File size: 21,518 Bytes
f460ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import inspect
import math
from typing import Callable, List, Optional, Tuple, Union, Any, Dict
from einops import rearrange
import torch
from torch import nn
import torch.nn.functional as F
from torch import Tensor
from diffusers.models.attention_processor import Attention

TXTLEN = 128
KONTEXT = False
    
class LoRALinearLayer(nn.Module):
    def __init__(
        self,
        in_features: int,
        out_features: int,
        rank: int = 4,
        network_alpha: Optional[float] = None,
        device: Optional[Union[torch.device, str]] = None,
        dtype: Optional[torch.dtype] = None,
        cond_widths: Optional[List[int]] = None,
        cond_heights: Optional[List[int]] = None,
        lora_index: int = 0,
        n_loras: int = 1,
    ):
        super().__init__()
        self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
        self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
        self.network_alpha = network_alpha
        self.rank = rank
        self.out_features = out_features
        self.in_features = in_features

        nn.init.normal_(self.down.weight, std=1 / rank)
        nn.init.zeros_(self.up.weight)
        
        self.cond_heights = cond_heights if cond_heights is not None else [512]
        self.cond_widths = cond_widths if cond_widths is not None else [512]
        self.lora_index = lora_index
        self.n_loras = n_loras

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        orig_dtype = hidden_states.dtype
        dtype = self.down.weight.dtype

        batch_size = hidden_states.shape[0]
        
        cond_sizes = [(w // 8 * h // 8 * 16 // 64) for w, h in zip(self.cond_widths, self.cond_heights)]
        total_cond_size = sum(cond_sizes)
        block_size = hidden_states.shape[1] - total_cond_size
        
        offset = sum(cond_sizes[:self.lora_index])
        current_cond_size = cond_sizes[self.lora_index]

        shape = (batch_size, hidden_states.shape[1], 3072)
        mask = torch.ones(shape, device=hidden_states.device, dtype=dtype) 
        
        mask[:, :block_size + offset, :] = 0
        mask[:, block_size + offset + current_cond_size:, :] = 0
        
        hidden_states = mask * hidden_states
        
        down_hidden_states = self.down(hidden_states.to(dtype))
        up_hidden_states = self.up(down_hidden_states)

        if self.network_alpha is not None:
            up_hidden_states *= self.network_alpha / self.rank

        return up_hidden_states.to(orig_dtype)
    

class MultiSingleStreamBlockLoraProcessor(nn.Module):
    def __init__(self, dim: int, ranks: List[int], lora_weights: List[float], network_alphas: List[float], device=None, dtype=None, cond_widths: Optional[List[int]] = None, cond_heights: Optional[List[int]] = None, n_loras=1):
        super().__init__()
        self.n_loras = n_loras
        self.cond_widths = cond_widths if cond_widths is not None else [512]
        self.cond_heights = cond_heights if cond_heights is not None else [512]
        
        self.q_loras = nn.ModuleList([
            LoRALinearLayer(dim, dim, ranks[i], network_alphas[i], device=device, dtype=dtype, cond_widths=self.cond_widths, cond_heights=self.cond_heights, lora_index=i, n_loras=n_loras)
            for i in range(n_loras)
        ])
        self.k_loras = nn.ModuleList([
            LoRALinearLayer(dim, dim, ranks[i], network_alphas[i], device=device, dtype=dtype, cond_widths=self.cond_widths, cond_heights=self.cond_heights, lora_index=i, n_loras=n_loras)
            for i in range(n_loras)
        ])
        self.v_loras = nn.ModuleList([
            LoRALinearLayer(dim, dim, ranks[i], network_alphas[i], device=device, dtype=dtype, cond_widths=self.cond_widths, cond_heights=self.cond_heights, lora_index=i, n_loras=n_loras)
            for i in range(n_loras)
        ])
        self.lora_weights = lora_weights
        self.bank_attn = None
        self.bank_kv: List[torch.Tensor] = []
        

    def __call__(self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
        use_cond = False
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:

        batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        scaled_seq_len = hidden_states.shape[1]
        
        cond_sizes = [(w // 8 * h // 8 * 16 // 64) for w, h in zip(self.cond_widths, self.cond_heights)]
        total_cond_size = sum(cond_sizes)
        block_size = scaled_seq_len - total_cond_size
        
        scaled_cond_sizes = cond_sizes
        scaled_block_size = block_size
        
        global TXTLEN
        global KONTEXT
        if KONTEXT:
            img_start, img_end = TXTLEN, (TXTLEN + block_size) // 2
        else:
            img_start, img_end = TXTLEN, block_size
        cond_start, cond_end = block_size, scaled_seq_len

