FFomy commited on
Commit
b54b744
·
verified ·
1 Parent(s): 2a9b280

Update Fun-ASR/model.py

Browse files
Files changed (1) hide show
  1. Fun-ASR/model.py +109 -42
Fun-ASR/model.py CHANGED
@@ -15,6 +15,7 @@ from funasr.register import tables
15
  from funasr.train_utils.device_funcs import force_gatherable, to_device
16
  from funasr.utils.datadir_writer import DatadirWriter
17
  from funasr.utils.load_utils import extract_fbank, load_audio_text_image_video
 
18
 
19
  dtype_map = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}
20
 
@@ -37,13 +38,21 @@ class FunASRNano(nn.Module):
37
 
38
  # audio encoder
39
  hub = audio_encoder_conf.get("hub", None)
40
- self.audio_encoder_activation_checkpoint = audio_encoder_conf.get("activation_checkpoint", False)
 
 
41
  if hub == "ms":
42
  model = AutoModel(model=audio_encoder, model_revision="master")
43
  audio_encoder_output_size = (
44
- model.model.encoder_output_size if hasattr(model.model, "encoder_output_size") else -1
 
 
 
 
 
 
 
45
  )
46
- audio_encoder = model.model.model.encoder if hasattr(model.model, "model") else model.model.encoder
47
  else:
48
  encoder_class = tables.encoder_classes.get(audio_encoder)
49
  audio_encoder = encoder_class(input_size=input_size, **audio_encoder_conf)
@@ -61,16 +70,9 @@ class FunASRNano(nn.Module):
61
  init_param_path = llm_conf.get("init_param_path", None)
62
  llm_dim = None
63
 
64
- from transformers import AutoModelForCausalLM
65
-
66
  llm_load_kwargs = llm_conf.get("load_kwargs", {})
67
- model = AutoModelForCausalLM.from_pretrained(
68
- init_param_path,
69
- load_in_8bit=None,
70
- device_map=None,
71
- use_cache=None,
72
- **llm_load_kwargs,
73
- )
74
 
75
  freeze = llm_conf.get("freeze", True)
76
  if freeze:
@@ -110,13 +112,10 @@ class FunASRNano(nn.Module):
110
  adaptor_class = tables.adaptor_classes.get(audio_adaptor)
111
  if audio_encoder_output_size > 0:
112
  audio_adaptor_conf["encoder_dim"] = audio_encoder_output_size
113
- audio_adaptor_conf["llm_dim"] = llm_dim if llm_dim is not None else audio_adaptor_conf["llm_dim"]
 
 
114
  audio_adaptor = adaptor_class(**audio_adaptor_conf)
115
- init_param_path = audio_adaptor_conf.get("init_param_path", None)
116
- if init_param_path is not None:
117
- src_state = torch.load(init_param_path, map_location="cpu")
118
- flag = audio_adaptor.load_state_dict(src_state, strict=False)
119
- logging.info(f"Loading audio_adaptor ckpt: {init_param_path}, status: {flag}")
120
  freeze = audio_adaptor_conf.get("freeze", False)
121
  if freeze:
122
  for name, param in audio_adaptor.named_parameters():
@@ -153,12 +152,16 @@ class FunASRNano(nn.Module):
153
  if self.audio_encoder_activation_checkpoint:
154
  from torch.utils.checkpoint import checkpoint
155
 
156
- encoder_out, encoder_out_lens = checkpoint(self.encode, speech, speech_lengths, use_reentrant=False)
 
 
157
  else:
158
  encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
159
 
160
  # audio_adaptor
161
- encoder_out, encoder_out_lens = self.audio_adaptor(encoder_out, encoder_out_lens)
 
 
162
 
163
  batch_size, token_num, dims = inputs_embeds.shape
164
  fake_token_len = kwargs.get("fake_token_len")
@@ -197,7 +200,9 @@ class FunASRNano(nn.Module):
197
  stats["batch_size_speech"] = batch_size_speech
198
  stats["batch_size_x_frames"] = frames * batch_size_speech
199
  stats["batch_size_real_frames"] = speech_lengths.sum().item()
200
- stats["padding_frames"] = stats["batch_size_x_frames"] - stats["batch_size_real_frames"]
 
