Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,622 Bytes
b4735a2 8a8e53a b4735a2 8a8e53a b4735a2 88ce2fb b4735a2 88ce2fb b4735a2 88ce2fb b4735a2 88ce2fb b4735a2 88ce2fb b4735a2 88ce2fb b4735a2 88ce2fb b4735a2 88ce2fb b4735a2 88ce2fb b4735a2 88ce2fb b4735a2 0809048 b4735a2 88ce2fb b4735a2 88ce2fb b4735a2 88ce2fb b4735a2 8a8e53a b4735a2 6345671 b4735a2 88ce2fb b4735a2 88ce2fb b4735a2 88ce2fb b4735a2 88ce2fb b4735a2 8a8e53a b4735a2 8a8e53a 9e18110 b4735a2 9e18110 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import os
import re
import traceback
from datetime import datetime
from typing import Any, Literal
import gradio as gr
import numpy as np
import requests
import spaces
import torch
from PIL import Image, ImageDraw
from pydantic import BaseModel, Field
from transformers import AutoProcessor
from transformers.models.auto.modeling_auto import AutoModelForImageTextToText
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
# --- Configuration ---
MODEL_ID = "Hcompany/Holo1.5-7B"
# --- Model and Processor Loading (Load once) ---
print(f"Loading model and processor for {MODEL_ID}...")
model = None
processor = None
model_loaded = False
load_error_message = ""
try:
model = AutoModelForImageTextToText.from_pretrained(
MODEL_ID, torch_dtype=torch.bfloat16, trust_remote_code=True
).to("cuda")
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_loaded = True
print("Model and processor loaded successfully.")
except Exception as e:
load_error_message = (
f"Error loading model/processor: {e}\n"
"This might be due to network issues, an incorrect model ID, or missing dependencies (like flash_attention_2 if enabled by default in some config).\n"
"Ensure you have a stable internet connection and the necessary libraries installed."
)
print(load_error_message)
title = "Holo1.5-7B: Localization VLM Demo"
description = """
This demo showcases [**Holo1.5-7B**](https://huggingface.co/Hcompany/Holo1.5-7B), a new version of the Action Vision-Language Model developed by HCompany, fine-tuned from Qwen/Qwen2.5-VL-7B-Instruct.
It's designed to perform complex navigation tasks in Web, Android, and Desktop interfaces.
**How to use:**
1. Upload an image (e.g., a screenshot of a UI, see example below).
2. Provide a target UI element (e.g., "Docs tab").
3. The model will predict the coordinates of the element on the screenshot.
The model processor resizes your input image. Coordinates are relative to this resized image.
"""
def array_to_image_path(image_array):
if image_array is None:
raise ValueError("No image provided. Please upload an image before submitting.")
# Convert numpy array to PIL Image
img = Image.fromarray(np.uint8(image_array))
# Generate a unique filename using timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{timestamp}.png"
# Save the image
img.save(filename)
# Get the full path of the saved image
full_path = os.path.abspath(filename)
return full_path
LOCALIZATION_PROMPT: str = """Localize an element on the GUI image according to the provided target and output a click position.
* Only output the click position, do not output any other text.
* The click position should be in the format 'Click(x, y)' with x: num pixels from the left edge and y: num pixels from the top edge
Your target is:"""
class ClickAbsoluteAction(BaseModel):
"""Click at absolute coordinates."""
action: Literal["click_absolute"] = "click_absolute"
x: int = Field(description="The x coordinate, number of pixels from the left edge.")
y: int = Field(description="The y coordinate, number of pixels from the top edge.")
def get_localization_prompt(component, image, step=1):
"""
Get the prompt for the localization task.
- component: The component to localize
- image: The current screenshot of the web page
- step: The current step of the task
"""
return [
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
},
{"type": "text", "text": LOCALIZATION_PROMPT + "\n" + component},
],
},
]
def array_to_image(image_array: np.ndarray) -> Image.Image:
if image_array is None:
raise ValueError("No image provided. Please upload an image before submitting.")
# Convert numpy array to PIL Image
img = Image.fromarray(np.uint8(image_array))
return img
@spaces.GPU(duration=20)
def run_inference_localization(
messages_for_template: list[dict[str, Any]], pil_image_for_processing: Image.Image
) -> str:
model.to("cuda")
torch.cuda.set_device(0)
"""
Runs inference using the Holo1 model.
- messages_for_template: The prompt structure, potentially including the PIL image object
(which apply_chat_template converts to an image tag).
- pil_image_for_processing: The actual PIL image to be processed into tensors.
