Wcel capacity V1 completed
Browse files
apps/kpi_analysis/wcel_capacity.py
CHANGED
|
@@ -89,10 +89,12 @@ if uploaded_file is not None:
|
|
| 89 |
)
|
| 90 |
|
| 91 |
if results is not None:
|
|
|
|
|
|
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
st.download_button(
|
| 97 |
on_click="ignore",
|
| 98 |
type="primary",
|
|
@@ -101,4 +103,217 @@ if uploaded_file is not None:
|
|
| 101 |
file_name="WCEL_Capacity_Report.xlsx",
|
| 102 |
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
| 103 |
)
|
| 104 |
-
st.write(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
)
|
| 90 |
|
| 91 |
if results is not None:
|
| 92 |
+
wcel_analysis_df = results[0]
|
| 93 |
+
kpi_df = results[1]
|
| 94 |
|
| 95 |
+
WcelCapacity.final_results = convert_dfs(
|
| 96 |
+
[wcel_analysis_df, kpi_df], ["wcel_analysis", "kpi"]
|
| 97 |
+
)
|
| 98 |
st.download_button(
|
| 99 |
on_click="ignore",
|
| 100 |
type="primary",
|
|
|
|
| 103 |
file_name="WCEL_Capacity_Report.xlsx",
|
| 104 |
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
| 105 |
)
|
| 106 |
+
st.write(wcel_analysis_df)
|
| 107 |
+
# Add dataframe and Bar chart with "final_comments" distribution
|
| 108 |
+
st.markdown("***")
|
| 109 |
+
st.markdown(":blue[**Final comment distribution**]")
|
| 110 |
+
final_comments_df = (
|
| 111 |
+
wcel_analysis_df.groupby("final_comments")
|
| 112 |
+
.size()
|
| 113 |
+
.reset_index(name="count")
|
| 114 |
+
.sort_values(by="count", ascending=False)
|
| 115 |
+
)
|
| 116 |
+
final_comments_col1, final_comments_col2 = st.columns((1, 3))
|
| 117 |
+
with final_comments_col1:
|
| 118 |
+
st.write(final_comments_df)
|
| 119 |
+
with final_comments_col2:
|
| 120 |
+
fig = px.bar(
|
| 121 |
+
final_comments_df,
|
| 122 |
+
x="final_comments",
|
| 123 |
+
y="count",
|
| 124 |
+
title="Final Comments Distribution",
|
| 125 |
+
text="count",
|
| 126 |
+
)
|
| 127 |
+
fig.update_traces(textposition="outside")
|
| 128 |
+
fig.update_layout(height=600)
|
| 129 |
+
st.plotly_chart(fig)
|
| 130 |
+
|
| 131 |
+
# Add dataframe and Pie chart with "operational_comments" distribution
|
| 132 |
+
st.markdown("***")
|
| 133 |
+
st.markdown(":blue[**Operational comment distribution**]")
|
| 134 |
+
operational_comments_df = (
|
| 135 |
+
wcel_analysis_df.groupby("operational_comments")
|
| 136 |
+
.size()
|
| 137 |
+
.reset_index(name="count")
|
| 138 |
+
.sort_values(by="count", ascending=False)
|
| 139 |
+
)
|
| 140 |
+
operational_comments_df["percent"] = (
|
| 141 |
+
operational_comments_df["count"] / operational_comments_df["count"].sum()
|
| 142 |
+
) * 100
|
| 143 |
+
operational_comments_col1, operational_comments_col2 = st.columns((1, 3))
|
| 144 |
+
with operational_comments_col1:
|
| 145 |
+
st.write(operational_comments_df)
|
| 146 |
+
with operational_comments_col2:
|
| 147 |
+
fig = px.pie(
|
| 148 |
+
operational_comments_df,
|
| 149 |
+
names="operational_comments",
|
| 150 |
+
values="count",
|
| 151 |
+
hover_name="operational_comments",
|
| 152 |
+
hover_data=["count", "percent"],
|
| 153 |
+
title="Operational Comments Distribution",
|
| 154 |
+
)
|
| 155 |
+
fig.update_layout(height=600)