 
201
 
202
  with torch.cuda.amp.autocast(
203
  enabled=True if self.llm_dtype != "fp32" else False,
@@ -214,7 +219,9 @@ class FunASRNano(nn.Module):
214
 
215
  with torch.no_grad():
216
  preds = torch.argmax(model_outputs.logits, -1)
217
- acc_att = compute_accuracy(preds[:, :-1], labels_ids[:, 1:], ignore_label=-100)
 
 
218
  stats["acc"] = acc_att
219
 
220
  stats["loss"] = torch.clone(loss.detach())
@@ -222,7 +229,9 @@ class FunASRNano(nn.Module):
222
 
223
  stats["batch_size_x_tokens"] = token_num * batch_size
224
  stats["batch_size_real_tokens"] = attention_mask.sum().item()
225
- stats["padding_tokens"] = stats["batch_size_x_tokens"] - stats["batch_size_real_tokens"]
 
 
226
 
227
  dialog_turns = (fbank_beg > 0).sum(-1)
228
  dialog_turns_max = torch.max(dialog_turns).int().item()
@@ -244,7 +253,9 @@ class FunASRNano(nn.Module):
244
  def encode(self, speech, speech_lengths):
245
  # audio encoder
246
  if self.feat_permute:
247
- encoder_out, encoder_out_lens = self.audio_encoder(speech.permute(0, 2, 1), speech_lengths)
 
 
248
  else:
249
  encoder_out, encoder_out_lens = self.audio_encoder(speech, speech_lengths)
250
 
@@ -275,7 +286,9 @@ class FunASRNano(nn.Module):
275
 
276
  return contents
277
 
278
- def data_load_speech(self, contents: dict, tokenizer, frontend, meta_data={}, **kwargs):
 
 
279
  system = contents["system"]
280
  user = contents["user"]
281
  assistant = contents["assistant"]
@@ -296,7 +309,9 @@ class FunASRNano(nn.Module):
296
  [],
297
  )
298
  input_source_ids = []
299
- for i, (system_prompt, user_prompt, target_out) in enumerate(zip(system, user, assistant)):
 
 
300
  if i >= kwargs.get("multiturn_num_max", 5):
301
  break
302
  if len(input_ids) > kwargs.get("max_token_length", 1500):
@@ -332,18 +347,24 @@ class FunASRNano(nn.Module):
332
  source_ids += sub_token
333
  fbank_mask_i += [0] * len(sub_token)
334
  else:
335
- sub_str = sub_str.replace("<|startofspeech|>", "").replace("<|endofspeech|>", "")
 
 
336
  if sub_str.startswith("!"):
337
  sub_str = sub_str[1:]
338
  if sub_str.startswith("!"): # !!: audio sample point
339
  sub_str = audio
340
  try:
341
  time1 = time.perf_counter()
342
- data_src = load_audio_text_image_video(sub_str, fs=frontend.fs, **kwargs)
 
 
343
  time2 = time.perf_counter()
344
  meta_data["load_data"] = f"{time2 - time1:0.3f}"
345
  except Exception as e:
346
- logging.error(f"Loading wav failed! {str(e)}, {traceback.format_exc()}")
 
 
347
 
348
  speech, speech_lengths = extract_fbank(
349
  data_src,
@@ -355,7 +376,10 @@ class FunASRNano(nn.Module):
355
  time3 = time.perf_counter()
356
  meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
357
  meta_data["batch_data_time"] = (
358
- speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
 
 
 
359
  )
360
 
361
  if self.feat_permute:
@@ -382,7 +406,9 @@ class FunASRNano(nn.Module):
382
  fbank.append(speech[0, :, :])
383
  fbank_lens.append(speech_lengths)
384
 
