File size: 17,267 Bytes
ca7a2c2 ac07893 ca7a2c2 ac07893 ca7a2c2 ac07893 ca7a2c2 d7a7993 ca7a2c2 ac07893 ca7a2c2 ac07893 ca7a2c2 ac07893 ca7a2c2 14208c6 ac07893 14208c6 455d644 14208c6 ca7a2c2 ac07893 ca7a2c2 d7a7993 ca7a2c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
"""API Router with /chat endpoint for Swagger testing."""
from enum import Enum
from pydantic import BaseModel, Field
from fastapi import APIRouter, Depends, UploadFile, File, Query, HTTPException
from sqlalchemy.ext.asyncio import AsyncSession
from app.agent.mmca_agent import MMCAAgent
from app.agent.react_agent import ReActAgent
from app.shared.db.session import get_db
from app.core.config import settings
from app.mcp.tools import mcp_tools
from app.shared.chat_history import chat_history
router = APIRouter()
class LLMProvider(str, Enum):
"""Available LLM providers."""
GOOGLE = "Google"
MEGALLM = "MegaLLM"
class ChatRequest(BaseModel):
"""Chat request model."""
message: str = Field(
...,
description="User message in natural language",
examples=["Tìm quán cafe gần bãi biển Mỹ Khê"],
)
user_id: str = Field(
default="anonymous",
description="User ID for session management",
examples=["user_123", "anonymous"],
)
session_id: str | None = Field(
None,
description="Session ID (optional, uses 'default' if not provided)",
examples=["session_abc", "default"],
)
image_url: str | None = Field(
None,
description="Optional image URL for visual similarity search",
examples=["https://example.com/cafe.jpg"],
)
provider: LLMProvider = Field(
default=LLMProvider.MEGALLM,
description="LLM provider to use: Google or MegaLLM",
)
model: str | None = Field(
None,
description=f"Model name. Defaults: Google={settings.default_gemini_model}, MegaLLM={settings.default_megallm_model}",
examples=["gemini-2.0-flash", "deepseek-r1-distill-llama-70b"],
)
react_mode: bool = Field(
default=False,
description="Enable ReAct multi-step reasoning mode",
)
max_steps: int = Field(
default=5,
description="Maximum reasoning steps for ReAct mode",
ge=1,
le=10,
)
class WorkflowStepResponse(BaseModel):
"""Workflow step info."""
step: str = Field(..., description="Step name")
tool: str | None = Field(None, description="Tool used")
purpose: str = Field(default="", description="Purpose of this step")
results: int = Field(default=0, description="Number of results")
class WorkflowResponse(BaseModel):
"""Workflow trace for debugging."""
query: str = Field(..., description="Original query")
intent_detected: str = Field(..., description="Detected intent")
tools_used: list[str] = Field(default_factory=list, description="Tools used")
steps: list[WorkflowStepResponse] = Field(default_factory=list, description="Workflow steps")
total_duration_ms: float = Field(..., description="Total processing time")
class PlaceItem(BaseModel):
"""Place item for FE rendering."""
place_id: str
name: str
category: str | None = None
lat: float | None = None
lng: float | None = None
rating: float | None = None
distance_km: float | None = None
address: str | None = None
image_url: str | None = None
class ChatResponse(BaseModel):
"""Chat response model."""
response: str = Field(..., description="Agent's response")
status: str = Field(default="success", description="Response status")
provider: str = Field(..., description="LLM provider used")
model: str = Field(..., description="Model used")
user_id: str = Field(..., description="User ID")
session_id: str = Field(..., description="Session ID used")
places: list[PlaceItem] = Field(default_factory=list, description="LLM-selected places for FE rendering")
tools_used: list[str] = Field(default_factory=list, description="MCP tools used")
duration_ms: float = Field(default=0, description="Total processing time in ms")
class NearbyRequest(BaseModel):
"""Nearby places request model."""
lat: float = Field(..., description="Latitude", examples=[16.0626442])
lng: float = Field(..., description="Longitude", examples=[108.2462143])
max_distance_km: float = Field(
default=5.0,
description="Maximum distance in kilometers",
examples=[5.0, 18.72],
)
category: str | None = Field(
None,
description="Category filter (cafe, restaurant, attraction, etc.)",
examples=["cafe", "restaurant"],
)
limit: int = Field(default=10, description="Maximum results", examples=[10, 20])
class PlaceResponse(BaseModel):
"""Place response model."""
place_id: str
name: str
category: str | None = None
lat: float | None = None
lng: float | None = None
distance_km: float | None = None
rating: float | None = None
description: str | None = None
class NearbyResponse(BaseModel):
"""Nearby places response model."""
places: list[PlaceResponse]
count: int
query: dict
class ClearHistoryRequest(BaseModel):
"""Clear history request model."""
user_id: str = Field(..., description="User ID to clear history for")
session_id: str | None = Field(
None,
description="Session ID to clear (clears all if not provided)",
)
class HistoryResponse(BaseModel):
"""Chat history response model."""
user_id: str
sessions: list[str]
current_session: str | None
message_count: int
class MessageItem(BaseModel):
"""Single chat message."""
role: str
content: str
timestamp: str
class MessagesResponse(BaseModel):
"""Chat messages response."""
user_id: str
session_id: str
messages: list[MessageItem]
count: int
@router.post(
"/nearby",
response_model=NearbyResponse,
summary="Find nearby places (Neo4j)",
description="""
Find places near a given location using Neo4j spatial query.
