        query={
            "lat": request.lat,
            "lng": request.lng,
            "max_distance_km": request.max_distance_km,
            "category": request.category,
        },
    )


async def enrich_places_from_ids(place_ids: list[str], db: AsyncSession) -> list[PlaceItem]:
    """
    Enrich LLM-selected place_ids with full details from DB.
    
    Args:
        place_ids: List of place_ids selected by LLM in synthesis
        db: Database session
        
    Returns:
        List of PlaceItem with full details
    """
    if not place_ids:
        return []
    
    # Fetch full details from DB
    from sqlalchemy import text
    result = await db.execute(
        text("""
            SELECT place_id, name, category, address, rating,
                   ST_X(coordinates::geometry) as lng, 
                   ST_Y(coordinates::geometry) as lat
            FROM places_metadata
            WHERE place_id = ANY(:place_ids)
        """),
        {"place_ids": place_ids}
    )
    rows = result.fetchall()
    
    # Build PlaceItem list preserving LLM order
    places_dict = {row.place_id: row for row in rows}
    places = []
    for pid in place_ids:
        if pid in places_dict:
            row = places_dict[pid]
            places.append(PlaceItem(
                place_id=row.place_id,
                name=row.name,
                category=row.category,
                lat=row.lat,
                lng=row.lng,
                rating=float(row.rating) if row.rating else None,
                address=row.address,
            ))
    
    return places


@router.post(
    "/chat",
    response_model=ChatResponse,
    summary="Chat with LocalMate Agent",
    description="""
Chat with the Multi-Modal Contextual Agent (MMCA).

## Session Management
- Each user can have up to **3 sessions** stored
- Provide `user_id` and optional `session_id` to maintain conversation history
- History is automatically injected into the agent prompt

## LLM Providers
- **Google**: Gemini models (gemini-2.0-flash, etc.)
- **MegaLLM**: DeepSeek models (deepseek-r1-distill-llama-70b, etc.)

## Examples
- "Tìm quán cafe gần bãi biển Mỹ Khê"
- "Nhà hàng hải sản nào gần Cầu Rồng?"
""",
)
async def chat(
    request: ChatRequest,
    db: AsyncSession = Depends(get_db),
) -> ChatResponse:
    """
    Chat endpoint with per-user history support.

    Send a natural language message, select provider and model.
    The agent will analyze your intent, query relevant data sources,
    and return a synthesized response with conversation context.
    """
    # Determine model to use
    if request.model:
        model = request.model
    elif request.provider == LLMProvider.GOOGLE:
        model = settings.default_gemini_model
    else:
        model = settings.default_megallm_model

    # Get session ID
    session_id = request.session_id or "default"

    # Get conversation history for context
    history = chat_history.get_history(
        user_id=request.user_id,
        session_id=session_id,
        max_messages=6,  # Last 3 exchanges (6 messages)
    )

    # Add user message to history
    chat_history.add_message(
        user_id=request.user_id,
        role="user",
        content=request.message,
        session_id=session_id,
    )

    # Choose agent based on react_mode
    if request.react_mode:
        # ReAct multi-step agent
        agent = ReActAgent(
            provider=request.provider.value,
            model=model,
            max_steps=request.max_steps,
        )
        response_text, agent_state = await agent.run(
            query=request.message,
            db=db,
            image_url=request.image_url,
            history=history,
        )
        
        # Convert state to workflow
        workflow = agent.to_workflow(agent_state)
        workflow_data = workflow.to_dict()
        
        # Add assistant response to history
        chat_history.add_message(
            user_id=request.user_id,
            role="assistant",
            content=response_text,
            session_id=session_id,
        )
        
        # Enrich LLM-selected place_ids with DB data
        places = await enrich_places_from_ids(agent_state.selected_place_ids, db)
        
        return ChatResponse(
            response=response_text,
            status="success",
            provider=request.provider.value,
            model=model,
            user_id=request.user_id,
            session_id=session_id,
            places=places,
            tools_used=list(agent_state.context.keys()),
            duration_ms=agent_state.total_duration_ms,
        )
    
    else:
        # Single-step agent (original behavior)
        agent = MMCAAgent(provider=request.provider.value, model=model)

        # Pass history to agent
        result = await agent.chat(
            message=request.message,
            db=db,
            image_url=request.image_url,
            history=history,
        )