385
- input_ids = torch.tensor(input_ids, dtype=torch.int64) # [: self.max_token_length]
 
 
386
  attention_mask = torch.tensor([1] * len(input_ids), dtype=torch.int32)
387
  labels = torch.tensor(labels, dtype=torch.int64) # [: self.max_token_length]
388
 
@@ -393,8 +419,12 @@ class FunASRNano(nn.Module):
393
  target_ids = torch.tensor(target_ids, dtype=torch.int64)
394
 
395
  if len(fbank) > 0:
396
- speech = torch.nn.utils.rnn.pad_sequence(fbank, batch_first=True, padding_value=0.0)
397
- speech_lengths = torch.nn.utils.rnn.pad_sequence(fbank_lens, batch_first=True, padding_value=-1)
 
 
 
 
398
  else:
399
  speech = []
400
  speech_lengths = []
@@ -428,7 +458,9 @@ class FunASRNano(nn.Module):
428
  raise NotImplementedError("batch decoding is not implemented")
429
 
430
  contents = self.data_template(data_in[0])
431
- output = self.data_load_speech(contents, tokenizer, frontend, meta_data=meta_data, **kwargs)
 
 
432
  batch = to_device(output, kwargs["device"])
433
 
434
  # audio encoder
@@ -449,7 +481,9 @@ class FunASRNano(nn.Module):
449
  encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
450
 
451
  # audio_adaptor
452
- encoder_out, encoder_out_lens = self.audio_adaptor(encoder_out, encoder_out_lens)
 
 
453
  meta_data["audio_adaptor_out"] = encoder_out
454
  meta_data["audio_adaptor_out_lens"] = encoder_out_lens
455
 
@@ -509,13 +543,36 @@ class FunASRNano(nn.Module):
509
  frontend=None,
510
  **kwargs,
511
  ):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
512
  new_data_in = []
513
  for data in data_in:
514
  if isinstance(data, str):
515
  new_data_in.append(
516
  [
517
  {"role": "system", "content": "You are a helpful assistant."},
518
- {"role": "user", "content": f"语音转写:<|startofspeech|>!{data}<|endofspeech|>"},
 
 
 
519
  {"role": "assistant", "content": "null"},
520
  ]
521
  )
@@ -523,7 +580,11 @@ class FunASRNano(nn.Module):
523
  new_data_in.append(
524
  [
525
  {"role": "system", "content": "You are a helpful assistant."},
526
- {"role": "user", "content": f"语音转写:<|startofspeech|>!!<|endofspeech|>", "audio": data},
 
 
 
 
527
  {"role": "assistant", "content": "null"},
528
  ]
529
  )
@@ -533,7 +594,9 @@ class FunASRNano(nn.Module):
533
  key = []
534
  for _ in data_in:
535
  chars = string.ascii_letters + string.digits
536
- key.append("rand_key_" + "".join(random.choice(chars) for _ in range(13)))
 
 
537
 
538
  return self.inference_llm(
539
  data_in,
@@ -561,7 +624,9 @@ class FunASRNano(nn.Module):
561
  llm_dtype = "fp16" if kwargs.get("fp16", False) else llm_dtype
562
  llm_dtype = "bf16" if kwargs.get("bf16", False) else llm_dtype
563
 
564
- with torch.cuda.amp.autocast(enabled=True if llm_dtype != "fp32" else False, dtype=dtype_map[llm_dtype]):
 
 
565
  label = contents["assistant"][-1]
566
  self.llm = self.llm.to(dtype_map[llm_dtype])
567
  inputs_embeds = inputs_embeds.to(dtype_map[llm_dtype])
@@ -608,7 +673,7 @@ class FunASRNano(nn.Module):
608
  response_clean = re.sub(r"[^\w\s\u3000\u4e00-\u9fff]+", "", response)
609
  result_i = {
610
  "key": key[0],
611
- "text": response,
612
  "text_tn": response_clean,
613
  "label": label,
614
  }
@@ -627,6 +692,8 @@ class FunASRNano(nn.Module):
627
  def from_pretrained(model: str = None, **kwargs):
628
  from funasr import AutoModel
629
 