This endpoint directly tests the `find_nearby_places` MCP tool.
## Test Cases
- Case 1: lat=16.0626442, lng=108.2462143, max_distance_km=18.72
- Case 2: lat=16.0623184, lng=108.2306049, max_distance_km=17.94
""",
)
async def find_nearby(request: NearbyRequest) -> NearbyResponse:
"""
Find nearby places using Neo4j graph database.
Directly calls the find_nearby_places MCP tool.
"""
places = await mcp_tools.find_nearby_places(
lat=request.lat,
lng=request.lng,
max_distance_km=request.max_distance_km,
category=request.category,
limit=request.limit,
)
return NearbyResponse(
places=[
PlaceResponse(
place_id=p.place_id,
name=p.name,
category=p.category,
lat=p.lat,
lng=p.lng,
distance_km=p.distance_km,
rating=p.rating,
description=p.description,
)
for p in places
],
count=len(places),
query={
"lat": request.lat,
"lng": request.lng,
"max_distance_km": request.max_distance_km,
"category": request.category,
},
)
async def enrich_places_from_ids(place_ids: list[str], db: AsyncSession) -> list[PlaceItem]:
"""
Enrich LLM-selected place_ids with full details from DB.
Args:
place_ids: List of place_ids selected by LLM in synthesis
db: Database session
Returns:
List of PlaceItem with full details
"""
if not place_ids:
return []
# Fetch full details from DB
from sqlalchemy import text
result = await db.execute(
text("""
SELECT place_id, name, category, address, rating,
ST_X(coordinates::geometry) as lng,
ST_Y(coordinates::geometry) as lat
FROM places_metadata
WHERE place_id = ANY(:place_ids)
"""),
{"place_ids": place_ids}
)
rows = result.fetchall()
# Build PlaceItem list preserving LLM order
places_dict = {row.place_id: row for row in rows}
places = []
for pid in place_ids:
if pid in places_dict:
row = places_dict[pid]
places.append(PlaceItem(
place_id=row.place_id,
name=row.name,
category=row.category,
lat=row.lat,
lng=row.lng,
rating=float(row.rating) if row.rating else None,
address=row.address,
))
return places
@router.post(
"/chat",
response_model=ChatResponse,
summary="Chat with LocalMate Agent",
description="""
Chat with the Multi-Modal Contextual Agent (MMCA).
## Session Management
- Each user can have up to **3 sessions** stored
- Provide `user_id` and optional `session_id` to maintain conversation history
- History is automatically injected into the agent prompt
## LLM Providers
- **Google**: Gemini models (gemini-2.0-flash, etc.)
- **MegaLLM**: DeepSeek models (deepseek-r1-distill-llama-70b, etc.)
## Examples
- "Tìm quán cafe gần bãi biển Mỹ Khê"
- "Nhà hàng hải sản nào gần Cầu Rồng?"
""",
)
async def chat(
request: ChatRequest,
db: AsyncSession = Depends(get_db),
) -> ChatResponse:
"""
Chat endpoint with per-user history support.
Send a natural language message, select provider and model.
The agent will analyze your intent, query relevant data sources,
and return a synthesized response with conversation context.
