ollieollie's picture
Update chatterbox/tts_turbo.py
a2999e2 verified
import os
import math
from dataclasses import dataclass
from pathlib import Path
import librosa
import torch
import perth
import pyloudnorm as ln
from safetensors.torch import load_file
from huggingface_hub import snapshot_download
from transformers import AutoTokenizer
from .models.t3 import T3
from .models.s3tokenizer import S3_SR
from .models.s3gen import S3GEN_SR, S3Gen
from .models.tokenizers import EnTokenizer
from .models.voice_encoder import VoiceEncoder
from .models.t3.modules.cond_enc import T3Cond
from .models.t3.modules.t3_config import T3Config
from .models.s3gen.const import S3GEN_SIL
import logging
logger = logging.getLogger(__name__)
REPO_ID = "ResembleAI/chatterbox-turbo"
def punc_norm(text: str) -> str:
"""
Quick cleanup func for punctuation from LLMs or
containing chars not seen often in the dataset
"""
if len(text) == 0:
return "You need to add some text for me to talk."
# Capitalise first letter
if text[0].islower():
text = text[0].upper() + text[1:]
# Remove multiple space chars
text = " ".join(text.split())
# Replace uncommon/llm punc
punc_to_replace = [
("…", ", "),
(":", ","),
("—", "-"),
("–", "-"),
(" ,", ","),
("“", "\""),
("”", "\""),
("‘", "'"),
("’", "'"),
]
for old_char_sequence, new_char in punc_to_replace:
text = text.replace(old_char_sequence, new_char)
# Add full stop if no ending punc
text = text.rstrip(" ")
sentence_enders = {".", "!", "?", "-", ","}
if not any(text.endswith(p) for p in sentence_enders):
text += "."
return text
@dataclass
class Conditionals:
"""
Conditionals for T3 and S3Gen
- T3 conditionals:
- speaker_emb
- clap_emb
- cond_prompt_speech_tokens
- cond_prompt_speech_emb
- emotion_adv
- S3Gen conditionals:
- prompt_token
- prompt_token_len
- prompt_feat
- prompt_feat_len
- embedding
"""
t3: T3Cond
gen: dict
def to(self, device):
self.t3 = self.t3.to(device=device)
for k, v in self.gen.items():
if torch.is_tensor(v):
self.gen[k] = v.to(device=device)
return self
def save(self, fpath: Path):
arg_dict = dict(
t3=self.t3.__dict__,
gen=self.gen
)
torch.save(arg_dict, fpath)
@classmethod
def load(cls, fpath, map_location="cpu"):
if isinstance(map_location, str):
map_location = torch.device(map_location)
kwargs = torch.load(fpath, map_location=map_location, weights_only=True)
return cls(T3Cond(**kwargs['t3']), kwargs['gen'])
class ChatterboxTurboTTS:
ENC_COND_LEN = 15 * S3_SR
DEC_COND_LEN = 10 * S3GEN_SR
def __init__(
self,
t3: T3,
s3gen: S3Gen,
ve: VoiceEncoder,
tokenizer: EnTokenizer,
device: str,
conds: Conditionals = None,
):
self.sr = S3GEN_SR # sample rate of synthesized audio
self.t3 = t3
self.s3gen = s3gen
self.ve = ve
self.tokenizer = tokenizer
self.device = device
self.conds = conds
self.watermarker = perth.PerthImplicitWatermarker()
@classmethod
def from_local(cls, ckpt_dir, device) -> 'ChatterboxTurboTTS':
ckpt_dir = Path(ckpt_dir)
# Always load to CPU first for non-CUDA devices to handle CUDA-saved models
if device in ["cpu", "mps"]:
map_location = torch.device('cpu')
else:
map_location = None
ve = VoiceEncoder()
ve.load_state_dict(
load_file(ckpt_dir / "ve.safetensors")
)
ve.to(device).eval()
# Turbo specific hp
hp = T3Config(text_tokens_dict_size=50276)
hp.llama_config_name = "GPT2_medium"
hp.speech_tokens_dict_size = 6563
hp.input_pos_emb = None
hp.speech_cond_prompt_len = 375
hp.use_perceiver_resampler = False
hp.emotion_adv = False
t3 = T3(hp)
t3_state = load_file(ckpt_dir / "t3_turbo_v1.safetensors")
if "model" in t3_state.keys():
t3_state = t3_state["model"][0]
t3.load_state_dict(t3_state)
del t3.tfmr.wte
t3.to(device).eval()
s3gen = S3Gen(meanflow=True)
weights = load_file(ckpt_dir / "s3gen_meanflow.safetensors")
s3gen.load_state_dict(
weights, strict=True
)
s3gen.to(device).eval()
tokenizer = AutoTokenizer.from_pretrained(ckpt_dir)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
if len(tokenizer) != 50276:
print(f"WARNING: Tokenizer len {len(tokenizer)} != 50276")
conds = None
builtin_voice = ckpt_dir / "conds.pt"
if builtin_voice.exists():
conds = Conditionals.load(builtin_voice, map_location=map_location).to(device)
return cls(t3, s3gen, ve, tokenizer, device, conds=conds)
def to(self, device):
self.device = device
self.t3 = self.t3.to(device)
self.s3gen = self.s3gen.to(device)
self.ve = self.ve.to(device)
if self.conds is not None:
self.conds = self.conds.to(device)
return self
@classmethod
def from_pretrained(cls, device) -> 'ChatterboxTurboTTS':
# Check if MPS is available on macOS
if device == "mps" and not torch.backends.mps.is_available():
if not torch.backends.mps.is_built():
print("MPS not available because the current PyTorch install was not built with MPS enabled.")