|
| 156 |
+
fig.update_traces(
|
| 157 |
+
texttemplate="<b>%{label}</b><br> %{value} <b>(%{customdata[1]:.1f}%)</b>",
|
| 158 |
+
textfont_size=15,
|
| 159 |
+
textposition="outside",
|
| 160 |
+
)
|
| 161 |
+
st.plotly_chart(fig)
|
| 162 |
+
|
| 163 |
+
# Add dataframe and Bar chart with "operational_comments" distribution per Region
|
| 164 |
+
st.markdown("***")
|
| 165 |
+
st.markdown(":blue[**Operational comment distribution per Region**]")
|
| 166 |
+
operational_comments_df = (
|
| 167 |
+
wcel_analysis_df.groupby(["Region", "operational_comments"])
|
| 168 |
+
.size()
|
| 169 |
+
.reset_index(name="count")
|
| 170 |
+
.sort_values(by="count", ascending=False)
|
| 171 |
+
)
|
| 172 |
+
operational_comments_col1, operational_comments_col2 = st.columns((1, 3))
|
| 173 |
+
with operational_comments_col1:
|
| 174 |
+
st.write(operational_comments_df)
|
| 175 |
+
with operational_comments_col2:
|
| 176 |
+
fig = px.bar(
|
| 177 |
+
operational_comments_df,
|
| 178 |
+
x="Region",
|
| 179 |
+
y="count",
|
| 180 |
+
color="operational_comments",
|
| 181 |
+
title="Operational Comments Distribution per Region",
|
| 182 |
+
text="count",
|
| 183 |
+
)
|
| 184 |
+
fig.update_traces(textposition="outside")
|
| 185 |
+
fig.update_layout(height=600)
|
| 186 |
+
st.plotly_chart(fig)
|
| 187 |
+
|
| 188 |
+
# Add dataframe and Pie chart with "fails_comments" distribution
|
| 189 |
+
st.markdown("***")
|
| 190 |
+
st.markdown(":blue[**Fails comment distribution**]")
|
| 191 |
+
fails_comments_df = (
|
| 192 |
+
wcel_analysis_df.groupby("fails_comments")
|
| 193 |
+
.size()
|
| 194 |
+
.reset_index(name="count")
|
| 195 |
+
.sort_values(by="count", ascending=False)
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
# replace empty strings with "Cell OK"
|
| 199 |
+
fails_comments_df["fails_comments"] = fails_comments_df[
|
| 200 |
+
"fails_comments"
|
| 201 |
+
].replace("", "Cell OK")
|
| 202 |
+
|
| 203 |
+
fails_comments_df["percent"] = (
|
| 204 |
+
fails_comments_df["count"] / fails_comments_df["count"].sum()
|
| 205 |
+
) * 100
|
| 206 |
+
fails_comments_col1, fails_comments_col2 = st.columns((1, 3))
|
| 207 |
+
with fails_comments_col1:
|
| 208 |
+
st.write(fails_comments_df)
|
| 209 |
+
with fails_comments_col2:
|
| 210 |
+
fig = px.pie(
|
| 211 |
+
fails_comments_df,
|
| 212 |
+
names="fails_comments",
|
| 213 |
+
values="count",
|
| 214 |
+
hover_name="fails_comments",
|
| 215 |
+
hover_data=["count", "percent"],
|
| 216 |
+
title="Fails Comments Distribution",
|
| 217 |
+
)
|
| 218 |
+
fig.update_layout(height=600)
|
| 219 |
+
fig.update_traces(
|
| 220 |
+
texttemplate="<b>%{label}</b><br> %{value} <b>(%{customdata[1]:.1f}%)</b>",
|
| 221 |
+
textfont_size=15,
|
| 222 |
+
textposition="outside",
|
| 223 |
+
)
|
| 224 |
+
st.plotly_chart(fig)
|
| 225 |
+
|
| 226 |
+
# Add dataframe and Bar chart with "fails_comments" distribution per Region
|
| 227 |
+
st.markdown("***")
|
| 228 |
+
st.markdown(":blue[**Fails comment distribution per Region**]")
|
| 229 |
+
fails_comments_df = (
|
| 230 |
+
wcel_analysis_df.groupby(["Region", "fails_comments"])
|
| 231 |
+
.size()
|
| 232 |
