Update app.py
Browse files
app.py
CHANGED
|
@@ -1,196 +1,165 @@
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
-
import inspect
|
| 5 |
import pandas as pd
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
def __init__(self):
|
| 15 |
-
print("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
def __call__(self, question: str) -> str:
|
| 17 |
-
print(f"
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
""
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
print(f"User logged in: {username}")
|
| 33 |
-
else:
|
| 34 |
-
print("User not logged in.")
|
| 35 |
-
return "Please Login to Hugging Face with the button.", None
|
| 36 |
-
|
| 37 |
-
api_url = DEFAULT_API_URL
|
| 38 |
-
questions_url = f"{api_url}/questions"
|
| 39 |
-
submit_url = f"{api_url}/submit"
|
| 40 |
-
|
| 41 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 42 |
try:
|
| 43 |
-
agent =
|
| 44 |
-
except Exception as e:
|
| 45 |
-
print(f"Error instantiating agent: {e}")
|
| 46 |
-
return f"Error initializing agent: {e}", None
|
| 47 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 48 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 49 |
-
print(agent_code)
|
| 50 |
-
|
| 51 |
-
# 2. Fetch Questions
|
| 52 |
print(f"Fetching questions from: {questions_url}")
|
| 53 |
try:
|
| 54 |
-
response = requests.get(questions_url, timeout=
|
| 55 |
-
response.raise_for_status()
|
| 56 |
questions_data = response.json()
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
print(f"Fetched {len(questions_data)} questions.")
|
| 61 |
-
except requests.exceptions.RequestException as e:
|
| 62 |
-
print(f"Error fetching questions: {e}")
|
| 63 |
-
return f"Error fetching questions: {e}", None
|
| 64 |
-
except requests.exceptions.JSONDecodeError as e:
|
| 65 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 66 |
-
print(f"Response text: {response.text[:500]}")
|
| 67 |
-
return f"Error decoding server response for questions: {e}", None
|
| 68 |
-
except Exception as e:
|
| 69 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
| 70 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
| 71 |
-
|
| 72 |
-
# 3. Run your Agent
|
| 73 |
-
results_log = []
|
| 74 |
-
answers_payload = []
|
| 75 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
| 76 |
for item in questions_data:
|
| 77 |
-
task_id = item.get("task_id")
|
| 78 |
-
question_text = item.get("question")
|
| 79 |
-
if not task_id or question_text is None:
|
| 80 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
| 81 |
-
continue
|
| 82 |
try:
|
| 83 |
submitted_answer = agent(question_text)
|
| 84 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 85 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 86 |
except Exception as e:
|
| 87 |
-
print(f"Error running agent on task {task_id}: {e}")
|
| 88 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
print("Agent did not produce any answers to submit.")
|
| 92 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 93 |
-
|
| 94 |
-
# 4. Prepare Submission
|
| 95 |
-
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 96 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 97 |
-
print(status_update)
|
| 98 |
-
|
| 99 |
-
# 5. Submit
|
| 100 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 101 |
try:
|
| 102 |
-
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 103 |
-
response.raise_for_status()
|
| 104 |
result_data = response.json()
|
| 105 |
-
final_status = (
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
| 111 |
-
)
|
| 112 |
-
print("Submission successful.")
|
| 113 |
-
results_df = pd.DataFrame(results_log)
|
| 114 |
-
return final_status, results_df
|
| 115 |
-
except requests.exceptions.HTTPError as e:
|
| 116 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
| 117 |
-
try:
|
| 118 |
-
error_json = e.response.json()
|
| 119 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
| 120 |
-
except requests.exceptions.JSONDecodeError:
|
| 121 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
| 122 |
-
status_message = f"Submission Failed: {error_detail}"
|
| 123 |
-
print(status_message)
|
| 124 |
-
results_df = pd.DataFrame(results_log)
|
| 125 |
-
return status_message, results_df
|
| 126 |
-
except requests.exceptions.Timeout:
|
| 127 |
-
status_message = "Submission Failed: The request timed out."