        cache = len(self.bank_kv) == 0
        
        if cache:
            query = attn.to_q(hidden_states) 
            key = attn.to_k(hidden_states) 
            value = attn.to_v(hidden_states) 
            for i in range(self.n_loras):
                query = query + self.lora_weights[i] * self.q_loras[i](hidden_states)
                key = key + self.lora_weights[i] * self.k_loras[i](hidden_states)
                value = value + self.lora_weights[i] * self.v_loras[i](hidden_states)

            inner_dim = key.shape[-1]
            head_dim = inner_dim // attn.heads
            
            query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

            self.bank_kv.extend([key[:, :, scaled_block_size:, :], value[:, :, scaled_block_size:, :]])
            
            if attn.norm_q is not None: query = attn.norm_q(query)
            if attn.norm_k is not None: key = attn.norm_k(key)

            if image_rotary_emb is not None:
                from diffusers.models.embeddings import apply_rotary_emb
                query, key = apply_rotary_emb(query, image_rotary_emb), apply_rotary_emb(key, image_rotary_emb)
        
            mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
            mask[ :scaled_block_size, :] = 0
            
            current_offset = 0
            for i in range(self.n_loras):
                start, end = scaled_block_size + current_offset, scaled_block_size + current_offset + scaled_cond_sizes[i]
                mask[start:end, start:end] = 0
                current_offset += scaled_cond_sizes[i]

            mask *= -1e20
            
            c_factor = getattr(self, "c_factor", None)
            if c_factor is not None:
                # print(f"Using c_factor: {c_factor}")
                current_offset = 0
                for i in range(self.n_loras):
                    bias = torch.log(c_factor[i])
                    cond_i_start, cond_i_end = cond_start + current_offset, cond_start + current_offset + scaled_cond_sizes[i]
                    mask[img_start:img_end, cond_i_start:cond_i_end] = bias
                    current_offset += scaled_cond_sizes[i]

            # c_factor_kontext = getattr(self, "c_factor_kontext", None)
            # if c_factor_kontext is not None:
            #     bias = torch.log(c_factor_kontext)
            #     kontext_start, kontext_end = img_end, block_size
            #     mask[img_start:img_end, kontext_start:kontext_end] = bias
            #     mask[kontext_start:kontext_end, img_start:img_end] = bias

            # mask[kontext_start:kontext_end, kontext_end:] = -1e20
            
            hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask.to(query.dtype))
            self.bank_attn = hidden_states[:, :, scaled_block_size:, :]
            
        else:
            query, key, value = attn.to_q(hidden_states), attn.to_k(hidden_states), attn.to_v(hidden_states)

            inner_dim = query.shape[-1]
            head_dim = inner_dim // attn.heads
            
            query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            
            key = torch.cat([key[:, :, :scaled_block_size, :], self.bank_kv[0]], dim=-2)
            value = torch.cat([value[:, :, :scaled_block_size, :], self.bank_kv[1]], dim=-2)

            if attn.norm_q is not None: query = attn.norm_q(query)
            if attn.norm_k is not None: key = attn.norm_k(key)

            if image_rotary_emb is not None:
                from diffusers.models.embeddings import apply_rotary_emb
                query, key = apply_rotary_emb(query, image_rotary_emb), apply_rotary_emb(key, image_rotary_emb)
            
            query = query[:, :, :scaled_block_size, :]
            
            attn_mask = None
            c_factor = getattr(self, "c_factor", None)
            if c_factor is not None:
                # print(f"Using c_factor: {c_factor}")
                attn_mask = torch.zeros((query.shape[2], key.shape[2]), device=query.device, dtype=query.dtype)
                current_offset = 0
                for i in range(self.n_loras):
                    bias = torch.log(c_factor[i])
                    cond_i_start, cond_i_end = cond_start + current_offset, cond_start + current_offset + scaled_cond_sizes[i]
                    attn_mask[img_start:img_end, cond_i_start:cond_i_end] = bias
                    current_offset += scaled_cond_sizes[i]

            # c_factor_kontext = getattr(self, "c_factor_kontext", None)
            # if c_factor_kontext is not None:
            #     if attn_mask is None:
            #         attn_mask = torch.zeros((query.shape[2], key.shape[2]), device=query.device, dtype=query.dtype)
            #     bias = torch.log(c_factor_kontext)
            #     kontext_start, kontext_end = img_end, block_size
            #     attn_mask[img_start:img_end, kontext_start:kontext_end] = bias
            #     attn_mask[kontext_start:kontext_end, img_start:img_end] = bias

