Add CIQ 2G Generator with BCF assignment logic, site parsing from CIQ brut Excel, dump BTS column extraction, band/sector detection, configuration building, and multi-sheet Excel export with placeholder sheets for BTS, GPRS, AMR, HOC, POC, MAL, PLMNPERMITTED, and TRX
Browse files- app.py +1 -0
- apps/ciq_2g_generator.py +48 -0
- queries/process_ciq_2g.py +362 -0
app.py
CHANGED
|
@@ -118,6 +118,7 @@ if check_password():
|
|
| 118 |
st.Page(
|
| 119 |
"apps/parameters_distribution.py", title="📊Parameters distribution"
|
| 120 |
),
|
|
|
|
| 121 |
st.Page("apps/core_dump_page.py", title="📠Parse dump core"),
|
| 122 |
st.Page("apps/gps_converter.py", title="🧭GPS Converter"),
|
| 123 |
st.Page("apps/distance.py", title="🛰Distance Calculator"),
|
|
|
|
| 118 |
st.Page(
|
| 119 |
"apps/parameters_distribution.py", title="📊Parameters distribution"
|
| 120 |
),
|
| 121 |
+
st.Page("apps/ciq_2g_generator.py", title="🧾 CIQ 2G Generator"),
|
| 122 |
st.Page("apps/core_dump_page.py", title="📠Parse dump core"),
|
| 123 |
st.Page("apps/gps_converter.py", title="🧭GPS Converter"),
|
| 124 |
st.Page("apps/distance.py", title="🛰Distance Calculator"),
|
apps/ciq_2g_generator.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import streamlit as st
|
| 3 |
+
|
| 4 |
+
from queries.process_ciq_2g import generate_ciq_2g_excel
|
| 5 |
+
|
| 6 |
+
st.title("CIQ 2G Generator")
|
| 7 |
+
|
| 8 |
+
col1, col2 = st.columns(2)
|
| 9 |
+
with col1:
|
| 10 |
+
dump_file = st.file_uploader("Upload dump file", type=["xlsb"], key="ciq2g_dump")
|
| 11 |
+
with col2:
|
| 12 |
+
ciq_file = st.file_uploader(
|
| 13 |
+
"Upload CIQ brut 2G (Excel)", type=["xlsx", "xls"], key="ciq2g_ciq"
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
if dump_file is None or ciq_file is None:
|
| 17 |
+
st.info("Upload dump xlsb + CIQ brut Excel to generate CIQ 2G.")
|
| 18 |
+
st.stop()
|
| 19 |
+
|
| 20 |
+
if st.button("Generate", type="primary"):
|
| 21 |
+
try:
|
| 22 |
+
with st.spinner("Generating CIQ 2G... (dump is heavy)"):
|
| 23 |
+
sheets, excel_bytes = generate_ciq_2g_excel(dump_file, ciq_file)
|
| 24 |
+
st.session_state["ciq2g_sheets"] = sheets
|
| 25 |
+
st.session_state["ciq2g_excel_bytes"] = excel_bytes
|
| 26 |
+
st.success("CIQ 2G generated")
|
| 27 |
+
except Exception as e:
|
| 28 |
+
st.error(f"Error: {e}")
|
| 29 |
+
|
| 30 |
+
sheets = st.session_state.get("ciq2g_sheets")
|
| 31 |
+
excel_bytes = st.session_state.get("ciq2g_excel_bytes")
|
| 32 |
+
|
| 33 |
+
if sheets:
|
| 34 |
+
tab_names = list(sheets.keys())
|
| 35 |
+
tabs = st.tabs(tab_names)
|
| 36 |
+
for t, name in zip(tabs, tab_names):
|
| 37 |
+
with t:
|
| 38 |
+
df: pd.DataFrame = sheets[name]
|
| 39 |
+
st.dataframe(df, use_container_width=True)
|
| 40 |
+
|
| 41 |
+
if excel_bytes:
|
| 42 |
+
st.download_button(
|
| 43 |
+
label="Download CIQ 2G Excel",