|
| 128 |
-
print(status_message)
|
| 129 |
-
results_df = pd.DataFrame(results_log)
|
| 130 |
-
return status_message, results_df
|
| 131 |
-
except requests.exceptions.RequestException as e:
|
| 132 |
-
status_message = f"Submission Failed: Network error - {e}"
|
| 133 |
-
print(status_message)
|
| 134 |
-
results_df = pd.DataFrame(results_log)
|
| 135 |
-
return status_message, results_df
|
| 136 |
-
except Exception as e:
|
| 137 |
-
status_message = f"An unexpected error occurred during submission: {e}"
|
| 138 |
-
print(status_message)
|
| 139 |
-
results_df = pd.DataFrame(results_log)
|
| 140 |
-
return status_message, results_df
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
# --- Build Gradio Interface using Blocks ---
|
| 144 |
-
with gr.Blocks() as demo:
|
| 145 |
-
gr.Markdown("# Basic Agent Evaluation Runner")
|
| 146 |
-
gr.Markdown(
|
| 147 |
-
"""
|
| 148 |
-
**Instructions:**
|
| 149 |
-
|
| 150 |
-
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 151 |
-
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 152 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 153 |
-
|
| 154 |
-
---
|
| 155 |
-
**Disclaimers:**
|
| 156 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
| 157 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
| 158 |
-
"""
|
| 159 |
-
)
|
| 160 |
|
|
|
|
|
|
|
|
|
|
| 161 |
gr.LoginButton()
|
| 162 |
-
|
| 163 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 164 |
-
|
| 165 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 166 |
-
# Removed max_rows=10 from DataFrame constructor
|
| 167 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 168 |
-
|
| 169 |
-
run_button.click(
|
| 170 |
-
fn=run_and_submit_all,
|
| 171 |
-
outputs=[status_output, results_table]
|
| 172 |
-
)
|
| 173 |
|
| 174 |
if __name__ == "__main__":
|
| 175 |
-
print("
|
| 176 |
-
|
| 177 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
| 178 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
| 179 |
-
|
| 180 |
-
if space_host_startup:
|
| 181 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
| 182 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
| 183 |
-
else:
|
| 184 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 185 |
-
|
| 186 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
| 187 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 188 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 189 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 190 |
-
else:
|
| 191 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 192 |
-
|
| 193 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 194 |
-
|
| 195 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 196 |
-
demo.launch(debug=True, share=False)
|
|
|
|
| 1 |
+
# app.py (Final version)
|
| 2 |
+
|
| 3 |
import os
|
| 4 |
import gradio as gr
|
| 5 |
import requests
|
|
|
|
| 6 |
import pandas as pd
|
| 7 |
+
import base64
|
| 8 |
+
import json
|
| 9 |
+
import operator
|
| 10 |
+
from typing import Annotated, List, TypedDict
|
| 11 |
+
|
| 12 |
+
from dotenv import load_dotenv
|
| 13 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 14 |
+
from langchain_core.messages import BaseMessage, HumanMessage, AIMessage
|
| 15 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 16 |
+
from langchain_core.tools import tool
|
| 17 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 18 |
+
from langgraph.graph import END, StateGraph
|
| 19 |
+
from langgraph.prebuilt import ToolNode
|
| 20 |
+
|
| 21 |
+
API_BASE_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 22 |
+
|
| 23 |
+
class GaiaLangGraphAgent:
|
| 24 |
def __init__(self):
|
| 25 |
+
print("Initializing GaiaLangGraphAgent...")
|
| 26 |
+
load_dotenv()
|
| 27 |
+
|
| 28 |
+
class AgentState(TypedDict):
|
| 29 |
+
question: str
|
| 30 |
+
intermediate_steps: Annotated[List[BaseMessage], operator.add]
|
| 31 |
+
self.AgentState = AgentState
|
| 32 |
+
|
| 33 |
+
web_search_tool = TavilySearchResults(max_results=4)
|
| 34 |
+
|
| 35 |
+
@tool
|
| 36 |
+
def calculator(expression: str) -> str:
|
| 37 |
+
"""Evaluates a simple mathematical expression."""