630
- model, kwargs = AutoModel.build_model(model=model, trust_remote_code=True, **kwargs)
 
 
631
 
632
- return model, kwargs
 
15
  from funasr.train_utils.device_funcs import force_gatherable, to_device
16
  from funasr.utils.datadir_writer import DatadirWriter
17
  from funasr.utils.load_utils import extract_fbank, load_audio_text_image_video
18
+ from transformers import AutoConfig, AutoModelForCausalLM
19
 
20
  dtype_map = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}
21
 
 
38
 
39
  # audio encoder
40
  hub = audio_encoder_conf.get("hub", None)
41
+ self.audio_encoder_activation_checkpoint = audio_encoder_conf.get(
42
+ "activation_checkpoint", False
43
+ )
44
  if hub == "ms":
45
  model = AutoModel(model=audio_encoder, model_revision="master")
46
  audio_encoder_output_size = (
47
+ model.model.encoder_output_size
48
+ if hasattr(model.model, "encoder_output_size")
49
+ else -1
50
+ )
51
+ audio_encoder = (
52
+ model.model.model.encoder
53
+ if hasattr(model.model, "model")
54
+ else model.model.encoder
55
  )
 
56
  else:
57
  encoder_class = tables.encoder_classes.get(audio_encoder)
58
  audio_encoder = encoder_class(input_size=input_size, **audio_encoder_conf)
 
70
  init_param_path = llm_conf.get("init_param_path", None)
71
  llm_dim = None
72
 
 
 
73
  llm_load_kwargs = llm_conf.get("load_kwargs", {})
74
+ config = AutoConfig.from_pretrained(init_param_path)
75
+ model = AutoModelForCausalLM.from_config(config, **llm_load_kwargs)
 
 
 
 
 
76
 
77
  freeze = llm_conf.get("freeze", True)
78
  if freeze:
 
112
  adaptor_class = tables.adaptor_classes.get(audio_adaptor)
113
  if audio_encoder_output_size > 0:
114
  audio_adaptor_conf["encoder_dim"] = audio_encoder_output_size
115
+ audio_adaptor_conf["llm_dim"] = (
116
+ llm_dim if llm_dim is not None else audio_adaptor_conf["llm_dim"]
117
+ )
118
  audio_adaptor = adaptor_class(**audio_adaptor_conf)
 
 
 
 
 
119
  freeze = audio_adaptor_conf.get("freeze", False)
120
  if freeze:
121
  for name, param in audio_adaptor.named_parameters():
 
152
  if self.audio_encoder_activation_checkpoint:
153
  from torch.utils.checkpoint import checkpoint
154
 
155
+ encoder_out, encoder_out_lens = checkpoint(
156
+ self.encode, speech, speech_lengths, use_reentrant=False
157
+ )
158
  else:
159
  encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
160
 
161
  # audio_adaptor
162
+ encoder_out, encoder_out_lens = self.audio_adaptor(
163
+ encoder_out, encoder_out_lens
164
+ )
165
 
166
  batch_size, token_num, dims = inputs_embeds.shape
167
  fake_token_len = kwargs.get("fake_token_len")
 
200
  stats["batch_size_speech"] = batch_size_speech
201
  stats["batch_size_x_frames"] = frames * batch_size_speech
202
  stats["batch_size_real_frames"] = speech_lengths.sum().item()
203
+ stats["padding_frames"] = (
204
+ stats["batch_size_x_frames"] - stats["batch_size_real_frames"]
205
+ )
206
 
207
  with torch.cuda.amp.autocast(
208
  enabled=True if self.llm_dtype != "fp32" else False,
 
219
 
220
  with torch.no_grad():
221
  preds = torch.argmax(model_outputs.logits, -1)
222
+ acc_att = compute_accuracy(
223
+ preds[:, :-1], labels_ids[:, 1:], ignore_label=-100
224
+ )
225
  stats["acc"] = acc_att
226
 