|
| 44 |
+
data=excel_bytes,
|
| 45 |
+
file_name="CIQ_2G.xlsx",
|
| 46 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
| 47 |
+
type="primary",
|
| 48 |
+
)
|
queries/process_ciq_2g.py
ADDED
|
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import io
|
| 2 |
+
import re
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from typing import Optional
|
| 5 |
+
|
| 6 |
+
import pandas as pd
|
| 7 |
+
|
| 8 |
+
REQUIRED_DUMP_BTS_COLS = ["BSC", "BCF", "BTS", "usedMobileAllocation"]
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def _normalize_col(col: object) -> str:
|
| 12 |
+
return re.sub(r"[^0-9A-Za-z]", "", str(col))
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def _clean_columns(df: pd.DataFrame) -> pd.DataFrame:
|
| 16 |
+
df = df.copy()
|
| 17 |
+
df.columns = [_normalize_col(c) for c in df.columns]
|
| 18 |
+
return df
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def _read_dump_bts_required_columns(dump_file) -> pd.DataFrame:
|
| 22 |
+
if hasattr(dump_file, "seek"):
|
| 23 |
+
dump_file.seek(0)
|
| 24 |
+
|
| 25 |
+
hdr = pd.read_excel(
|
| 26 |
+
dump_file,
|
| 27 |
+
sheet_name="BTS",
|
| 28 |
+
engine="calamine",
|
| 29 |
+
skiprows=[0],
|
| 30 |
+
nrows=0,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
original_cols = list(hdr.columns)
|
| 34 |
+
normalized_to_original: dict[str, str] = {}
|
| 35 |
+
for c in original_cols:
|
| 36 |
+
n = _normalize_col(c)
|
| 37 |
+
if n and n not in normalized_to_original:
|
| 38 |
+
normalized_to_original[n] = c
|
| 39 |
+
|
| 40 |
+
missing = [c for c in REQUIRED_DUMP_BTS_COLS if c not in normalized_to_original]
|
| 41 |
+
if missing:
|
| 42 |
+
raise ValueError(
|
| 43 |
+
f"Dump sheet 'BTS' is missing required columns after cleanup: {missing}. "
|
| 44 |
+
f"Found columns (normalized): {sorted(normalized_to_original.keys())[:50]}"
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
usecols = [normalized_to_original[c] for c in REQUIRED_DUMP_BTS_COLS]
|
| 48 |
+
|
| 49 |
+
if hasattr(dump_file, "seek"):
|
| 50 |
+
dump_file.seek(0)
|
| 51 |
+
|
| 52 |
+
df = pd.read_excel(
|
| 53 |
+
dump_file,
|
| 54 |
+
sheet_name="BTS",
|
| 55 |
+
engine="calamine",
|
| 56 |
+
skiprows=[0],
|
| 57 |
+
usecols=usecols,
|
| 58 |
+
)
|
| 59 |
+
df = _clean_columns(df)
|
| 60 |
+
|
| 61 |
+
df = df[REQUIRED_DUMP_BTS_COLS]
|
| 62 |
+
for c in ["BSC", "BCF", "BTS", "usedMobileAllocation"]:
|
| 63 |
+
df[c] = pd.to_numeric(df[c], errors="coerce")
|
| 64 |
+
|
| 65 |
+
return df
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
@dataclass(frozen=True)
|
| 69 |
+
class _PlannedSite:
|
| 70 |
+
site_name: str
|
| 71 |
+
site_number: int
|
| 72 |
+
bsc: int
|
| 73 |
+
bsc_name: str
|
| 74 |
+
name: str
|
| 75 |
+
configuration: str
|
| 76 |
+
assigned_bcf: Optional[int]
|
| 77 |
+
needed_bts_ids: tuple[int, ...]