+
.reset_index(name="count")
|
| 233 |
+
.sort_values(by="count", ascending=False)
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
# replace empty strings with "Cell OK"
|
| 237 |
+
fails_comments_df["fails_comments"] = fails_comments_df[
|
| 238 |
+
"fails_comments"
|
| 239 |
+
].replace("", "Cell OK")
|
| 240 |
+
|
| 241 |
+
fails_comments_col1, fails_comments_col2 = st.columns((1, 3))
|
| 242 |
+
with fails_comments_col1:
|
| 243 |
+
st.write(fails_comments_df)
|
| 244 |
+
with fails_comments_col2:
|
| 245 |
+
fig = px.bar(
|
| 246 |
+
fails_comments_df,
|
| 247 |
+
x="Region",
|
| 248 |
+
y="count",
|
| 249 |
+
color="fails_comments",
|
| 250 |
+
title="Fails Comments Distribution per Region",
|
| 251 |
+
text="count",
|
| 252 |
+
)
|
| 253 |
+
fig.update_traces(textposition="outside", textfont_size=15)
|
| 254 |
+
fig.update_layout(height=600)
|
| 255 |
+
st.plotly_chart(fig)
|
| 256 |
+
|
| 257 |
+
# create a map plot with scatter_map with code ,Longitude,Latitude,fails_comments
|
| 258 |
+
st.markdown("***")
|
| 259 |
+
st.markdown(":blue[**Fails comments distribution**]")
|
| 260 |
+
fails_comments_map_df = wcel_analysis_df[
|
| 261 |
+
["code", "Longitude", "Latitude", "fails_comments"]
|
| 262 |
+
].dropna(subset=["code", "Longitude", "Latitude", "fails_comments"])
|
| 263 |
+
|
| 264 |
+
# replace empty strings with "Cell OK"
|
| 265 |
+
fails_comments_map_df["fails_comments"] = fails_comments_map_df[
|
| 266 |
+
"fails_comments"
|
| 267 |
+
].replace("", "Cell OK")
|
| 268 |
+
|
| 269 |
+
# add size column equalt to 20
|
| 270 |
+
fails_comments_map_df["size"] = 20
|
| 271 |
+
|
| 272 |
+
fig = px.scatter_map(
|
| 273 |
+
fails_comments_map_df,
|
| 274 |
+
lat="Latitude",
|
| 275 |
+
lon="Longitude",
|
| 276 |
+
color="fails_comments",
|
| 277 |
+
size="size",
|
| 278 |
+
zoom=10,
|
| 279 |
+
height=600,
|
| 280 |
+
title="Fails comments distribution",
|
| 281 |
+
hover_data={
|
| 282 |
+
"code": True,
|
| 283 |
+
"fails_comments": True,
|
| 284 |
+
},
|
| 285 |
+
hover_name="code",
|
| 286 |
+
)
|
| 287 |
+
fig.update_layout(mapbox_style="open-street-map")
|
| 288 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 289 |
+
|
| 290 |
+
# create a map plot with scatter_map with code ,Longitude,Latitude,operational_comments
|
| 291 |
+
operational_comments_map_df = wcel_analysis_df[
|
| 292 |
+
["code", "Longitude", "Latitude", "operational_comments"]
|
| 293 |
+
].dropna(subset=["code", "Longitude", "Latitude", "operational_comments"])
|
| 294 |
+
|
| 295 |
+
# replace empty strings with "Cell OK"
|
| 296 |
+
operational_comments_map_df["operational_comments"] = (
|
| 297 |
+
operational_comments_map_df["operational_comments"].replace("", "Cell OK")
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
# add size column equalt to 20
|
| 301 |
+
operational_comments_map_df["size"] = 20
|
| 302 |
+
|
| 303 |
+
fig = px.scatter_map(
|
| 304 |
+
operational_comments_map_df,
|
| 305 |
+
lat="Latitude",
|
| 306 |
+
lon="Longitude",
|
| 307 |
+
color="operational_comments",
|
| 308 |
+
size="size",
|
| 309 |
+
zoom=10,
|
| 310 |
+
height=600,
|
| 311 |
+