            # attn_mask[kontext_start:kontext_end, kontext_end:] = -1e20

            hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attn_mask)
            if self.bank_attn is not None: hidden_states = torch.cat([hidden_states, self.bank_attn], dim=-2)
            
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        cond_hidden_states = hidden_states[:, block_size:,:]
        hidden_states = hidden_states[:, : block_size,:]

        return (hidden_states, cond_hidden_states) if use_cond else hidden_states


class MultiDoubleStreamBlockLoraProcessor(nn.Module):
    def __init__(self, dim: int, ranks: List[int], lora_weights: List[float], network_alphas: List[float], device=None, dtype=None, cond_widths: Optional[List[int]] = None, cond_heights: Optional[List[int]] = None, n_loras=1):
        super().__init__()
        
        self.n_loras = n_loras
        self.cond_widths = cond_widths if cond_widths is not None else [512]
        self.cond_heights = cond_heights if cond_heights is not None else [512]
        self.q_loras = nn.ModuleList([LoRALinearLayer(dim, dim, ranks[i], network_alphas[i], device=device, dtype=dtype, cond_widths=self.cond_widths, cond_heights=self.cond_heights, lora_index=i, n_loras=n_loras) for i in range(n_loras)])
        self.k_loras = nn.ModuleList([LoRALinearLayer(dim, dim, ranks[i], network_alphas[i], device=device, dtype=dtype, cond_widths=self.cond_widths, cond_heights=self.cond_heights, lora_index=i, n_loras=n_loras) for i in range(n_loras)])
        self.v_loras = nn.ModuleList([LoRALinearLayer(dim, dim, ranks[i], network_alphas[i], device=device, dtype=dtype, cond_widths=self.cond_widths, cond_heights=self.cond_heights, lora_index=i, n_loras=n_loras) for i in range(n_loras)])
        self.proj_loras = nn.ModuleList([LoRALinearLayer(dim, dim, ranks[i], network_alphas[i], device=device, dtype=dtype, cond_widths=self.cond_widths, cond_heights=self.cond_heights, lora_index=i, n_loras=n_loras) for i in range(n_loras)])
        self.lora_weights = lora_weights
        self.bank_attn = None
        self.bank_kv: List[torch.Tensor] = []


    def __call__(self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
        use_cond=False,
    ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
        
        global TXTLEN
        global KONTEXT
        TXTLEN = encoder_hidden_states.shape[1] if encoder_hidden_states is not None else 128

        batch_size, _, _ = hidden_states.shape
        
        cond_sizes = [(w // 8 * h // 8 * 16 // 64) for w, h in zip(self.cond_widths, self.cond_heights)]
        block_size = hidden_states.shape[1] - sum(cond_sizes)
        
        scaled_seq_len = encoder_hidden_states.shape[1] + hidden_states.shape[1]
        scaled_cond_sizes = cond_sizes
        scaled_block_size = scaled_seq_len - sum(scaled_cond_sizes)
        
        if KONTEXT:
            img_start, img_end = TXTLEN, (TXTLEN + block_size) // 2
        else:
            img_start, img_end = TXTLEN, block_size
        cond_start, cond_end = scaled_block_size, scaled_seq_len

        inner_dim, head_dim = 3072, 3072 // attn.heads
        
        encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states).view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states).view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states).view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
        if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
        
        cache = len(self.bank_kv) == 0
        
        if cache:
            query, key, value = attn.to_q(hidden_states), attn.to_k(hidden_states), attn.to_v(hidden_states)
            for i in range(self.n_loras):
                query, key, value = query + self.lora_weights[i] * self.q_loras[i](hidden_states), key + self.lora_weights[i] * self.k_loras[i](hidden_states), value + self.lora_weights[i] * self.v_loras[i](hidden_states)

            query, key, value = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2), key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2), value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            
            self.bank_kv.extend([key[:, :, block_size:, :], value[:, :, block_size:, :]])

            if attn.norm_q is not None: query = attn.norm_q(query)
            if attn.norm_k is not None: key = attn.norm_k(key)
            
            query, key, value = torch.cat([encoder_hidden_states_query_proj, query], dim=2), torch.cat([encoder_hidden_states_key_proj, key], dim=2), torch.cat([encoder_hidden_states_value_proj, value], dim=2)

            if image_rotary_emb is not None:
                from diffusers.models.embeddings import apply_rotary_emb              
                query, key = apply_rotary_emb(query, image_rotary_emb), apply_rotary_emb(key, image_rotary_emb)
            
            mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
            mask[:scaled_block_size, :] = 0
            
            current_offset = 0
            for i in range(self.n_loras):
                start, end = scaled_block_size + current_offset, scaled_block_size + current_offset + scaled_cond_sizes[i]
                mask[start:end, start:end] = 0
                current_offset += scaled_cond_sizes[i]
            
            mask *= -1e20
            
            c_factor = getattr(self, "c_factor", None)
            if c_factor is not None:
                # print(f"Using c_factor: {c_factor}")
                current_offset = 0
                for i in range(self.n_loras):
                    bias = torch.log(c_factor[i])
                    cond_i_start, cond_i_end = cond_start + current_offset, cond_start + current_offset + scaled_cond_sizes[i]
                    mask[img_start:img_end, cond_i_start:cond_i_end] = bias
                    current_offset += scaled_cond_sizes[i]
            
            # c_factor_kontext = getattr(self, "c_factor_kontext", None)
            # if c_factor_kontext is not None:
            #     bias = torch.log(c_factor_kontext)
            #     kontext_start, kontext_end = img_end, block_size
            #     mask[img_start:img_end, kontext_start:kontext_end] = bias
            #     mask[kontext_start:kontext_end, img_start:img_end] = bias

            # mask[kontext_start:kontext_end, kontext_end:] = -1e20

            hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask.to(query.dtype))
            self.bank_attn = hidden_states[:, :, scaled_block_size:, :]
        
        else:
            query, key, value = attn.to_q(hidden_states), attn.to_k(hidden_states), attn.to_v(hidden_states)
    
            query, key, value = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2), key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2), value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            
            key, value = torch.cat([key[:, :, :block_size, :], self.bank_kv[0]], dim=-2), torch.cat([value[:, :, :block_size, :], self.bank_kv[1]], dim=-2)
            
            if attn.norm_q is not None: query = attn.norm_q(query)
            if attn.norm_k is not None: key = attn.norm_k(key)

            query, key, value = torch.cat([encoder_hidden_states_query_proj, query], dim=2), torch.cat([encoder_hidden_states_key_proj, key], dim=2), torch.cat([encoder_hidden_states_value_proj, value], dim=2)

            if image_rotary_emb is not None:
                from diffusers.models.embeddings import apply_rotary_emb
                query, key = apply_rotary_emb(query, image_rotary_emb), apply_rotary_emb(key, image_rotary_emb)
            
            query = query[:, :, :scaled_block_size, :]

            attn_mask = None
            c_factor = getattr(self, "c_factor", None)
            if c_factor is not None:
                # print(f"Using c_factor: {c_factor}")
                attn_mask = torch.zeros((query.shape[2], key.shape[2]), device=query.device, dtype=query.dtype)
                current_offset = 0
                for i in range(self.n_loras):
                    bias = torch.log(c_factor[i])
                    cond_i_start, cond_i_end = cond_start + current_offset, cond_start + current_offset + scaled_cond_sizes[i]
                    attn_mask[img_start:img_end, cond_i_start:cond_i_end] = bias
                    current_offset += scaled_cond_sizes[i]
            
            # c_factor_kontext = getattr(self, "c_factor_kontext", None)
            # if c_factor_kontext is not None:
            #     if attn_mask is None:
            #         attn_mask = torch.zeros((query.shape[2], key.shape[2]), device=query.device, dtype=query.dtype)
            #     bias = torch.log(c_factor_kontext)
            #     kontext_start, kontext_end = img_end, block_size
            #     attn_mask[img_start:img_end, kontext_start:kontext_end] = bias
            #     attn_mask[kontext_start:kontext_end, img_start:img_end] = bias
   
            # attn_mask[kontext_start:kontext_end, kontext_end:] = -1e20

            hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attn_mask)
            if self.bank_attn is not None: hidden_states = torch.cat([hidden_states, self.bank_attn], dim=-2)
            
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)
        
        encoder_hidden_states, hidden_states = hidden_states[:, :encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1]:]

        hidden_states = attn.to_out[0](hidden_states)
        for i in range(self.n_loras):
             hidden_states = hidden_states + self.lora_weights[i] * self.proj_loras[i](hidden_states)
        hidden_states = attn.to_out[1](hidden_states)
        encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
        
        cond_hidden_states = hidden_states[:, block_size:,:]
        hidden_states = hidden_states[:, :block_size,:]
        
        return (hidden_states, encoder_hidden_states, cond_hidden_states) if use_cond else (encoder_hidden_states, hidden_states)