Surely99 commited on
Commit
edf859d
·
verified ·
1 Parent(s): baae8f9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -15
app.py CHANGED
@@ -89,13 +89,13 @@ def key_gen_fn() -> Dict:
89
 
90
  if not evaluation_key_path.is_file():
91
  error_message = (
92
- f"Error Encountered While generating the evaluation {evaluation_key_path.is_file()=}"
93
  )
94
  print(error_message)
95
  return {gen_key_btn: gr.update(value=error_message)}
96
  else:
97
  print("Keys have been generated ✅")
98
- return {gen_key_btn: gr.update(value="Keys have been generated ✅")}
99
 
100
 
101
  def encrypt_doc_fn(doc):
@@ -103,7 +103,7 @@ def encrypt_doc_fn(doc):
103
  print(f"\n------------ Step 2.1: Doc encryption: {doc=}")
104
 
105
  if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
106
- return {encrypted_doc_box: gr.update(value="Error ❌: Please generate the key first!", lines=10)}
107
 
108
  # Retrieve the client API
109
  client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
@@ -138,14 +138,13 @@ def encrypt_query_fn(query):
138
  print(f"\n------------ Step 2: Query encryption: {query=}")
139
 
140
  if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
141
- return {output_encrypted_box: gr.update(value="Error ❌: Please generate the key first!", lines=8)}
142
 
143
  if is_user_query_valid(query):
144
  return {
145
  query_box: gr.update(
146
  value=(
147
- "Unable to process ❌: The request exceeds the length limit or falls "
148
- "outside the scope of this document. Please refine your query."
149
  )
150
  )
151
  }
@@ -174,7 +173,7 @@ def encrypt_query_fn(query):
174
 
175
  encrypted_tokens.append(encrypted_x)
176
 
177
- print("Data encrypted on Client Side")
178
 
179
  assert len({len(token) for token in encrypted_tokens}) == 1
180
 
@@ -203,15 +202,15 @@ def send_input_fn(query) -> Dict:
203
 
204
  if not evaluation_key_path.is_file():
205
  error_message = (
206
- "Error Encountered While Sending Data to the Server: "
207
- f"The key has been generated correctly - {evaluation_key_path.is_file()=}"
208
  )
209
  return {anonymized_query_output: gr.update(value=error_message)}
210
 
211
  if not encrypted_input_path.is_file():
212
  error_message = (
213
- "Error Encountered While Sending Data to the Server: The data has not been encrypted "
214
- f"correctly on the client side - {encrypted_input_path.is_file()=}"
215
  )
216
  return {anonymized_query_output: gr.update(value=error_message)}
217
 
@@ -232,7 +231,7 @@ def send_input_fn(query) -> Dict:
232
  data=data,
233
  files=files,
234
  ) as resp:
235
- print("Data sent to the server ✅" if resp.ok else "Errorin sending data to the server")
236
 
237
 
238
  def run_fhe_in_server_fn() -> Dict:
@@ -278,7 +277,7 @@ def run_fhe_in_server_fn() -> Dict:
278
  }
279
  else:
280
  time.sleep(1)
281
- print(f"The query anonymization was computed in {response.json():.2f} s per token.")
282
 
283
 
284
  def get_output_fn() -> Dict:
@@ -310,7 +309,7 @@ def get_output_fn() -> Dict:
310
  data=data,
311
  ) as response:
312
  if response.ok:
313
- print("Data received from the remote Server")
314
  response_data = response.json()
315
  encrypted_output_base64 = response_data["encrypted_output"]
316
  length_encrypted_output_base64 = response_data["length"]
@@ -397,7 +396,7 @@ def decrypt_fn(text) -> Dict:
397
  else:
398
  identified_df = pd.DataFrame(columns=["Identified Words", "Probability"])
399
 
400
- print("Decryption done on Client Side")
401
 
402
  return anonymized_text, identified_df
403
 
 
89
 
90
  if not evaluation_key_path.is_file():
91
  error_message = (
92
+ f"生成密钥时发生异常 {evaluation_key_path.is_file()=}"
93
  )
94
  print(error_message)
95
  return {gen_key_btn: gr.update(value=error_message)}
96
  else:
97
  print("Keys have been generated ✅")
98
+ return {gen_key_btn: gr.update(value="密钥生成成功! ✅")}
99
 
100
 
101
  def encrypt_doc_fn(doc):
 
103
  print(f"\n------------ Step 2.1: Doc encryption: {doc=}")
104
 
105
  if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
106
+ return {encrypted_doc_box: gr.update(value="Error ❌: 请先生成密钥!", lines=10)}
107
 
108
  # Retrieve the client API
109
  client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
 
138
  print(f"\n------------ Step 2: Query encryption: {query=}")
139
 
140
  if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
141
+ return {output_encrypted_box: gr.update(value="Error ❌: 请先生成密钥!", lines=8)}
142
 
143
  if is_user_query_valid(query):
144
  return {
145
  query_box: gr.update(
146
  value=(
147
+ "不能执行 ❌: 请求超过了长度限制。修改查询后重试。 "
 
148
  )
149
  )
150
  }
 
173
 
174
  encrypted_tokens.append(encrypted_x)
175
 
176
+ print("数据已在客户端加密。 ✅")
177
 
178
  assert len({len(token) for token in encrypted_tokens}) == 1
179
 
 
202
 
203
  if not evaluation_key_path.is_file():
204
  error_message = (
205
+ "发送数据到服务器时发生异常:"
206
+ f"密钥已经正常生成 - {evaluation_key_path.is_file()=}"
207
  )
208
  return {anonymized_query_output: gr.update(value=error_message)}
209
 
210
  if not encrypted_input_path.is_file():
211
  error_message = (
212
+ "发送数据到服务器时发生异常: 数据没有加密"
213
+ f"在客户端正确 - {encrypted_input_path.is_file()=}"
214
  )
215
  return {anonymized_query_output: gr.update(value=error_message)}
216
 
 
231
  data=data,
232
  files=files,
233
  ) as resp:
234
+ print("数据发送到服务器。 ✅" if resp.ok else "发送到服务器时出现错误。 ❌ ")
235
 
236
 
237
  def run_fhe_in_server_fn() -> Dict:
 
277
  }
278
  else:
279
  time.sleep(1)
280
+ print(f"匿名化查询在以每句柄{response.json():.2f} 秒的速率执行。")
281
 
282
 
283
  def get_output_fn() -> Dict:
 
309
  data=data,
310
  ) as response:
311
  if response.ok:
312
+ print("数据从远程服务器接收到。 ✅")
313
  response_data = response.json()
314
  encrypted_output_base64 = response_data["encrypted_output"]
315
  length_encrypted_output_base64 = response_data["length"]
 
396
  else:
397
  identified_df = pd.DataFrame(columns=["Identified Words", "Probability"])
398
 
399
+ print("在客户端完成了解密。 ✅")
400
 
401
  return anonymized_text, identified_df
402