title="Operational comments distribution",
|
| 312 |
+
hover_data={
|
| 313 |
+
"code": True,
|
| 314 |
+
"operational_comments": True,
|
| 315 |
+
},
|
| 316 |
+
hover_name="code",
|
| 317 |
+
)
|
| 318 |
+
fig.update_layout(mapbox_style="open-street-map")
|
| 319 |
+
st.plotly_chart(fig, use_container_width=True)
|
process_kpi/process_wcel_capacity.py
CHANGED
|
@@ -9,6 +9,7 @@ from utils.kpi_analysis_utils import (
|
|
| 9 |
kpi_naming_cleaning,
|
| 10 |
summarize_fails_comments,
|
| 11 |
)
|
|
|
|
| 12 |
|
| 13 |
tx_comments_mapping = {
|
| 14 |
"iub_frameloss exceeded threshold": "iub frameloss",
|
|
@@ -31,6 +32,20 @@ operational_comments_mapping = {
|
|
| 31 |
"hsdpa iub congestion, critical instability": "Availability and TX issues",
|
| 32 |
}
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
KPI_COLUMNS = [
|
| 35 |
"WCEL_name",
|
| 36 |
"date",
|
|
@@ -48,6 +63,36 @@ KPI_COLUMNS = [
|
|
| 48 |
"rrc_conn_stp_fail_bts_M1001C4",
|
| 49 |
]
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
class WcelCapacity:
|
| 53 |
final_results: pd.DataFrame = None
|
|
@@ -80,13 +125,11 @@ def wcel_kpi_analysis(
|
|
| 80 |
hsdpa_user_throughput_df = pivoted_kpi_dfs["HSDPA_USER_THROUGHPUT"]
|
| 81 |
max_simult_hsdpa_users_df = pivoted_kpi_dfs["Max_simult_HSDPA_users"]
|
| 82 |
# Add Max of Trafics, throughput and max users
|
| 83 |
-
trafic_cs_df["
|
| 84 |
-
hsdpa_traffic_df["
|
| 85 |
hsdpa_user_throughput_df["max_dl_throughput"] = hsdpa_user_throughput_df.max(axis=1)
|
| 86 |
max_simult_hsdpa_users_df["max_users"] = max_simult_hsdpa_users_df.max(axis=1)
|
| 87 |
# add average of Trafics, throughput and max users
|
| 88 |
-
trafic_cs_df["avg_traffic_cs"] = trafic_cs_df.mean(axis=1)
|
| 89 |
-
hsdpa_traffic_df["avg_traffic_dl"] = hsdpa_traffic_df.mean(axis=1)
|
| 90 |
hsdpa_user_throughput_df["avg_dl_throughput"] = hsdpa_user_throughput_df.mean(
|
| 91 |
axis=1
|
| 92 |
)
|
|
@@ -196,7 +239,72 @@ def wcel_kpi_analysis(
|
|
| 196 |
new_column="fails_comments",
|
| 197 |
)
|
| 198 |
kpi_df["fails_comments"] = kpi_df["fails_comments"].apply(summarize_fails_comments)
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
|
| 202 |
def load_and_process_wcel_capacity_data(
|
|
@@ -228,7 +336,7 @@ def load_and_process_wcel_capacity_data(
|
|
| 228 |
df = kpi_naming_cleaning(df)
|
| 229 |
df = create_daily_date(df)
|
| 230 |
df = df[KPI_COLUMNS]
|
| 231 |
-
|
| 232 |
df,
|
| 233 |
num_last_days,
|
| 234 |
num_threshold_days,
|
|
@@ -237,4 +345,4 @@ def load_and_process_wcel_capacity_data(
|
|
| 237 |
hsdpa_congestion_rate_iub_threshold,
|
| 238 |
fails_treshold,
|
| 239 |
)
|
| 240 |
-
return
|
|
|
|
| 9 |
kpi_naming_cleaning,
|
| 10 |
summarize_fails_comments,
|
| 11 |
)
|
| 12 |
+
from utils.utils_vars import get_physical_db
|
| 13 |
|
| 14 |
tx_comments_mapping = {
|
| 15 |
"iub_frameloss exceeded threshold": "iub frameloss",
|
|
|
|
| 32 |
"hsdpa iub congestion, critical instability": "Availability and TX issues",
|
| 33 |
}
|
| 34 |
|
| 35 |
+
fails_comments_mapping = {
|
| 36 |
+
"ac, ac_dl, bts, code fails": "Power, Bts and Code fails",
|
| 37 |
+
"bts fails": "Bts fails",
|
| 38 |
+
