Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import math | |
| from dataclasses import dataclass | |
| from pathlib import Path | |
| import librosa | |
| import torch | |
| import perth | |
| import pyloudnorm as ln | |
| from safetensors.torch import load_file | |
| from huggingface_hub import snapshot_download | |
| from transformers import AutoTokenizer | |
| from .models.t3 import T3 | |
| from .models.s3tokenizer import S3_SR | |
| from .models.s3gen import S3GEN_SR, S3Gen | |
| from .models.tokenizers import EnTokenizer | |
| from .models.voice_encoder import VoiceEncoder | |
| from .models.t3.modules.cond_enc import T3Cond | |
| from .models.t3.modules.t3_config import T3Config | |
| from .models.s3gen.const import S3GEN_SIL | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| REPO_ID = "ResembleAI/chatterbox-turbo" | |
| def punc_norm(text: str) -> str: | |
| """ | |
| Quick cleanup func for punctuation from LLMs or | |
| containing chars not seen often in the dataset | |
| """ | |
| if len(text) == 0: | |
| return "You need to add some text for me to talk." | |
| # Capitalise first letter | |
| if text[0].islower(): | |
| text = text[0].upper() + text[1:] | |
| # Remove multiple space chars | |
| text = " ".join(text.split()) | |
| # Replace uncommon/llm punc | |
| punc_to_replace = [ | |
| ("…", ", "), | |
| (":", ","), | |
| ("—", "-"), | |
| ("–", "-"), | |
| (" ,", ","), | |
| ("“", "\""), | |
| ("”", "\""), | |
| ("‘", "'"), | |
| ("’", "'"), | |
| ] | |
| for old_char_sequence, new_char in punc_to_replace: | |
| text = text.replace(old_char_sequence, new_char) | |
| # Add full stop if no ending punc | |
| text = text.rstrip(" ") | |
| sentence_enders = {".", "!", "?", "-", ","} | |
| if not any(text.endswith(p) for p in sentence_enders): | |
| text += "." | |
| return text | |
| class Conditionals: | |
| """ | |
| Conditionals for T3 and S3Gen | |
| - T3 conditionals: | |
| - speaker_emb | |
| - clap_emb | |
| - cond_prompt_speech_tokens | |
| - cond_prompt_speech_emb | |
| - emotion_adv | |
| - S3Gen conditionals: | |
| - prompt_token | |
| - prompt_token_len | |
| - prompt_feat | |
| - prompt_feat_len | |
| - embedding | |
| """ | |
| t3: T3Cond | |
| gen: dict | |
| def to(self, device): | |
| self.t3 = self.t3.to(device=device) | |
| for k, v in self.gen.items(): | |
| if torch.is_tensor(v): | |
| self.gen[k] = v.to(device=device) | |
| return self | |
| def save(self, fpath: Path): | |
| arg_dict = dict( | |
| t3=self.t3.__dict__, | |
| gen=self.gen | |
| ) | |
| torch.save(arg_dict, fpath) | |
| def load(cls, fpath, map_location="cpu"): | |
| if isinstance(map_location, str): | |
| map_location = torch.device(map_location) | |
| kwargs = torch.load(fpath, map_location=map_location, weights_only=True) | |
| return cls(T3Cond(**kwargs['t3']), kwargs['gen']) | |
| class ChatterboxTurboTTS: | |
| ENC_COND_LEN = 15 * S3_SR | |
| DEC_COND_LEN = 10 * S3GEN_SR | |
| def __init__( | |
| self, | |
| t3: T3, | |
| s3gen: S3Gen, | |
| ve: VoiceEncoder, | |
| tokenizer: EnTokenizer, | |
| device: str, | |
| conds: Conditionals = None, | |
| ): | |
| self.sr = S3GEN_SR # sample rate of synthesized audio | |
| self.t3 = t3 | |