"""
# 1. Apply chat template to messages. This will create the text part of the prompt,
# including image tags if the image was part of `messages_for_template`.
text_prompt = processor.apply_chat_template(messages_for_template, tokenize=False, add_generation_prompt=True)
# 2. Process text and image together to get model inputs
inputs = processor(
text=[text_prompt],
images=[pil_image_for_processing], # Provide the actual image data here
padding=True,
return_tensors="pt",
)
inputs = inputs.to(model.device)
# 3. Generate response
# Using do_sample=False for more deterministic output, as in the model card's structured output example
generated_ids = model.generate(**inputs, max_new_tokens=128, do_sample=False)
# 4. Trim input_ids from generated_ids to get only the generated part
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
# 5. Decode the generated tokens
decoded_output = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return decoded_output[0] if decoded_output else ""
# --- Gradio processing function ---
def localize(input_numpy_image: np.ndarray, task: str) -> str:
# if not model_loaded or not processor or not model:
# return f"Model not loaded. Error: {load_error_message}", None
# if not input_pil_image:
# return "No image provided. Please upload an image.", None
# if not task or task.strip() == "":
# return "No task provided. Please type an task.", input_pil_image.copy().convert("RGB")
# 1. Prepare image: Resize according to model's image processor's expected properties
# This ensures predicted coordinates match the (resized) image dimensions.
input_pil_image = array_to_image(input_numpy_image)
assert isinstance(input_pil_image, Image.Image)
image_proc_config = processor.image_processor
try:
resized_height, resized_width = smart_resize(
input_pil_image.height,
input_pil_image.width,
factor=image_proc_config.patch_size * image_proc_config.merge_size,
min_pixels=image_proc_config.min_pixels,
max_pixels=image_proc_config.max_pixels,
)
# Using LANCZOS for resampling as it's generally good for downscaling.
# The model card used `resample=None`, which might imply nearest or default.
# For visual quality in the demo, LANCZOS is reasonable.
resized_image = input_pil_image.resize(
size=(resized_width, resized_height),
resample=Image.Resampling.LANCZOS, # type: ignore
)
except Exception as e:
print(f"Error resizing image: {e}")
return f"Error resizing image: {e}", input_pil_image.copy().convert("RGB")
# 2. Create the prompt using the resized image (for correct image tagging context) and task
prompt = get_localization_prompt(task, resized_image, step=1)
print("Prompt:")
print(prompt)
# 3. Run inference
# Pass `messages` (which includes the image object for template processing)
# and `resized_image` (for actual tensor conversion).
try:
localization = run_inference_localization(prompt, resized_image)
except Exception as e:
print(f"Error during model inference: {e}")
return f"Error during model inference: {e}", resized_image.copy().convert("RGB")
# 4) Parse coordinates and draw marker
output_image_with_click = resized_image.copy().convert("RGB")
match = re.search(r"Click\((\d+),\s*(\d+)\)", localization)
if match:
try:
x = int(match.group(1))
y = int(match.group(2))
draw = ImageDraw.Draw(output_image_with_click)
radius = max(5, min(resized_width // 100, resized_height // 100, 15))
bbox = (x - radius, y - radius, x + radius, y + radius)
draw.ellipse(bbox, outline="red", width=max(2, radius // 4))
print(f"Predicted and drawn click at: ({x}, {y}) on resized image ({resized_width}x{resized_height})")
except Exception as e:
print(f"Error drawing on image: {e}")
traceback.print_exc()
else:
print(f"Could not parse 'Click(x, y)' from model output: {localization}")
return localization, output_image_with_click
# --- Load Example Data ---
example_image_url = "https://huggingface.co/spaces/Hcompany/Holo1.5-Localization/resolve/main/desktop_3.png"
example_image = Image.open(requests.get(example_image_url, stream=True).raw)
example_task = "Email quote for Hyundai Kona"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
gr.Markdown(description)
with gr.Row():
with gr.Column():
input_image_component = gr.Image(label="Input UI Image", height=400)
task_component = gr.Textbox(
label="component",
placeholder="Email quote for Hyundai Kona",
info="Describe the UI component to find.",
)
submit_button = gr.Button("Localize", variant="primary")
with gr.Column():
output_coords_component = gr.Textbox(label="Localization Step")
output_image_component = gr.Image(
type="pil", label="Image with coordinates of the component", height=400, interactive=False
)
submit_button.click(
localize, [input_image_component, task_component], [output_coords_component, output_image_component]
)
gr.Examples(
examples=[[example_image, example_task]],
inputs=[input_image_component, task_component],
outputs=[output_coords_component, output_image_component],
fn=localize,
cache_examples="lazy",
)
demo.queue(api_open=False)
demo.launch(debug=True)
|