"ac, bts, code fails": "Power and Code fails",
|
| 39 |
+
"ac, code fails": "Power fails",
|
| 40 |
+
"ac fails": "Power fails",
|
| 41 |
+
"ac, ac_dl fails": "Power fails",
|
| 42 |
+
"ac, bts fails": "Power and Bts fails",
|
| 43 |
+
"ac, ac_dl, bts fails": "Power and Bts fails",
|
| 44 |
+
"ac, ac_dl, code fails": "Power and Code fails",
|
| 45 |
+
"ac, ac_ul, bts, code fails": "Power, Bts and Code fails",
|
| 46 |
+
"ac, ac_dl, ac_ul, bts, code fails": "Power, Bts and Code fails",
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
KPI_COLUMNS = [
|
| 50 |
"WCEL_name",
|
| 51 |
"date",
|
|
|
|
| 63 |
"rrc_conn_stp_fail_bts_M1001C4",
|
| 64 |
]
|
| 65 |
|
| 66 |
+
WCEL_ANALYSIS_COLUMNS = [
|
| 67 |
+
"WCEL_name",
|
| 68 |
+
"Average_cell_availability_daily",
|
| 69 |
+
"number_of_days_exceeding_availability_threshold_daily",
|
| 70 |
+
"availability_comment_daily",
|
| 71 |
+
"sum_traffic_cs",
|
| 72 |
+
"sum_traffic_dl",
|
| 73 |
+
"max_dl_throughput",
|
| 74 |
+
"avg_dl_throughput",
|
| 75 |
+
"max_users",
|
| 76 |
+
"max_iub_frameloss",
|
| 77 |
+
"number_of_days_with_iub_frameloss_exceeded",
|
| 78 |
+
"max_hsdpa_congestion_rate_iub",
|
| 79 |
+
"number_of_days_with_hsdpa_congestion_rate_iub_exceeded",
|
| 80 |
+
"max_rrc_fail_ac",
|
| 81 |
+
"number_of_days_with_rrc_fail_ac_exceeded",
|
| 82 |
+
"max_rrc_fail_ac_ul",
|
| 83 |
+
"number_of_days_with_rrc_fail_ac_ul_exceeded",
|
| 84 |
+
"max_rrc_fail_ac_dl",
|
| 85 |
+
"number_of_days_with_rrc_fail_ac_dl_exceeded",
|
| 86 |
+
"max_rrc_fail_code",
|
| 87 |
+
"number_of_days_with_rrc_fail_code_exceeded",
|
| 88 |
+
"max_rrc_fail_bts",
|
| 89 |
+
"number_of_days_with_rrc_fail_bts_exceeded",
|
| 90 |
+
"tx_congestion_comments",
|
| 91 |
+
"operational_comments",
|
| 92 |
+
"fails_comments",
|
| 93 |
+
"final_comments",
|
| 94 |
+
]
|
| 95 |
+
|
| 96 |
|
| 97 |
class WcelCapacity:
|
| 98 |
final_results: pd.DataFrame = None
|
|
|
|
| 125 |
hsdpa_user_throughput_df = pivoted_kpi_dfs["HSDPA_USER_THROUGHPUT"]
|
| 126 |
max_simult_hsdpa_users_df = pivoted_kpi_dfs["Max_simult_HSDPA_users"]
|
| 127 |
# Add Max of Trafics, throughput and max users
|
| 128 |
+
trafic_cs_df["sum_traffic_cs"] = trafic_cs_df.sum(axis=1)
|
| 129 |
+
hsdpa_traffic_df["sum_traffic_dl"] = hsdpa_traffic_df.sum(axis=1)
|
| 130 |
hsdpa_user_throughput_df["max_dl_throughput"] = hsdpa_user_throughput_df.max(axis=1)
|
| 131 |
max_simult_hsdpa_users_df["max_users"] = max_simult_hsdpa_users_df.max(axis=1)
|
| 132 |
# add average of Trafics, throughput and max users
|
|
|
|
|
|
|
| 133 |
hsdpa_user_throughput_df["avg_dl_throughput"] = hsdpa_user_throughput_df.mean(
|
| 134 |
axis=1
|
| 135 |
)
|
|
|
|
| 239 |
new_column="fails_comments",
|
| 240 |
)
|
| 241 |
kpi_df["fails_comments"] = kpi_df["fails_comments"].apply(summarize_fails_comments)
|
| 242 |
+
kpi_df["fails_comments"] = kpi_df["fails_comments"].apply(
|
| 243 |
+
lambda x: fails_comments_mapping.get(x, x)
|
| 244 |
+
)
|
| 245 |
+
kpi_df = combine_comments(
|
| 246 |
+
kpi_df,
|
| 247 |
+
"operational_comments",
|
| 248 |
+
"fails_comments",
|
| 249 |
+
new_column="final_comments",
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
