aurelien
Edit script for GPU
845c5fd
from fastapi import FastAPI
from pydantic import BaseModel
from typing import List
import joblib
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from transformers import pipeline
import torch
app = FastAPI(title="Comment Validator API")
# =====================================
# 🔹 Chargement des modèles
# =====================================
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps" # pour ton Mac local
else:
device = "cpu"
print(f"🧠 Using device: {device}")
print("Loading model embedding")
text_model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2", device=device)
print("Loading model classifier")
clf = joblib.load("models/classifier.joblib")
print("Loading model encoder")
encoder = joblib.load("models/encoder.joblib")
print("Loading model sentiment-analysis")
sentiment_analyzer = pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment", device=device)
print("Loading model toxicity")
toxicity_analyzer = pipeline("text-classification", model="unitary/toxic-bert", return_all_scores=True, device=device)
def analyze_comment(comment: str, category: str, country: str) -> dict:
reasons = []
# --- Analyse du sentiment ---
try:
sentiment = sentiment_analyzer(comment[:512])[0]
label = sentiment["label"]
score = sentiment["score"]
except Exception:
label, score = "unknown", 0.0
if "1" in label or "2" in label:
sentiment_score = -1
reasons.append("Le ton semble négatif ou insatisfait.")
elif "4" in label or "5" in label:
sentiment_score = 1
else:
sentiment_score = 0
# --- Encodage du texte ---
X_text = text_model.encode([comment])
# --- Encodage catégorie/pays ---
df_cat = pd.DataFrame([[category, country]], columns=["category", "country"])
try:
X_cat = encoder.transform(df_cat)
except ValueError:
reasons.append(f"Catégorie ou pays inconnus : {category}, {country}")
n_features = sum(len(cats) for cats in encoder.categories_)
X_cat = np.zeros((1, n_features))
# --- Concaténation ---
X = np.concatenate([X_text, X_cat], axis=1)
# --- Prédiction validité ---
proba = clf.predict_proba(X)[0][1]
prediction = proba >= 0.5
if len(comment.split()) < 3:
reasons.append("Le commentaire est trop court.")
if sentiment_score < 0:
reasons.append("Le ton global est négatif.")
if proba < 0.4:
reasons.append("Le modèle estime une faible probabilité de validité.")
# --- Analyse toxicité ---
try:
tox_scores = toxicity_analyzer(comment[:512])[0] # tronquer pour sécurité
tags = {f"tag_{item['label']}": round(item['score'], 3) for item in tox_scores}
except Exception:
tags = {f"tag_{label}": 0.0 for label in ["toxicity","severe_toxicity","obscene","identity_attack","insult","threat"]}
# --- Résultat final ---
result = {
"is_valid": bool(prediction),
"confidence": round(float(proba), 3),
"sentiment": label,
"sentiment_score": round(float(score), 3),
"reasons": "; ".join(reasons) if reasons else "Aucune anomalie détectée."
}
result.update(tags)
return result
# =====================================
# 🔸 Modèles de requête/réponse
# =====================================
class CommentRequest(BaseModel):
comment: str
category: str
country: str
class BatchRequest(BaseModel):
items: List[CommentRequest]
# =====================================
# 🔹 Routes
# =====================================
@app.post("/predict")
def predict(item: CommentRequest):
"""Analyse un seul commentaire"""
result = analyze_comment(item.comment, item.category, item.country)
return result
@app.post("/batch_predict")
def batch_predict(request: BatchRequest):
"""Analyse plusieurs commentaires à la fois"""
results = []
for item in request.items:
results.append(analyze_comment(item.comment, item.category, item.country))
return {"results": results}