|
| 38 |
+
try:
|
| 39 |
+
import numexpr
|
| 40 |
+
return str(numexpr.evaluate(expression).item())
|
| 41 |
+
except Exception as e: return f"Error: {e}"
|
| 42 |
+
|
| 43 |
+
llm_vision = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest")
|
| 44 |
+
|
| 45 |
+
def get_file_path(file_name: str) -> str:
|
| 46 |
+
if not os.path.exists("task_files"): os.makedirs("task_files")
|
| 47 |
+
return os.path.join("task_files", file_name)
|
| 48 |
+
|
| 49 |
+
@tool
|
| 50 |
+
def file_reader(file_name: str) -> str:
|
| 51 |
+
"""Reads a file, downloading if necessary. Handles text and images."""
|
| 52 |
+
local_path = get_file_path(file_name)
|
| 53 |
+
if not os.path.exists(local_path):
|
| 54 |
+
download_url = f"{API_BASE_URL}/files/{file_name}"
|
| 55 |
+
print(f"Downloading: {download_url}")
|
| 56 |
+
try:
|
| 57 |
+
response = requests.get(download_url); response.raise_for_status()
|
| 58 |
+
with open(local_path, "wb") as f: f.write(response.content)
|
| 59 |
+
except Exception as e: return f"Error downloading {file_name}: {e}"
|
| 60 |
+
try:
|
| 61 |
+
if any(file_name.lower().endswith(ext) for ext in ['.png', '.jpg', '.jpeg', '.webp']):
|
| 62 |
+
with open(local_path, "rb") as image_file: b64_image = base64.b64encode(image_file.read()).decode('utf-8')
|
| 63 |
+
vision_prompt = HumanMessage(content=[
|
| 64 |
+
{"type": "text", "text": "Describe this image in detail, focusing on text or identifiable objects."},
|
| 65 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64_image}"}}
|
| 66 |
+
])
|
| 67 |
+
return llm_vision.invoke([vision_prompt]).content
|
| 68 |
+
else:
|
| 69 |
+
with open(local_path, 'r', encoding='utf-8') as f: return f.read()
|
| 70 |
+
except Exception as e: return f"Error processing {file_name}: {e}"
|
| 71 |
+
|
| 72 |
+
tools = [web_search_tool, file_reader, calculator]
|
| 73 |
+
|
| 74 |
+
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest", temperature=0, convert_system_message_to_human=True)
|
| 75 |
+
llm_with_tools = llm.bind_tools(tools)
|
| 76 |
+
|
| 77 |
+
planner_prompt = ChatPromptTemplate.from_messages([
|
| 78 |
+
("system", """You are a world-class AI assistant.
|
| 79 |
+
**Principles:** 1. Analyze the question for nuances. 2. Create multi-step plans. 3. Use tools intelligently (search, file read, calculator) or solve logic puzzles directly. 4. Provide exact-match answers.
|
| 80 |
+
**Execution:** Loop through plan->act cycles until you have the final answer."""),
|
| 81 |
+
("human", "{question}\n\n{intermediate_steps}"),
|
| 82 |
+
])
|
| 83 |
+
|
| 84 |
+
def planner_node(state: AgentState):
|
| 85 |
+
print("\n---PLANNER---")
|
| 86 |
+
chain = planner_prompt | llm_with_tools
|
| 87 |
+
response = chain.invoke(state)
|
| 88 |
+
print(f"Planner decision: {'Tool call' if response.tool_calls else 'Final Answer'}")
|
| 89 |
+
return {'intermediate_steps': [response]}
|
| 90 |
+
|
| 91 |
+
tool_node = ToolNode(tools)
|
| 92 |
+
|
| 93 |
+
def should_continue(state: AgentState):
|
| 94 |
+
last_message = state['intermediate_steps'][-1]
|
| 95 |
+
if isinstance(last_message, AIMessage):
|
| 96 |
+
if len(getattr(last_message, "tool_calls", [])) > 0: return "action"
|
| 97 |
+
return END
|
| 98 |
+
|
| 99 |
+
workflow = StateGraph(AgentState)
|
| 100 |
+
workflow.add_node("planner", planner_node)
|
| 101 |
+
workflow.add_node("action", tool_node)
|
| 102 |
+
workflow.set_entry_point("planner")
|
| 103 |
+
workflow.add_conditional_edges("planner", should_continue)
|
| 104 |
+
workflow.add_edge("action", "planner")
|
| 105 |
+
self.app = workflow.compile()
|
| 106 |
+
print("GaiaLangGraphAgent initialized successfully.")