"""
# Determine model to use
if request.model:
model = request.model
elif request.provider == LLMProvider.GOOGLE:
model = settings.default_gemini_model
else:
model = settings.default_megallm_model
# Get session ID
session_id = request.session_id or "default"
# Get conversation history for context
history = chat_history.get_history(
user_id=request.user_id,
session_id=session_id,
max_messages=6, # Last 3 exchanges (6 messages)
)
# Add user message to history
chat_history.add_message(
user_id=request.user_id,
role="user",
content=request.message,
session_id=session_id,
)
# Choose agent based on react_mode
if request.react_mode:
# ReAct multi-step agent
agent = ReActAgent(
provider=request.provider.value,
model=model,
max_steps=request.max_steps,
)
response_text, agent_state = await agent.run(
query=request.message,
db=db,
image_url=request.image_url,
history=history,
)
# Convert state to workflow
workflow = agent.to_workflow(agent_state)
workflow_data = workflow.to_dict()
# Add assistant response to history
chat_history.add_message(
user_id=request.user_id,
role="assistant",
content=response_text,
session_id=session_id,
)
# Enrich LLM-selected place_ids with DB data
places = await enrich_places_from_ids(agent_state.selected_place_ids, db)
return ChatResponse(
response=response_text,
status="success",
provider=request.provider.value,
model=model,
user_id=request.user_id,
session_id=session_id,
places=places,
tools_used=list(agent_state.context.keys()),
duration_ms=agent_state.total_duration_ms,
)
else:
# Single-step agent (original behavior)
agent = MMCAAgent(provider=request.provider.value, model=model)
# Pass history to agent
result = await agent.chat(
message=request.message,
db=db,
image_url=request.image_url,
history=history,
)
# Add assistant response to history
chat_history.add_message(
user_id=request.user_id,
role="assistant",
content=result.response,
session_id=session_id,
)
# Use LLM-selected places (same pattern as ReAct mode)
places = []
if result.selected_place_ids:
places = await enrich_places_from_ids(result.selected_place_ids, db)
# Add distance info if available from tool results
distance_map = {}
for tool_call in result.tool_results:
if tool_call.result:
for item in tool_call.result:
if isinstance(item, dict) and 'place_id' in item and 'distance_km' in item:
distance_map[item['place_id']] = item['distance_km']
for place in places:
if place.place_id in distance_map:
place.distance_km = distance_map[place.place_id]
return ChatResponse(
response=result.response,
status="success",
provider=request.provider.value,
model=model,
user_id=request.user_id,
session_id=session_id,
places=places,
tools_used=result.tools_used,
duration_ms=result.total_duration_ms,
)
@router.post(
"/chat/clear",
summary="Clear chat history",
description="Clears the conversation history for a specific user/session.",
)
async def clear_chat(request: ClearHistoryRequest):
"""Clear conversation history for a user."""
if request.session_id:
chat_history.clear_session(request.user_id, request.session_id)
message = f"Session '{request.session_id}' cleared for user '{request.user_id}'"
else:
chat_history.clear_all_sessions(request.user_id)
message = f"All sessions cleared for user '{request.user_id}'"
return {"status": "success", "message": message}
@router.get(
"/chat/history/{user_id}",
response_model=HistoryResponse,
summary="Get chat history info",
description="Get information about user's chat sessions.",
)
async def get_history_info(user_id: str) -> HistoryResponse:
"""Get chat history information for a user."""
sessions = chat_history.get_session_ids(user_id)
messages = chat_history.get_messages(user_id)
return HistoryResponse(
user_id=user_id,
sessions=sessions,
current_session="default" if "default" in sessions else (sessions[0] if sessions else None),
message_count=len(messages),
)
@router.get(
"/chat/messages/{user_id}",
response_model=MessagesResponse,
summary="Get chat messages",
description="Get actual chat messages from a specific session.",
)
async def get_chat_messages(
user_id: str,
session_id: str = "default",
) -> MessagesResponse:
"""Get chat messages for a session."""
messages = chat_history.get_messages(user_id, session_id)
return MessagesResponse(
user_id=user_id,
session_id=session_id,
messages=[
MessageItem(
role=m.role,
content=m.content,
timestamp=m.timestamp.isoformat(),
)
for m in messages
],
count=len(messages),
)
class ImageSearchResult(BaseModel):
"""Image search result model."""
place_id: str
name: str
category: str | None = None
rating: float | None = None
similarity: float
matched_images: int = 1
image_url: str | None = None
class ImageSearchResponse(BaseModel):
"""Image search response model."""
results: list[ImageSearchResult]
total: int
@router.post(
"/search/image",
response_model=ImageSearchResponse,
summary="Search places by image",
description="""
Upload an image to find visually similar places.
Uses image embeddings stored in Supabase pgvector.
""",
)
async def search_by_image(
image: UploadFile = File(..., description="Image file to search"),
limit: int = Query(10, ge=1, le=50, description="Maximum results"),
db: AsyncSession = Depends(get_db),
) -> ImageSearchResponse:
"""
Search places by uploading an image.
Uses visual embeddings to find similar places.
"""
try:
# Read image bytes
image_bytes = await image.read()
if len(image_bytes) > 10 * 1024 * 1024: # 10MB limit
raise HTTPException(status_code=400, detail="Image too large (max 10MB)")
# Search using visual tool
results = await mcp_tools.search_by_image_bytes(
db=db,
image_bytes=image_bytes,
limit=limit,
)
return ImageSearchResponse(
results=[
ImageSearchResult(
place_id=r.place_id,
name=r.name,
category=r.category,
rating=r.rating,
similarity=r.similarity,
matched_images=r.matched_images,
image_url=r.image_url,
)
for r in results
],
total=len(results),
)
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Image search error: {str(e)}")
|