wcel_analysis_df = kpi_df[WCEL_ANALYSIS_COLUMNS]
|
| 253 |
+
wcel_analysis_df = wcel_analysis_df.droplevel(level=1, axis=1)
|
| 254 |
+
|
| 255 |
+
# Rename
|
| 256 |
+
wcel_analysis_df = wcel_analysis_df.rename(
|
| 257 |
+
columns={
|
| 258 |
+
"WCEL_name": "name",
|
| 259 |
+
"Average_cell_availability_daily": "Avg_availability",
|
| 260 |
+
"number_of_days_exceeding_availability_threshold_daily": "Avail_exceed_days",
|
| 261 |
+
"availability_comment_daily": "availability_comment",
|
| 262 |
+
"number_of_days_with_iub_frameloss_exceeded": "iub_frameloss_exceed_days",
|
| 263 |
+
"number_of_days_with_hsdpa_congestion_rate_iub_exceeded": "hsdpa_iub_exceed_days",
|
| 264 |
+
"number_of_days_with_rrc_fail_ac_exceeded": "ac_fail_exceed_days",
|
| 265 |
+
"number_of_days_with_rrc_fail_ac_ul_exceeded": "ac_ul_fail_exceed_days",
|
| 266 |
+
"number_of_days_with_rrc_fail_ac_dl_exceeded": "ac_dl_fail_exceed_days",
|
| 267 |
+
"number_of_days_with_rrc_fail_code_exceeded": "code_fail_exceed_days",
|
| 268 |
+
"number_of_days_with_rrc_fail_bts_exceeded": "bts_fail_exceed_days",
|
| 269 |
+
}
|
| 270 |
+
)
|
| 271 |
+
# remove row if name less than 5 characters
|
| 272 |
+
wcel_analysis_df = wcel_analysis_df[wcel_analysis_df["name"].str.len() >= 5]
|
| 273 |
+
|
| 274 |
+
wcel_analysis_df["code"] = wcel_analysis_df["name"].str.split("_").str[0]
|
| 275 |
+
wcel_analysis_df["code"] = (
|
| 276 |
+
pd.to_numeric(wcel_analysis_df["code"], errors="coerce").fillna(0).astype(int)
|
| 277 |
+
)
|
| 278 |
+
wcel_analysis_df["Region"] = wcel_analysis_df["name"].str.split("_").str[1]
|
| 279 |
+
# move code to the first column
|
| 280 |
+
wcel_analysis_df = wcel_analysis_df[
|
| 281 |
+
["code", "Region"]
|
| 282 |
+
+ [col for col in wcel_analysis_df if col != "code" and col != "Region"]
|
| 283 |
+
]
|
| 284 |
+
|
| 285 |
+
# Load physical database
|
| 286 |
+
physical_db: pd.DataFrame = get_physical_db()
|
| 287 |
+
|
| 288 |
+
# Convert code_sector to code
|
| 289 |
+
physical_db["code"] = physical_db["Code_Sector"].str.split("_").str[0]
|
| 290 |
+
# remove duplicates
|
| 291 |
+
physical_db = physical_db.drop_duplicates(subset="code")
|
| 292 |
+
|
| 293 |
+
# keep only code and longitude and latitude
|
| 294 |
+
physical_db = physical_db[["code", "Longitude", "Latitude"]]
|
| 295 |
+
|
| 296 |
+
physical_db["code"] = (
|
| 297 |
+
pd.to_numeric(physical_db["code"], errors="coerce").fillna(0).astype(int)
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
wcel_analysis_df = pd.merge(
|
| 301 |
+
wcel_analysis_df,
|
| 302 |
+
physical_db,
|
| 303 |
+
on="code",
|
| 304 |
+
how="left",
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
return [wcel_analysis_df, kpi_df]
|
| 308 |
|
| 309 |
|
| 310 |
def load_and_process_wcel_capacity_data(
|
|
|
|
| 336 |
df = kpi_naming_cleaning(df)
|
| 337 |
df = create_daily_date(df)
|
| 338 |
df = df[KPI_COLUMNS]
|
| 339 |
+
dfs = wcel_kpi_analysis(
|
| 340 |
df,
|
| 341 |
num_last_days,
|
| 342 |
num_threshold_days,
|
|
|
|
| 345 |
hsdpa_congestion_rate_iub_threshold,
|
| 346 |
fails_treshold,
|
| 347 |
)
|
| 348 |
+
return dfs
|