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def _parse_site_number(site: object) -> int:
|
| 81 |
+
if not isinstance(site, str):
|
| 82 |
+
return 0
|
| 83 |
+
m = re.match(r"^(\d+)", site.strip())
|
| 84 |
+
return int(m.group(1)) if m else 0
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def _extract_band_and_sector(cell_name: object) -> tuple[Optional[str], Optional[int]]:
|
| 88 |
+
if not isinstance(cell_name, str):
|
| 89 |
+
return None, None
|
| 90 |
+
|
| 91 |
+
parts = cell_name.strip().split("_")
|
| 92 |
+
for i in range(len(parts) - 1):
|
| 93 |
+
if parts[i].isdigit() and parts[i + 1] in {"900", "1800"}:
|
| 94 |
+
sector = int(parts[i])
|
| 95 |
+
band = "G9" if parts[i + 1] == "900" else "G18"
|
| 96 |
+
return band, sector
|
| 97 |
+
|
| 98 |
+
if cell_name.endswith("_900"):
|
| 99 |
+
return "G9", None
|
| 100 |
+
if cell_name.endswith("_1800"):
|
| 101 |
+
return "G18", None
|
| 102 |
+
|
| 103 |
+
return None, None
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def _build_configuration(site_rows: pd.DataFrame) -> str:
|
| 107 |
+
rows = site_rows.copy()
|
| 108 |
+
|
| 109 |
+
rows["sector"] = pd.to_numeric(rows.get("sector"), errors="coerce")
|
| 110 |
+
rows["Nbre_TRE_DR"] = pd.to_numeric(rows.get("Nbre_TRE_DR"), errors="coerce")
|
| 111 |
+
|
| 112 |
+
configs: list[str] = []
|
| 113 |
+
for band in ["G9", "G18"]:
|
| 114 |
+
sub = rows[rows["band"] == band]
|
| 115 |
+
if sub.empty:
|
| 116 |
+
continue
|
| 117 |
+
|
| 118 |
+
sub = (
|
| 119 |
+
sub.dropna(subset=["Nbre_TRE_DR"])
|
| 120 |
+
.drop_duplicates(subset=["sector"], keep="first")
|
| 121 |
+
.sort_values(by=["sector"], na_position="last")
|
| 122 |
+
)
|
| 123 |
+
digits = "".join(str(int(v)) for v in sub["Nbre_TRE_DR"].tolist())
|
| 124 |
+
if digits:
|
| 125 |
+
configs.append(f"{band}-{digits}")
|
| 126 |
+
|
| 127 |
+
return ", ".join(configs)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def _needed_bts_ids_from_site_rows(
|
| 131 |
+
bcf: int, site_rows: pd.DataFrame
|
| 132 |
+
) -> tuple[int, ...]:
|
| 133 |
+
ids: set[int] = set()
|
| 134 |
+
|
| 135 |
+
offset_map = {
|
| 136 |
+
("G9", 1): 1,
|
| 137 |
+
("G9", 2): 2,
|
| 138 |
+
("G9", 3): 3,
|
| 139 |
+
("G18", 1): 4,
|
| 140 |
+
("G18", 2): 5,
|
| 141 |
+
("G18", 3): 6,
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
for _, r in site_rows.iterrows():
|
| 145 |
+
band = r.get("band")
|
| 146 |
+
sector = r.get("sector")
|
| 147 |
+
if (
|
| 148 |
+
band in {"G9", "G18"}
|
| 149 |
+
and isinstance(sector, (int, float))
|
| 150 |
+
and not pd.isna(sector)
|
| 151 |
+
):
|
| 152 |
+
sector_int = int(sector)
|
| 153 |
+
off = offset_map.get((band, sector_int))
|