        # Add assistant response to history
        chat_history.add_message(
            user_id=request.user_id,
            role="assistant",
            content=result.response,
            session_id=session_id,
        )

        # Use LLM-selected places (same pattern as ReAct mode)
        places = []
        if result.selected_place_ids:
            places = await enrich_places_from_ids(result.selected_place_ids, db)
            # Add distance info if available from tool results
            distance_map = {}
            for tool_call in result.tool_results:
                if tool_call.result:
                    for item in tool_call.result:
                        if isinstance(item, dict) and 'place_id' in item and 'distance_km' in item:
                            distance_map[item['place_id']] = item['distance_km']
            for place in places:
                if place.place_id in distance_map:
                    place.distance_km = distance_map[place.place_id]

        return ChatResponse(
            response=result.response,
            status="success",
            provider=request.provider.value,
            model=model,
            user_id=request.user_id,
            session_id=session_id,
            places=places,
            tools_used=result.tools_used,
            duration_ms=result.total_duration_ms,
        )


@router.post(
    "/chat/clear",
    summary="Clear chat history",
    description="Clears the conversation history for a specific user/session.",
)
async def clear_chat(request: ClearHistoryRequest):
    """Clear conversation history for a user."""
    if request.session_id:
        chat_history.clear_session(request.user_id, request.session_id)
        message = f"Session '{request.session_id}' cleared for user '{request.user_id}'"
    else:
        chat_history.clear_all_sessions(request.user_id)
        message = f"All sessions cleared for user '{request.user_id}'"

    return {"status": "success", "message": message}


@router.get(
    "/chat/history/{user_id}",
    response_model=HistoryResponse,
    summary="Get chat history info",
    description="Get information about user's chat sessions.",
)
async def get_history_info(user_id: str) -> HistoryResponse:
    """Get chat history information for a user."""
    sessions = chat_history.get_session_ids(user_id)
    messages = chat_history.get_messages(user_id)

    return HistoryResponse(
        user_id=user_id,
        sessions=sessions,
        current_session="default" if "default" in sessions else (sessions[0] if sessions else None),
        message_count=len(messages),
    )


@router.get(
    "/chat/messages/{user_id}",
    response_model=MessagesResponse,
    summary="Get chat messages",
    description="Get actual chat messages from a specific session.",
)
async def get_chat_messages(
    user_id: str,
    session_id: str = "default",
) -> MessagesResponse:
    """Get chat messages for a session."""
    messages = chat_history.get_messages(user_id, session_id)
    
    return MessagesResponse(
        user_id=user_id,
        session_id=session_id,
        messages=[
            MessageItem(
                role=m.role,
                content=m.content,
                timestamp=m.timestamp.isoformat(),
            )
            for m in messages
        ],
        count=len(messages),
    )


class ImageSearchResult(BaseModel):
    """Image search result model."""

    place_id: str
    name: str
    category: str | None = None
    rating: float | None = None
    similarity: float
    matched_images: int = 1
    image_url: str | None = None


class ImageSearchResponse(BaseModel):
    """Image search response model."""

    results: list[ImageSearchResult]
    total: int


@router.post(
    "/search/image",
    response_model=ImageSearchResponse,
    summary="Search places by image",
    description="""
Upload an image to find visually similar places.

Uses image embeddings stored in Supabase pgvector.
""",
)
async def search_by_image(
    image: UploadFile = File(..., description="Image file to search"),
    limit: int = Query(10, ge=1, le=50, description="Maximum results"),
    db: AsyncSession = Depends(get_db),
) -> ImageSearchResponse:
    """
    Search places by uploading an image.

    Uses visual embeddings to find similar places.
    """
    try:
        # Read image bytes
        image_bytes = await image.read()

        if len(image_bytes) > 10 * 1024 * 1024:  # 10MB limit
            raise HTTPException(status_code=400, detail="Image too large (max 10MB)")

        # Search using visual tool
        results = await mcp_tools.search_by_image_bytes(
            db=db,
            image_bytes=image_bytes,
            limit=limit,
        )

        return ImageSearchResponse(
            results=[
                ImageSearchResult(
                    place_id=r.place_id,
                    name=r.name,
                    category=r.category,
                    rating=r.rating,
                    similarity=r.similarity,
                    matched_images=r.matched_images,
                    image_url=r.image_url,
                )
                for r in results
            ],
            total=len(results),
        )
    except HTTPException:
        raise
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Image search error: {str(e)}")