Spaces:
Running
Running
Commit
Β·
18b21ee
1
Parent(s):
e888ead
add actual code
Browse files- app.py +111 -8
- requirements.txt +6 -0
app.py
CHANGED
|
@@ -1,14 +1,117 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import spaces
|
| 3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
print(
|
|
|
|
|
|
|
| 7 |
|
|
|
|
| 8 |
@spaces.GPU
|
| 9 |
-
def
|
| 10 |
-
print(
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
import torch
|
| 4 |
+
import spaces
|
| 5 |
+
import nemo.collections.asr as nemo_asr
|
| 6 |
+
from omegaconf import OmegaConf
|
| 7 |
+
import time
|
| 8 |
|
| 9 |
+
# Check if CUDA is available
|
| 10 |
+
print(f"CUDA available: {torch.cuda.is_available()}")
|
| 11 |
+
if torch.cuda.is_available():
|
| 12 |
+
print(f"CUDA device: {torch.cuda.get_device_name(0)}")
|
| 13 |
|
| 14 |
+
# Initialize the ASR model
|
| 15 |
@spaces.GPU
|
| 16 |
+
def load_model():
|
| 17 |
+
print("Loading ASR model...")
|
| 18 |
+
# Load the NVIDIA NeMo ASR model
|
| 19 |
+
model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/parakeet-tdt-0.6b-v2")
|
| 20 |
+
# Move model to GPU if available
|
| 21 |
+
if torch.cuda.is_available():
|
| 22 |
+
model = model.cuda()
|
| 23 |
+
print(f"Model loaded on device: {model.device}")
|
| 24 |
+
return model
|
| 25 |
+
|
| 26 |
+
# Global variable to store the model
|
| 27 |
+
model = load_model()
|
| 28 |
+
|
| 29 |
+
def transcribe(audio, state=""):
|
| 30 |
+
"""
|
| 31 |
+
Transcribe audio in real-time
|
| 32 |
+
"""
|
| 33 |
+
# Skip processing if no audio is provided
|
| 34 |
+
if audio is None:
|
| 35 |
+
return state, state
|
| 36 |
+
|
| 37 |
+
# Get the sample rate from the audio
|
| 38 |
+
sample_rate = 16000 # Default to 16kHz if not specified
|
| 39 |
+
|
| 40 |
+
# Process the audio with the ASR model
|
| 41 |
+
with torch.no_grad():
|
| 42 |
+
transcription = model.transcribe([audio])[0]
|
| 43 |
+
|
| 44 |
+
# Append new transcription to the state
|
| 45 |
+
if state == "":
|
| 46 |
+
new_state = transcription
|
| 47 |
+
else:
|
| 48 |
+
new_state = state + " " + transcription
|
| 49 |
+
|
| 50 |
+
return new_state, new_state
|
| 51 |
+
|
| 52 |
+
# Define the Gradio interface
|
| 53 |
+
with gr.Blocks(title="Real-time Speech-to-Text with NeMo") as demo:
|
| 54 |
+
gr.Markdown("# ποΈ Real-time Speech-to-Text Transcription")
|
| 55 |
+
gr.Markdown("Powered by NVIDIA NeMo and the parakeet-tdt-0.6b-v2 model")
|
| 56 |
+
|
| 57 |
+
with gr.Row():
|
| 58 |
+
with gr.Column(scale=2):
|
| 59 |
+
audio_input = gr.Audio(
|
| 60 |
+
source="microphone",
|
| 61 |
+
type="numpy",
|
| 62 |
+
streaming=True,
|
| 63 |
+
label="Speak into your microphone"
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
clear_btn = gr.Button("Clear Transcript")
|
| 67 |
+
|
| 68 |
+
with gr.Column(scale=3):
|
| 69 |
+
text_output = gr.Textbox(
|
| 70 |
+
label="Transcription",
|
| 71 |
+
placeholder="Your speech will appear here...",
|
| 72 |
+
lines=10
|
| 73 |
+
)
|
| 74 |
+
streaming_text = gr.Textbox(
|
| 75 |
+
label="Real-time Transcription",
|
| 76 |
+
placeholder="Real-time results will appear here...",
|
| 77 |
+
lines=2
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# State to store the ongoing transcription
|
| 81 |
+
state = gr.State("")
|
| 82 |
+
|
| 83 |
+
# Handle the audio stream
|
| 84 |
+
audio_input.stream(
|
| 85 |
+
fn=transcribe,
|
| 86 |
+
inputs=[audio_input, state],
|
| 87 |
+
outputs=[state, streaming_text],
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
# Clear the transcription
|
| 91 |
+
def clear_transcription():
|
| 92 |
+
return "", "", ""
|
| 93 |
+
|
| 94 |
+
clear_btn.click(
|
| 95 |
+
fn=clear_transcription,
|
| 96 |
+
inputs=[],
|
| 97 |
+
outputs=[text_output, streaming_text, state]
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# Update the main text output when the state changes
|
| 101 |
+
state.change(
|
| 102 |
+
fn=lambda s: s,
|
| 103 |
+
inputs=[state],
|
| 104 |
+
outputs=[text_output]
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
gr.Markdown("## π Instructions")
|
| 108 |
+
gr.Markdown("""
|
| 109 |
+
1. Click the microphone button to start recording
|
| 110 |
+
2. Speak clearly into your microphone
|
| 111 |
+
3. The transcription will appear in real-time
|
| 112 |
+
4. Click 'Clear Transcript' to start a new transcription
|
| 113 |
+
""")
|
| 114 |
|
| 115 |
+
# Launch the app
|
| 116 |
+
if __name__ == "__main__":
|
| 117 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=1.13.0
|
| 2 |
+
gradio>=3.32.0
|
| 3 |
+
nemo_toolkit[asr]>=1.18.0
|
| 4 |
+
omegaconf>=2.2.0
|
| 5 |
+
spaces>=0.15.0
|
| 6 |
+
numpy>=1.22.0
|