|
| 107 |
+
|
| 108 |
def __call__(self, question: str) -> str:
|
| 109 |
+
print(f"\n>>>>>> AGENT EXECUTING FOR QUESTION: {question[:70]}...")
|
| 110 |
+
initial_state = {"question": question, "intermediate_steps": []}
|
| 111 |
+
final_state = self.app.invoke(initial_state, config={"recursion_limit": 15})
|
| 112 |
+
final_answer = final_state["intermediate_steps"][-1].content
|
| 113 |
+
print(f"<<<<<< AGENT FINISHED. FINAL ANSWER: {final_answer}")
|
| 114 |
+
return final_answer
|
| 115 |
+
|
| 116 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 117 |
+
if not profile: return "Please Login to Hugging Face with the button first.", None
|
| 118 |
+
space_id = os.getenv("SPACE_ID")
|
| 119 |
+
if not space_id: return "CRITICAL ERROR: SPACE_ID not found. Run this from a deployed Hugging Face Space.", None
|
| 120 |
+
username = profile.username
|
| 121 |
+
print(f"User logged in: {username}")
|
| 122 |
+
questions_url = f"{API_BASE_URL}/questions"
|
| 123 |
+
submit_url = f"{API_BASE_URL}/submit"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
try:
|
| 125 |
+
agent = GaiaLangGraphAgent()
|
| 126 |
+
except Exception as e: return f"Error initializing agent: {e}", None
|
|
|
|
|
|
|
|
|
|
| 127 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
|
|
|
|
|
|
|
|
|
| 128 |
print(f"Fetching questions from: {questions_url}")
|
| 129 |
try:
|
| 130 |
+
response = requests.get(questions_url, timeout=20); response.raise_for_status()
|
|
|
|
| 131 |
questions_data = response.json()
|
| 132 |
+
except Exception as e: return f"Error fetching questions: {e}", None
|
| 133 |
+
results_log, answers_payload = [], []
|
| 134 |
+
print(f"Running agent on {len(questions_data)} questions. This may take several minutes...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
for item in questions_data:
|
| 136 |
+
task_id, question_text = item.get("task_id"), item.get("question")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
try:
|
| 138 |
submitted_answer = agent(question_text)
|
| 139 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 140 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 141 |
except Exception as e:
|
|
|
|
| 142 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 143 |
+
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
|
| 144 |
+
print(f"Submitting {len(answers_payload)} answers...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
try:
|
| 146 |
+
response = requests.post(submit_url, json=submission_data, timeout=60); response.raise_for_status()
|
|
|
|
| 147 |
result_data = response.json()
|
| 148 |
+
final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\n"
|
| 149 |
+
f"Score: {result_data.get('score', 'N/A')}% "
|
| 150 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)")
|
| 151 |
+
return final_status, pd.DataFrame(results_log)
|
| 152 |
+
except Exception as e: return f"Submission Failed: {e}", pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
+
with gr.Blocks() as demo:
|
| 155 |
+
gr.Markdown("# GAIA - Advanced Agent Runner")
|
| 156 |
+
gr.Markdown("Log in and click 'Run' to evaluate the agent.")
|
| 157 |
gr.LoginButton()
|
|
|
|
| 158 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
|
| 159 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
|
| 160 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 161 |
+
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
if __name__ == "__main__":
|
| 164 |
+
print("Launching Gradio Interface...")
|
| 165 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|