File size: 10,622 Bytes
b4735a2
8a8e53a
 
b4735a2
 
 
 
 
 
 
 
8a8e53a
b4735a2
 
 
 
 
 
88ce2fb
b4735a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88ce2fb
b4735a2
 
 
 
 
 
88ce2fb
 
b4735a2
88ce2fb
b4735a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88ce2fb
 
 
 
b4735a2
 
88ce2fb
 
b4735a2
88ce2fb
b4735a2
 
 
 
88ce2fb
b4735a2
88ce2fb
 
b4735a2
 
 
 
 
 
 
 
 
 
 
88ce2fb
b4735a2
 
 
 
 
 
 
 
 
 
 
 
 
 
0809048
 
 
b4735a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88ce2fb
b4735a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88ce2fb
b4735a2
 
 
 
 
 
 
 
88ce2fb
b4735a2
 
 
 
8a8e53a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4735a2
 
 
6345671
b4735a2
88ce2fb
b4735a2
 
 
 
 
 
 
 
 
 
88ce2fb
 
 
b4735a2
88ce2fb
b4735a2
 
88ce2fb
b4735a2
8a8e53a
 
 
 
 
 
 
b4735a2
 
 
 
8a8e53a
9e18110
b4735a2
 
 
 
9e18110
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
import re
import traceback
from datetime import datetime
from typing import Any, Literal

import gradio as gr
import numpy as np
import requests
import spaces
import torch
from PIL import Image, ImageDraw
from pydantic import BaseModel, Field
from transformers import AutoProcessor
from transformers.models.auto.modeling_auto import AutoModelForImageTextToText
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize

# --- Configuration ---
MODEL_ID = "Hcompany/Holo1.5-7B"

# --- Model and Processor Loading (Load once) ---
print(f"Loading model and processor for {MODEL_ID}...")
model = None
processor = None
model_loaded = False
load_error_message = ""


try:
    model = AutoModelForImageTextToText.from_pretrained(
        MODEL_ID, torch_dtype=torch.bfloat16, trust_remote_code=True
    ).to("cuda")
    processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)

    model_loaded = True
    print("Model and processor loaded successfully.")
except Exception as e:
    load_error_message = (
        f"Error loading model/processor: {e}\n"
        "This might be due to network issues, an incorrect model ID, or missing dependencies (like flash_attention_2 if enabled by default in some config).\n"
        "Ensure you have a stable internet connection and the necessary libraries installed."
    )
    print(load_error_message)


title = "Holo1.5-7B: Localization VLM Demo"

description = """
This demo showcases [**Holo1.5-7B**](https://huggingface.co/Hcompany/Holo1.5-7B), a new version of the Action Vision-Language Model developed by HCompany, fine-tuned from Qwen/Qwen2.5-VL-7B-Instruct.
It's designed to perform complex navigation tasks in Web, Android, and Desktop interfaces.
**How to use:**
1. Upload an image (e.g., a screenshot of a UI, see example below).
2. Provide a target UI element (e.g., "Docs tab").
3. The model will predict the coordinates of the element on the screenshot. 
The model processor resizes your input image. Coordinates are relative to this resized image.
"""


def array_to_image_path(image_array):
    if image_array is None:
        raise ValueError("No image provided. Please upload an image before submitting.")
    # Convert numpy array to PIL Image
    img = Image.fromarray(np.uint8(image_array))

    # Generate a unique filename using timestamp
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = f"image_{timestamp}.png"

    # Save the image
    img.save(filename)

    # Get the full path of the saved image
    full_path = os.path.abspath(filename)

    return full_path


LOCALIZATION_PROMPT: str = """Localize an element on the GUI image according to the provided target and output a click position.
          * Only output the click position, do not output any other text.
          * The click position should be in the format 'Click(x, y)' with x: num pixels from the left edge and y: num pixels from the top edge
          Your target is:"""


class ClickAbsoluteAction(BaseModel):
    """Click at absolute coordinates."""

    action: Literal["click_absolute"] = "click_absolute"
    x: int = Field(description="The x coordinate, number of pixels from the left edge.")
    y: int = Field(description="The y coordinate, number of pixels from the top edge.")


def get_localization_prompt(component, image, step=1):
    """
    Get the prompt for the localization task.
    - component: The component to localize
    - image: The current screenshot of the web page
    - step: The current step of the task
    """
    return [
        {
            "role": "user",
            "content": [
                {
                    "type": "image",
                    "image": image,
                },
                {"type": "text", "text": LOCALIZATION_PROMPT + "\n" + component},
            ],
        },
    ]


def array_to_image(image_array: np.ndarray) -> Image.Image:
    if image_array is None:
        raise ValueError("No image provided. Please upload an image before submitting.")
    # Convert numpy array to PIL Image
    img = Image.fromarray(np.uint8(image_array))
    return img