| self.s3gen = s3gen | |
| self.ve = ve | |
| self.tokenizer = tokenizer | |
| self.device = device | |
| self.conds = conds | |
| self.watermarker = perth.PerthImplicitWatermarker() | |
| def from_local(cls, ckpt_dir, device) -> 'ChatterboxTurboTTS': | |
| ckpt_dir = Path(ckpt_dir) | |
| # Always load to CPU first for non-CUDA devices to handle CUDA-saved models | |
| if device in ["cpu", "mps"]: | |
| map_location = torch.device('cpu') | |
| else: | |
| map_location = None | |
| ve = VoiceEncoder() | |
| ve.load_state_dict( | |
| load_file(ckpt_dir / "ve.safetensors") | |
| ) | |
| ve.to(device).eval() | |
| # Turbo specific hp | |
| hp = T3Config(text_tokens_dict_size=50276) | |
| hp.llama_config_name = "GPT2_medium" | |
| hp.speech_tokens_dict_size = 6563 | |
| hp.input_pos_emb = None | |
| hp.speech_cond_prompt_len = 375 | |
| hp.use_perceiver_resampler = False | |
| hp.emotion_adv = False | |
| t3 = T3(hp) | |
| t3_state = load_file(ckpt_dir / "t3_turbo_v1.safetensors") | |
| if "model" in t3_state.keys(): | |
| t3_state = t3_state["model"][0] | |
| t3.load_state_dict(t3_state) | |
| del t3.tfmr.wte | |
| t3.to(device).eval() | |
| s3gen = S3Gen(meanflow=True) | |
| weights = load_file(ckpt_dir / "s3gen_meanflow.safetensors") | |
| s3gen.load_state_dict( | |
| weights, strict=True | |
| ) | |
| s3gen.to(device).eval() | |
| tokenizer = AutoTokenizer.from_pretrained(ckpt_dir) | |
| if tokenizer.pad_token is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| if len(tokenizer) != 50276: | |
| print(f"WARNING: Tokenizer len {len(tokenizer)} != 50276") | |
| conds = None | |
| builtin_voice = ckpt_dir / "conds.pt" | |
| if builtin_voice.exists(): | |
| conds = Conditionals.load(builtin_voice, map_location=map_location).to(device) | |
| return cls(t3, s3gen, ve, tokenizer, device, conds=conds) | |
| def to(self, device): | |
| self.device = device | |
| self.t3 = self.t3.to(device) | |
| self.s3gen = self.s3gen.to(device) | |
| self.ve = self.ve.to(device) | |
| if self.conds is not None: | |
| self.conds = self.conds.to(device) | |
| return self | |
| def from_pretrained(cls, device) -> 'ChatterboxTurboTTS': | |
| # Check if MPS is available on macOS | |
| if device == "mps" and not torch.backends.mps.is_available(): | |
| if not torch.backends.mps.is_built(): | |
| print("MPS not available because the current PyTorch install was not built with MPS enabled.") | |
| else: | |
| print("MPS not available because the current MacOS version is not 12.3+ and/or you do not have an MPS-enabled device on this machine.") | |
| device = "cpu" | |
| local_path = snapshot_download( | |
| repo_id=REPO_ID, | |
| token=os.getenv("HF_TOKEN") or True, | |
| # Optional: Filter to download only what you need | |
| allow_patterns=["*.safetensors", "*.json", "*.txt", "*.pt", "*.model"] | |
| ) | |
| return cls.from_local(local_path, device) | |
| def norm_loudness(self, wav, sr, target_lufs=-27): | |
| try: | |
| meter = ln.Meter(sr) | |
| loudness = meter.integrated_loudness(wav) | |
| gain_db = target_lufs - loudness | |
| gain_linear = 10.0 ** (gain_db / 20.0) | |
| if math.isfinite(gain_linear) and gain_linear > 0.0: | |
| wav = wav * gain_linear | |