227
  stats["loss"] = torch.clone(loss.detach())
 
229
 
230
  stats["batch_size_x_tokens"] = token_num * batch_size
231
  stats["batch_size_real_tokens"] = attention_mask.sum().item()
232
+ stats["padding_tokens"] = (
233
+ stats["batch_size_x_tokens"] - stats["batch_size_real_tokens"]
234
+ )
235
 
236
  dialog_turns = (fbank_beg > 0).sum(-1)
237
  dialog_turns_max = torch.max(dialog_turns).int().item()
 
253
  def encode(self, speech, speech_lengths):
254
  # audio encoder
255
  if self.feat_permute:
256
+ encoder_out, encoder_out_lens = self.audio_encoder(
257
+ speech.permute(0, 2, 1), speech_lengths
258
+ )
259
  else:
260
  encoder_out, encoder_out_lens = self.audio_encoder(speech, speech_lengths)
261
 
 
286
 
287
  return contents
288
 
289
+ def data_load_speech(
290
+ self, contents: dict, tokenizer, frontend, meta_data={}, **kwargs
291
+ ):
292
  system = contents["system"]
293
  user = contents["user"]
294
  assistant = contents["assistant"]
 
309
  [],
310
  )
311
  input_source_ids = []
312
+ for i, (system_prompt, user_prompt, target_out) in enumerate(
313
+ zip(system, user, assistant)
314
+ ):
315
  if i >= kwargs.get("multiturn_num_max", 5):
316
  break
317
  if len(input_ids) > kwargs.get("max_token_length", 1500):
 
347
  source_ids += sub_token
348
  fbank_mask_i += [0] * len(sub_token)
349
  else:
350
+ sub_str = sub_str.replace("<|startofspeech|>", "").replace(
351
+ "<|endofspeech|>", ""
352
+ )
353
  if sub_str.startswith("!"):
354
  sub_str = sub_str[1:]
355
  if sub_str.startswith("!"): # !!: audio sample point
356
  sub_str = audio
357
  try:
358
  time1 = time.perf_counter()
359
+ data_src = load_audio_text_image_video(
360
+ sub_str, fs=frontend.fs, **kwargs
361
+ )
362
  time2 = time.perf_counter()
363
  meta_data["load_data"] = f"{time2 - time1:0.3f}"
364
  except Exception as e:
365
+ logging.error(
366
+ f"Loading wav failed! {str(e)}, {traceback.format_exc()}"
367
+ )
368
 
369
  speech, speech_lengths = extract_fbank(
370
  data_src,
 
376
  time3 = time.perf_counter()
377
  meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
378
  meta_data["batch_data_time"] = (
379
+ speech_lengths.sum().item()
380
+ * frontend.frame_shift
381
+ * frontend.lfr_n
382
+ / 1000
383
  )
384
 
385
  if self.feat_permute:
 
406
  fbank.append(speech[0, :, :])
407
  fbank_lens.append(speech_lengths)
408
 
409
+ input_ids = torch.tensor(
410
+ input_ids, dtype=torch.int64
411
+ ) # [: self.max_token_length]
412
  attention_mask = torch.tensor([1] * len(input_ids), dtype=torch.int32)
413
  labels = torch.tensor(labels, dtype=torch.int64) # [: self.max_token_length]
414
 
 
419
  target_ids = torch.tensor(target_ids, dtype=torch.int64)
420
 
421
  if len(fbank) > 0:
422
+ speech = torch.nn.utils.rnn.pad_sequence(
423
+ fbank, batch_first=True, padding_value=0.0
424
+ )
425
+ speech_lengths = torch.nn.utils.rnn.pad_sequence(
426
+ fbank_lens, batch_first=True, padding_value=-1
427
+ )
428
  else:
429
  speech = []
430
  speech_lengths = []
 