| 154 |
+
if off is not None:
|
| 155 |
+
ids.add(bcf + off)
|
| 156 |
+
|
| 157 |
+
return tuple(sorted(ids))
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def _parse_ciq_sites(ciq_file) -> list[_PlannedSite]:
|
| 161 |
+
if hasattr(ciq_file, "seek"):
|
| 162 |
+
ciq_file.seek(0)
|
| 163 |
+
|
| 164 |
+
df = pd.read_excel(ciq_file, engine="calamine")
|
| 165 |
+
|
| 166 |
+
df.columns = df.columns.astype(str).str.strip()
|
| 167 |
+
|
| 168 |
+
required = ["Sites", "NOM_CELLULE", "Nbre_TRE_DR", "Nom BSC", "BSC ID"]
|
| 169 |
+
missing = [c for c in required if c not in df.columns]
|
| 170 |
+
if missing:
|
| 171 |
+
raise ValueError(f"CIQ brut is missing required columns: {missing}")
|
| 172 |
+
|
| 173 |
+
df = df[required].copy()
|
| 174 |
+
|
| 175 |
+
df["site_number"] = df["Sites"].apply(_parse_site_number)
|
| 176 |
+
df["BSC ID"] = pd.to_numeric(df["BSC ID"], errors="coerce")
|
| 177 |
+
df["Nbre_TRE_DR"] = pd.to_numeric(df["Nbre_TRE_DR"], errors="coerce")
|
| 178 |
+
|
| 179 |
+
bands_sectors = df["NOM_CELLULE"].apply(_extract_band_and_sector)
|
| 180 |
+
df["band"] = bands_sectors.apply(lambda x: x[0])
|
| 181 |
+
df["sector"] = bands_sectors.apply(lambda x: x[1])
|
| 182 |
+
|
| 183 |
+
sites: list[_PlannedSite] = []
|
| 184 |
+
|
| 185 |
+
for site_name, site_rows in df.groupby("Sites", dropna=False):
|
| 186 |
+
if not isinstance(site_name, str) or not site_name.strip():
|
| 187 |
+
continue
|
| 188 |
+
|
| 189 |
+
bsc_series = site_rows["BSC ID"].dropna()
|
| 190 |
+
if bsc_series.empty:
|
| 191 |
+
raise ValueError(f"Missing BSC ID for site '{site_name}'")
|
| 192 |
+
bsc = int(bsc_series.iloc[0])
|
| 193 |
+
|
| 194 |
+
bsc_name_series = site_rows["Nom BSC"].dropna()
|
| 195 |
+
bsc_name = str(bsc_name_series.iloc[0]) if not bsc_name_series.empty else ""
|
| 196 |
+
|
| 197 |
+
site_number = int(site_rows["site_number"].dropna().iloc[0])
|
| 198 |
+
|
| 199 |
+
configuration = _build_configuration(site_rows)
|
| 200 |
+
|
| 201 |
+
sites.append(
|
| 202 |
+
_PlannedSite(
|
| 203 |
+
site_name=site_name,
|
| 204 |
+
site_number=site_number,
|
| 205 |
+
bsc=bsc,
|
| 206 |
+
bsc_name=bsc_name,
|
| 207 |
+
name=f"{site_name}_NA",
|
| 208 |
+
configuration=configuration,
|
| 209 |
+
assigned_bcf=None,
|
| 210 |
+
needed_bts_ids=(),
|
| 211 |
+
)
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
return sorted(sites, key=lambda s: (s.bsc, s.site_number, s.site_name))
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def _assign_bcfs(
|
| 218 |
+
dump_bts: pd.DataFrame, planned_sites: list[_PlannedSite], ciq_file
|
| 219 |
+
) -> list[_PlannedSite]:
|
| 220 |
+
if hasattr(ciq_file, "seek"):
|
| 221 |
+
ciq_file.seek(0)
|
