Surely99 commited on
Commit
0ec49f0
·
verified ·
1 Parent(s): 6e34d86

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -24
app.py CHANGED
@@ -487,39 +487,26 @@ with demo:
487
  gr.Markdown(
488
  """
489
  <p align="center">
490
- <img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png">
491
  </p>
492
  """)
493
 
494
  gr.Markdown(
495
  """
496
- <h1 style="text-align: center;">Encrypted Anonymization Using Fully Homomorphic Encryption</h1>
497
- <p align="center">
498
- <a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/github.png">Concrete-ML</a>
499
-
500
- <a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/documentation.png">Documentation</a>
501
-
502
- <a href=" https://community.zama.ai/c/concrete-ml/8"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/community.png">Community</a>
503
-
504
- <a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/x.png">@zama_fhe</a>
505
- </p>
506
  """
507
  )
508
 
509
  gr.Markdown(
510
  """
511
  <p align="center" style="font-size: 16px;">
512
- Anonymization is the process of removing personally identifiable information (PII) data from
513
- a document in order to protect individual privacy.</p>
514
 
515
  <p align="center" style="font-size: 16px;">
516
- Encrypted anonymization uses Fully Homomorphic Encryption (FHE) to anonymize personally
517
- identifiable information (PII) within encrypted documents, enabling computations to be
518
- performed on the encrypted data.</p>
519
 
520
  <p align="center" style="font-size: 16px;">
521
- In the example above, we're showing how encrypted anonymization can be leveraged to use LLM
522
- services such as ChatGPT in a privacy-preserving manner.</p>
523
  """
524
  )
525
 
@@ -535,15 +522,12 @@ with demo:
535
  ########################## Key Gen Part ##########################
536
 
537
  gr.Markdown(
538
- "## Step 1: Generate the keys\n\n"
539
- """In Fully Homomorphic Encryption (FHE) methods, two types of keys are created. The first
540
- type, called secret keys, are used to encrypt and decrypt the user's data. The second type,
541
- called evaluation keys, enables a server to work on the encrypted data without seeing the
542
- actual data.
543
  """
544
  )
545
 
546
- gen_key_btn = gr.Button("Generate the secret and evaluation keys")
547
 
548
  gen_key_btn.click(
549
  key_gen_fn,
 
487
  gr.Markdown(
488
  """
489
  <p align="center">
490
+ <img width=200 src="https://www.yamu.com/uploads/image/20220602/1d3eb99b96d3a84ef37eda59989e5e2f.png">
491
  </p>
492
  """)
493
 
494
  gr.Markdown(
495
  """
496
+ <h1 style="text-align: center;">用全同态加密实现加密匿名化</h1>
 
 
 
 
 
 
 
 
 
497
  """
498
  )
499
 
500
  gr.Markdown(
501
  """
502
  <p align="center" style="font-size: 16px;">
503
+ 匿名化是为了保护个人隐私从文档中删除个人身份信息 (PII) 数据的过程。</p>
 
504
 
505
  <p align="center" style="font-size: 16px;">
506
+ 通常的匿名化会删除隐私数据或者用没有意义的字符代替,这就使得数据失去了价值。而加密匿名化使用完全同态加密 (FHE) 对文档中的个人身份信息 (PII) 进行加密实现匿名化,从而可以对加密后的数据执行其他计算。</p>
 
 
507
 
508
  <p align="center" style="font-size: 16px;">
509
+ 在本示例中,我们展示了如何利用加密匿名化以保护隐私的方式使用ChatGPT等LLM服务。</p>
 
510
  """
511
  )
512
 
 
522
  ########################## Key Gen Part ##########################
523
 
524
  gr.Markdown(
525
+ "## 第一步: 生成密钥\n\n"
526
+ """在全同态加密 (FHE) 方法中,会创建两种类型的密钥。第一种称为私钥,用于加密和解密用户的数据。第二种称为评估密钥,使服务器能够在不查看实际数据的情况下处理加密数据。
 
 
 
527
  """
528
  )
529
 
530
+ gen_key_btn = gr.Button("生成私钥和评估密钥")
531
 
532
  gen_key_btn.click(
533
  key_gen_fn,