@spaces.GPU(duration=20)
def run_inference_localization(
    messages_for_template: list[dict[str, Any]], pil_image_for_processing: Image.Image
) -> str:
    model.to("cuda")
    torch.cuda.set_device(0)
    """
    Runs inference using the Holo1 model.
    - messages_for_template: The prompt structure, potentially including the PIL image object
                             (which apply_chat_template converts to an image tag).
    - pil_image_for_processing: The actual PIL image to be processed into tensors.
    """
    # 1. Apply chat template to messages. This will create the text part of the prompt,
    #    including image tags if the image was part of `messages_for_template`.
    text_prompt = processor.apply_chat_template(messages_for_template, tokenize=False, add_generation_prompt=True)

    # 2. Process text and image together to get model inputs
    inputs = processor(
        text=[text_prompt],
        images=[pil_image_for_processing],  # Provide the actual image data here
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to(model.device)

    # 3. Generate response
    # Using do_sample=False for more deterministic output, as in the model card's structured output example
    generated_ids = model.generate(**inputs, max_new_tokens=128, do_sample=False)

    # 4. Trim input_ids from generated_ids to get only the generated part
    generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]

    # 5. Decode the generated tokens
    decoded_output = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )

    return decoded_output[0] if decoded_output else ""


# --- Gradio processing function ---
def localize(input_numpy_image: np.ndarray, task: str) -> str:
    # if not model_loaded or not processor or not model:
    #     return f"Model not loaded. Error: {load_error_message}", None
    # if not input_pil_image:
    #     return "No image provided. Please upload an image.", None
    # if not task or task.strip() == "":
    #     return "No task provided. Please type an task.", input_pil_image.copy().convert("RGB")

    # 1. Prepare image: Resize according to model's image processor's expected properties
    #    This ensures predicted coordinates match the (resized) image dimensions.
    input_pil_image = array_to_image(input_numpy_image)
    assert isinstance(input_pil_image, Image.Image)
    image_proc_config = processor.image_processor
    try:
        resized_height, resized_width = smart_resize(
            input_pil_image.height,
            input_pil_image.width,
            factor=image_proc_config.patch_size * image_proc_config.merge_size,
            min_pixels=image_proc_config.min_pixels,
            max_pixels=image_proc_config.max_pixels,
        )
        # Using LANCZOS for resampling as it's generally good for downscaling.
        # The model card used `resample=None`, which might imply nearest or default.
        # For visual quality in the demo, LANCZOS is reasonable.
        resized_image = input_pil_image.resize(
            size=(resized_width, resized_height),
            resample=Image.Resampling.LANCZOS,  # type: ignore
        )
    except Exception as e:
        print(f"Error resizing image: {e}")
        return f"Error resizing image: {e}", input_pil_image.copy().convert("RGB")

    # 2. Create the prompt using the resized image (for correct image tagging context) and task
    prompt = get_localization_prompt(task, resized_image, step=1)

    print("Prompt:")
    print(prompt)

    # 3. Run inference
    #    Pass `messages` (which includes the image object for template processing)
    #    and `resized_image` (for actual tensor conversion).
    try:
        localization = run_inference_localization(prompt, resized_image)
    except Exception as e:
        print(f"Error during model inference: {e}")
        return f"Error during model inference: {e}", resized_image.copy().convert("RGB")

    # 4) Parse coordinates and draw marker
    output_image_with_click = resized_image.copy().convert("RGB")
    match = re.search(r"Click\((\d+),\s*(\d+)\)", localization)
    if match:
        try:
            x = int(match.group(1))
            y = int(match.group(2))
            draw = ImageDraw.Draw(output_image_with_click)
            radius = max(5, min(resized_width // 100, resized_height // 100, 15))
            bbox = (x - radius, y - radius, x + radius, y + radius)
            draw.ellipse(bbox, outline="red", width=max(2, radius // 4))
            print(f"Predicted and drawn click at: ({x}, {y}) on resized image ({resized_width}x{resized_height})")
        except Exception as e:
            print(f"Error drawing on image: {e}")
            traceback.print_exc()
    else:
        print(f"Could not parse 'Click(x, y)' from model output: {localization}")

    return localization, output_image_with_click


# --- Load Example Data ---
example_image_url = "https://huggingface.co/spaces/Hcompany/Holo1.5-Localization/resolve/main/desktop_3.png"
example_image = Image.open(requests.get(example_image_url, stream=True).raw)
example_task = "Email quote for Hyundai Kona"


with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
    gr.Markdown(description)

    with gr.Row():
        with gr.Column():
            input_image_component = gr.Image(label="Input UI Image", height=400)
            task_component = gr.Textbox(
                label="component",
                placeholder="Email quote for Hyundai Kona",
                info="Describe the UI component to find.",
            )
            submit_button = gr.Button("Localize", variant="primary")

        with gr.Column():
            output_coords_component = gr.Textbox(label="Localization Step")

            output_image_component = gr.Image(
                type="pil", label="Image with coordinates of the component", height=400, interactive=False
            )

    submit_button.click(
        localize, [input_image_component, task_component], [output_coords_component, output_image_component]
    )

    gr.Examples(
        examples=[[example_image, example_task]],
        inputs=[input_image_component, task_component],
        outputs=[output_coords_component, output_image_component],
        fn=localize,
        cache_examples="lazy",
    )

demo.queue(api_open=False)
demo.launch(debug=True)