| 222 |
+
|
| 223 |
+
ciq_df = pd.read_excel(ciq_file, engine="calamine")
|
| 224 |
+
ciq_df.columns = ciq_df.columns.astype(str).str.strip()
|
| 225 |
+
ciq_df = ciq_df[["Sites", "NOM_CELLULE", "Nbre_TRE_DR", "Nom BSC", "BSC ID"]].copy()
|
| 226 |
+
|
| 227 |
+
ciq_df["BSC ID"] = pd.to_numeric(ciq_df["BSC ID"], errors="coerce")
|
| 228 |
+
ciq_df["Nbre_TRE_DR"] = pd.to_numeric(ciq_df["Nbre_TRE_DR"], errors="coerce")
|
| 229 |
+
|
| 230 |
+
bands_sectors = ciq_df["NOM_CELLULE"].apply(_extract_band_and_sector)
|
| 231 |
+
ciq_df["band"] = bands_sectors.apply(lambda x: x[0])
|
| 232 |
+
ciq_df["sector"] = bands_sectors.apply(lambda x: x[1])
|
| 233 |
+
|
| 234 |
+
dump_bts = dump_bts.dropna(subset=["BSC"])
|
| 235 |
+
|
| 236 |
+
assigned: list[_PlannedSite] = []
|
| 237 |
+
|
| 238 |
+
sites_by_bsc: dict[int, list[_PlannedSite]] = {}
|
| 239 |
+
for s in planned_sites:
|
| 240 |
+
sites_by_bsc.setdefault(s.bsc, []).append(s)
|
| 241 |
+
|
| 242 |
+
for bsc, sites_in_bsc in sites_by_bsc.items():
|
| 243 |
+
sub_dump = dump_bts[dump_bts["BSC"].fillna(-1).astype(int) == int(bsc)]
|
| 244 |
+
|
| 245 |
+
used_bcfs: set[int] = set(
|
| 246 |
+
pd.to_numeric(sub_dump["BCF"], errors="coerce")
|
| 247 |
+
.dropna()
|
| 248 |
+
.astype(int)
|
| 249 |
+
.tolist()
|
| 250 |
+
)
|
| 251 |
+
used_bts: set[int] = set(
|
| 252 |
+
pd.to_numeric(sub_dump["BTS"], errors="coerce")
|
| 253 |
+
.dropna()
|
| 254 |
+
.astype(int)
|
| 255 |
+
.tolist()
|
| 256 |
+
)
|
| 257 |
+
used_mal: set[int] = set(
|
| 258 |
+
pd.to_numeric(sub_dump["usedMobileAllocation"], errors="coerce")
|
| 259 |
+
.dropna()
|
| 260 |
+
.astype(int)
|
| 261 |
+
.tolist()
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
sites_in_bsc_sorted = sorted(
|
| 265 |
+
sites_in_bsc, key=lambda s: (s.site_number, s.site_name)
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
for site in sites_in_bsc_sorted:
|
| 269 |
+
site_rows = ciq_df[ciq_df["Sites"] == site.site_name]
|
| 270 |
+
if site_rows.empty:
|
| 271 |
+
raise ValueError(f"No CIQ rows found for site '{site.site_name}'")
|
| 272 |
+
|
| 273 |
+
assigned_bcf = None
|
| 274 |
+
assigned_needed_ids: Optional[tuple[int, ...]] = None
|
| 275 |
+
|
| 276 |
+
for cand in range(10, 4401, 10):
|
| 277 |
+
if cand in used_bcfs:
|
| 278 |
+
continue
|
| 279 |
+
|
| 280 |
+
site_needed_ids = _needed_bts_ids_from_site_rows(cand, site_rows)
|
| 281 |
+
if not site_needed_ids:
|
| 282 |
+
continue
|
| 283 |
+
|
| 284 |
+
required_ids = tuple(cand + i for i in range(1, 7))
|
| 285 |
+
|
| 286 |
+
if any((i in used_bts) or (i in used_mal) for i in required_ids):
|
| 287 |
+
continue
|
| 288 |
+
|
| 289 |
+
assigned_bcf = cand
|
| 290 |
+