else:
print("MPS not available because the current MacOS version is not 12.3+ and/or you do not have an MPS-enabled device on this machine.")
device = "cpu"
local_path = snapshot_download(
repo_id=REPO_ID,
token=os.getenv("HF_TOKEN") or True,
# Optional: Filter to download only what you need
allow_patterns=["*.safetensors", "*.json", "*.txt", "*.pt", "*.model"]
)
return cls.from_local(local_path, device)
def norm_loudness(self, wav, sr, target_lufs=-27):
try:
meter = ln.Meter(sr)
loudness = meter.integrated_loudness(wav)
gain_db = target_lufs - loudness
gain_linear = 10.0 ** (gain_db / 20.0)
if math.isfinite(gain_linear) and gain_linear > 0.0:
wav = wav * gain_linear
except Exception as e:
print(f"Warning: Error in norm_loudness, skipping: {e}")
return wav
def prepare_conditionals(self, wav_fpath, exaggeration=0.5, norm_loudness=True):
## Load and norm reference wav
s3gen_ref_wav, _sr = librosa.load(wav_fpath, sr=S3GEN_SR)
assert len(s3gen_ref_wav) / _sr > 5.0, "Audio prompt must be longer than 5 seconds!"
if norm_loudness:
s3gen_ref_wav = self.norm_loudness(s3gen_ref_wav, _sr)
ref_16k_wav = librosa.resample(s3gen_ref_wav, orig_sr=S3GEN_SR, target_sr=S3_SR)
s3gen_ref_wav = s3gen_ref_wav[:self.DEC_COND_LEN]
s3gen_ref_dict = self.s3gen.embed_ref(s3gen_ref_wav, S3GEN_SR, device=self.device)
# Speech cond prompt tokens
if plen := self.t3.hp.speech_cond_prompt_len:
s3_tokzr = self.s3gen.tokenizer
t3_cond_prompt_tokens, _ = s3_tokzr.forward([ref_16k_wav[:self.ENC_COND_LEN]], max_len=plen)
t3_cond_prompt_tokens = torch.atleast_2d(t3_cond_prompt_tokens).to(self.device)
# Voice-encoder speaker embedding
ve_embed = torch.from_numpy(self.ve.embeds_from_wavs([ref_16k_wav], sample_rate=S3_SR))
ve_embed = ve_embed.mean(axis=0, keepdim=True).to(self.device)
t3_cond = T3Cond(
speaker_emb=ve_embed,
cond_prompt_speech_tokens=t3_cond_prompt_tokens,
emotion_adv=exaggeration * torch.ones(1, 1, 1),
).to(device=self.device)
self.conds = Conditionals(t3_cond, s3gen_ref_dict)
def generate(
self,
text,
repetition_penalty=1.2,
min_p=0.00,
top_p=0.95,
audio_prompt_path=None,
exaggeration=0.0,
cfg_weight=0.0,
temperature=0.8,
top_k=1000,
norm_loudness=True,
):
if audio_prompt_path:
self.prepare_conditionals(audio_prompt_path, exaggeration=exaggeration, norm_loudness=norm_loudness)
else:
assert self.conds is not None, "Please `prepare_conditionals` first or specify `audio_prompt_path`"
if cfg_weight > 0.0 or exaggeration > 0.0 or min_p > 0.0:
logger.warning("CFG, min_p and exaggeration are not supported by Turbo version and will be ignored.")
# Norm and tokenize text
text = punc_norm(text)
text_tokens = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True)
text_tokens = text_tokens.input_ids.to(self.device)
speech_tokens = self.t3.inference_turbo(
t3_cond=self.conds.t3,
text_tokens=text_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
# Remove OOV tokens and add silence to end
speech_tokens = speech_tokens[speech_tokens < 6561]
speech_tokens = speech_tokens.to(self.device)
silence = torch.tensor([S3GEN_SIL, S3GEN_SIL, S3GEN_SIL]).long().to(self.device)
speech_tokens = torch.cat([speech_tokens, silence])
wav, _ = self.s3gen.inference(
speech_tokens=speech_tokens,
ref_dict=self.conds.gen,
n_cfm_timesteps=2,
)
wav = wav.squeeze(0).detach().cpu().numpy()
watermarked_wav = self.watermarker.apply_watermark(wav, sample_rate=self.sr)
return torch.from_numpy(watermarked_wav).unsqueeze(0)