458
  raise NotImplementedError("batch decoding is not implemented")
459
 
460
  contents = self.data_template(data_in[0])
461
+ output = self.data_load_speech(
462
+ contents, tokenizer, frontend, meta_data=meta_data, **kwargs
463
+ )
464
  batch = to_device(output, kwargs["device"])
465
 
466
  # audio encoder
 
481
  encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
482
 
483
  # audio_adaptor
484
+ encoder_out, encoder_out_lens = self.audio_adaptor(
485
+ encoder_out, encoder_out_lens
486
+ )
487
  meta_data["audio_adaptor_out"] = encoder_out
488
  meta_data["audio_adaptor_out_lens"] = encoder_out_lens
489
 
 
543
  frontend=None,
544
  **kwargs,
545
  ):
546
+ hotwords = kwargs.get("hotwords", [])
547
+ if len(hotwords) > 0:
548
+ hotwords = ", ".join(hotwords)
549
+ prompt = f"请结合上下文信息,更加准确地完成语音转写任务。如果没有相关信息,我们会留空。\n\n\n**上下文信息:**\n\n\n"
550
+ prompt += f"热词列表:[{hotwords}]\n"
551
+ else:
552
+ prompt = ""
553
+ language = kwargs.get("language", "auto")
554
+ if language not in ("auto", "zh", "en", "ja"):
555
+ language = "auto"
556
+ if language == "auto":
557
+ prompt += "语音转写"
558
+ else:
559
+ LANGUAGE_MAP = {"zh": "中文", "en": "英文", "ja": "日文"}
560
+ prompt += f"语音转写成{LANGUAGE_MAP[language]}"
561
+ itn = kwargs.get("itn", True)
562
+ if not itn:
563
+ prompt += ",不进行文本规整"
564
+ prompt += ":"
565
+
566
  new_data_in = []
567
  for data in data_in:
568
  if isinstance(data, str):
569
  new_data_in.append(
570
  [
571
  {"role": "system", "content": "You are a helpful assistant."},
572
+ {
573
+ "role": "user",
574
+ "content": f"{prompt}<|startofspeech|>!{data}<|endofspeech|>",
575
+ },
576
  {"role": "assistant", "content": "null"},
577
  ]
578
  )
 
580
  new_data_in.append(
581
  [
582
  {"role": "system", "content": "You are a helpful assistant."},
583
+ {
584
+ "role": "user",
585
+ "content": f"{prompt}<|startofspeech|>!!<|endofspeech|>",
586
+ "audio": data,
587
+ },
588
  {"role": "assistant", "content": "null"},
589
  ]
590
  )
 
594
  key = []
595
  for _ in data_in:
596
  chars = string.ascii_letters + string.digits
597
+ key.append(
598
+ "rand_key_" + "".join(random.choice(chars) for _ in range(13))
599
+ )
600
 
601
  return self.inference_llm(
602
  data_in,
 
624
  llm_dtype = "fp16" if kwargs.get("fp16", False) else llm_dtype
625
  llm_dtype = "bf16" if kwargs.get("bf16", False) else llm_dtype
626
 
627
+ with torch.cuda.amp.autocast(
628
+ enabled=True if llm_dtype != "fp32" else False, dtype=dtype_map[llm_dtype]
629
+ ):
630
  label = contents["assistant"][-1]
631
  self.llm = self.llm.to(dtype_map[llm_dtype])
632
  inputs_embeds = inputs_embeds.to(dtype_map[llm_dtype])
 
673
  response_clean = re.sub(r"[^\w\s\u3000\u4e00-\u9fff]+", "", response)
674
  result_i = {
675
  "key": key[0],
676
+ "text": re.sub(r'\s+', ' ', response.replace("/sil", " ")),
677
  "text_tn": response_clean,
678
  "label": label,
679
  }
 
692
  def from_pretrained(model: str = None, **kwargs):
693
  from funasr import AutoModel
694
 
695
+ model, kwargs = AutoModel.build_model(
696
+ model=model, trust_remote_code=True, **kwargs
697
+ )
698
 
699
+ return model, kwargs