assigned_needed_ids = site_needed_ids
|
| 291 |
+
break
|
| 292 |
+
|
| 293 |
+
if assigned_bcf is None or assigned_needed_ids is None:
|
| 294 |
+
raise ValueError(
|
| 295 |
+
f"No available BCF found for site '{site.site_name}' on BSC {bsc}"
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
used_bcfs.add(assigned_bcf)
|
| 299 |
+
reserved_ids = [assigned_bcf + i for i in range(1, 7)]
|
| 300 |
+
used_bts.update(reserved_ids)
|
| 301 |
+
used_mal.update(reserved_ids)
|
| 302 |
+
|
| 303 |
+
assigned.append(
|
| 304 |
+
_PlannedSite(
|
| 305 |
+
site_name=site.site_name,
|
| 306 |
+
site_number=site.site_number,
|
| 307 |
+
bsc=site.bsc,
|
| 308 |
+
bsc_name=site.bsc_name,
|
| 309 |
+
name=site.name,
|
| 310 |
+
configuration=site.configuration,
|
| 311 |
+
assigned_bcf=int(assigned_bcf),
|
| 312 |
+
needed_bts_ids=assigned_needed_ids,
|
| 313 |
+
)
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
return sorted(assigned, key=lambda s: (s.bsc, s.site_number, s.site_name))
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
def build_bcf_sheet(dump_file, ciq_file) -> pd.DataFrame:
|
| 320 |
+
dump_bts = _read_dump_bts_required_columns(dump_file)
|
| 321 |
+
planned_sites = _parse_ciq_sites(ciq_file)
|
| 322 |
+
assigned_sites = _assign_bcfs(dump_bts, planned_sites, ciq_file)
|
| 323 |
+
|
| 324 |
+
rows = []
|
| 325 |
+
for i, s in enumerate(assigned_sites, start=1):
|
| 326 |
+
rows.append(
|
| 327 |
+
{
|
| 328 |
+
"S. No.": i,
|
| 329 |
+
"Site Number": s.site_number,
|
| 330 |
+
"BSC": s.bsc,
|
| 331 |
+
"BSC Name": s.bsc_name,
|
| 332 |
+
"BCF": s.assigned_bcf,
|
| 333 |
+
"name": s.name,
|
| 334 |
+
"Configuration": s.configuration,
|
| 335 |
+
}
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
df_bcf = pd.DataFrame(rows)
|
| 339 |
+
return df_bcf
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
def generate_ciq_2g_excel(dump_file, ciq_file) -> tuple[dict[str, pd.DataFrame], bytes]:
|
| 343 |
+
df_bcf = build_bcf_sheet(dump_file, ciq_file)
|
| 344 |
+
|
| 345 |
+
sheets: dict[str, pd.DataFrame] = {
|
| 346 |
+
"BCF": df_bcf,
|
| 347 |
+
"BTS": pd.DataFrame(),
|
| 348 |
+
"BTS_GPRS": pd.DataFrame(),
|
| 349 |
+
"BTS_AMR": pd.DataFrame(),
|
| 350 |
+
"HOC": pd.DataFrame(),
|
| 351 |
+
"POC": pd.DataFrame(),
|
| 352 |
+
"MAL": pd.DataFrame(),
|
| 353 |
+
"BTS_PLMNPERMITTED": pd.DataFrame(),
|
| 354 |
+
"TRX": pd.DataFrame(),
|
| 355 |
+
}
|
| 356 |
+
|
| 357 |
+
bytes_io = io.BytesIO()
|
| 358 |
+
with pd.ExcelWriter(bytes_io, engine="xlsxwriter") as writer:
|
| 359 |
+
for sheet_name, df in sheets.items():
|
| 360 |
+
df.to_excel(writer, sheet_name=sheet_name, index=False)
|
| 361 |
+
|
| 362 |
+
return sheets, bytes_io.getvalue()
|