| except Exception as e: | |
| print(f"Warning: Error in norm_loudness, skipping: {e}") | |
| return wav | |
| def prepare_conditionals(self, wav_fpath, exaggeration=0.5, norm_loudness=True): | |
| ## Load and norm reference wav | |
| s3gen_ref_wav, _sr = librosa.load(wav_fpath, sr=S3GEN_SR) | |
| assert len(s3gen_ref_wav) / _sr > 5.0, "Audio prompt must be longer than 5 seconds!" | |
| if norm_loudness: | |
| s3gen_ref_wav = self.norm_loudness(s3gen_ref_wav, _sr) | |
| ref_16k_wav = librosa.resample(s3gen_ref_wav, orig_sr=S3GEN_SR, target_sr=S3_SR) | |
| s3gen_ref_wav = s3gen_ref_wav[:self.DEC_COND_LEN] | |
| s3gen_ref_dict = self.s3gen.embed_ref(s3gen_ref_wav, S3GEN_SR, device=self.device) | |
| # Speech cond prompt tokens | |
| if plen := self.t3.hp.speech_cond_prompt_len: | |
| s3_tokzr = self.s3gen.tokenizer | |
| t3_cond_prompt_tokens, _ = s3_tokzr.forward([ref_16k_wav[:self.ENC_COND_LEN]], max_len=plen) | |
| t3_cond_prompt_tokens = torch.atleast_2d(t3_cond_prompt_tokens).to(self.device) | |
| # Voice-encoder speaker embedding | |
| ve_embed = torch.from_numpy(self.ve.embeds_from_wavs([ref_16k_wav], sample_rate=S3_SR)) | |
| ve_embed = ve_embed.mean(axis=0, keepdim=True).to(self.device) | |
| t3_cond = T3Cond( | |
| speaker_emb=ve_embed, | |
| cond_prompt_speech_tokens=t3_cond_prompt_tokens, | |
| emotion_adv=exaggeration * torch.ones(1, 1, 1), | |
| ).to(device=self.device) | |
| self.conds = Conditionals(t3_cond, s3gen_ref_dict) | |
| def generate( | |
| self, | |
| text, | |
| repetition_penalty=1.2, | |
| min_p=0.00, | |
| top_p=0.95, | |
| audio_prompt_path=None, | |
| exaggeration=0.0, | |
| cfg_weight=0.0, | |
| temperature=0.8, | |
| top_k=1000, | |
| norm_loudness=True, | |
| ): | |
| if audio_prompt_path: | |
| self.prepare_conditionals(audio_prompt_path, exaggeration=exaggeration, norm_loudness=norm_loudness) | |
| else: | |
| assert self.conds is not None, "Please `prepare_conditionals` first or specify `audio_prompt_path`" | |
| if cfg_weight > 0.0 or exaggeration > 0.0 or min_p > 0.0: | |
| logger.warning("CFG, min_p and exaggeration are not supported by Turbo version and will be ignored.") | |
| # Norm and tokenize text | |
| text = punc_norm(text) | |
| text_tokens = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True) | |
| text_tokens = text_tokens.input_ids.to(self.device) | |
| speech_tokens = self.t3.inference_turbo( | |
| t3_cond=self.conds.t3, | |
| text_tokens=text_tokens, | |
| temperature=temperature, | |
| top_k=top_k, | |
| top_p=top_p, | |
| repetition_penalty=repetition_penalty, | |
| ) | |
| # Remove OOV tokens and add silence to end | |
| speech_tokens = speech_tokens[speech_tokens < 6561] | |
| speech_tokens = speech_tokens.to(self.device) | |
| silence = torch.tensor([S3GEN_SIL, S3GEN_SIL, S3GEN_SIL]).long().to(self.device) | |
| speech_tokens = torch.cat([speech_tokens, silence]) | |
| wav, _ = self.s3gen.inference( | |
| speech_tokens=speech_tokens, | |
| ref_dict=self.conds.gen, | |
| n_cfm_timesteps=2, | |
| ) | |
| wav = wav.squeeze(0).detach().cpu().numpy() | |
| watermarked_wav = self.watermarker.apply_watermark(wav, sample_rate=self.sr) | |
| return torch.from_numpy(watermarked_wav).unsqueeze(0) | |