Update app.py
Browse files
app.py
CHANGED
|
@@ -1,251 +1,218 @@
|
|
| 1 |
import os
|
| 2 |
import re
|
| 3 |
-
import
|
| 4 |
-
import math
|
| 5 |
-
import threading
|
| 6 |
from dataclasses import dataclass
|
| 7 |
-
from
|
|
|
|
| 8 |
|
| 9 |
import numpy as np
|
| 10 |
import torch
|
| 11 |
import gradio as gr
|
| 12 |
|
| 13 |
-
from huggingface_hub import HfApi
|
| 14 |
from transformers import (
|
| 15 |
AutoTokenizer,
|
| 16 |
AutoModel,
|
| 17 |
-
|
| 18 |
-
AutoModelForSeq2SeqLM,
|
| 19 |
)
|
| 20 |
from transformers.utils import logging as hf_logging
|
| 21 |
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
# CPU-only +
|
| 25 |
-
#
|
| 26 |
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
|
| 27 |
os.environ.setdefault("HF_HUB_DISABLE_PROGRESS_BARS", "1")
|
| 28 |
os.environ.setdefault("TRANSFORMERS_NO_ADVISORY_WARNINGS", "1")
|
| 29 |
-
os.environ.setdefault("HF_HUB_ETAG_TIMEOUT", "5")
|
| 30 |
-
os.environ.setdefault("HF_HUB_DOWNLOAD_TIMEOUT", "30")
|
| 31 |
-
|
| 32 |
hf_logging.set_verbosity_error()
|
| 33 |
|
| 34 |
-
DEVICE = torch.device("cpu")
|
| 35 |
torch.set_grad_enabled(False)
|
| 36 |
torch.set_num_threads(int(os.getenv("TORCH_NUM_THREADS", "4")))
|
| 37 |
|
| 38 |
-
#
|
| 39 |
-
#
|
| 40 |
-
#
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
EMBED_BATCH = 16
|
| 45 |
-
|
| 46 |
-
GEN_MAX_NEW_TOKENS = 240
|
| 47 |
-
GEN_MIN_NEW_TOKENS = 80
|
| 48 |
-
|
| 49 |
-
QA_MAX_LENGTH = 384
|
| 50 |
-
QA_STRIDE = 128
|
| 51 |
-
MAX_CONTEXT_CHARS = 4_000
|
| 52 |
-
MAX_ANSWER_LEN_TOKENS = 40
|
| 53 |
-
|
| 54 |
-
# ============================================================
|
| 55 |
-
# 3+ Transformers:
|
| 56 |
-
# 1) Generator (RU-friendly): mT5-small
|
| 57 |
-
# 2) Embeddings: multilingual-e5-small
|
| 58 |
-
# 3) Extractive QA: mBERT xquad
|
| 59 |
-
# ============================================================
|
| 60 |
-
GEN_CANDIDATES = [
|
| 61 |
-
"google/mt5-small",
|
| 62 |
-
"google/flan-t5-small",
|
| 63 |
]
|
| 64 |
|
| 65 |
-
|
| 66 |
-
"
|
| 67 |
-
"
|
| 68 |
]
|
| 69 |
|
| 70 |
-
|
| 71 |
-
"
|
| 72 |
-
"
|
| 73 |
]
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
# ============================================================
|
| 101 |
-
# Lazy loaders (avoid loading everything on start)
|
| 102 |
-
# ============================================================
|
| 103 |
-
_load_lock = threading.Lock()
|
| 104 |
-
|
| 105 |
-
_GEN_TOK = None
|
| 106 |
-
_GEN_MODEL = None
|
| 107 |
-
|
| 108 |
-
_EMB_TOK = None
|
| 109 |
-
_EMB_MODEL = None
|
| 110 |
-
|
| 111 |
-
_QA_TOK = None
|
| 112 |
-
_QA_MODEL = None
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
def load_gen():
|
| 116 |
-
global _GEN_TOK, _GEN_MODEL
|
| 117 |
-
with _load_lock:
|
| 118 |
-
if _GEN_TOK is not None and _GEN_MODEL is not None:
|
| 119 |
-
return _GEN_TOK, _GEN_MODEL
|
| 120 |
-
tok = AutoTokenizer.from_pretrained(GEN_ID, use_fast=True)
|
| 121 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 122 |
-
GEN_ID,
|
| 123 |
-
torch_dtype=torch.float32,
|
| 124 |
-
low_cpu_mem_usage=True,
|
| 125 |
-
).eval()
|
| 126 |
-
_GEN_TOK, _GEN_MODEL = tok, model
|
| 127 |
-
return tok, model
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
def load_emb():
|
| 131 |
-
global _EMB_TOK, _EMB_MODEL
|
| 132 |
-
with _load_lock:
|
| 133 |
-
if _EMB_TOK is not None and _EMB_MODEL is not None:
|
| 134 |
-
return _EMB_TOK, _EMB_MODEL
|
| 135 |
-
tok = AutoTokenizer.from_pretrained(EMB_ID, use_fast=True)
|
| 136 |
-
model = AutoModel.from_pretrained(
|
| 137 |
-
EMB_ID,
|
| 138 |
-
torch_dtype=torch.float32,
|
| 139 |
-
low_cpu_mem_usage=True,
|
| 140 |
-
).eval()
|
| 141 |
-
_EMB_TOK, _EMB_MODEL = tok, model
|
| 142 |
-
return tok, model
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
def load_qa():
|
| 146 |
-
global _QA_TOK, _QA_MODEL
|
| 147 |
-
with _load_lock:
|
| 148 |
-
if _QA_TOK is not None and _QA_MODEL is not None:
|
| 149 |
-
return _QA_TOK, _QA_MODEL
|
| 150 |
-
tok = AutoTokenizer.from_pretrained(QA_ID, use_fast=True)
|
| 151 |
-
model = AutoModelForQuestionAnswering.from_pretrained(
|
| 152 |
-
QA_ID,
|
| 153 |
-
torch_dtype=torch.float32,
|
| 154 |
-
low_cpu_mem_usage=True,
|
| 155 |
-
).eval()
|
| 156 |
-
_QA_TOK, _QA_MODEL = tok, model
|
| 157 |
-
return tok, model
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
# ============================================================
|
| 161 |
-
# Utilities
|
| 162 |
-
# ============================================================
|
| 163 |
-
def safe_trunc(s: str, max_chars: int) -> str:
|
| 164 |
s = (s or "").strip()
|
| 165 |
if len(s) > max_chars:
|
| 166 |
-
|
| 167 |
return s
|
| 168 |
|
| 169 |
-
|
| 170 |
-
def norm_space(s: str) -> str:
|
| 171 |
return re.sub(r"\s+", " ", (s or "")).strip()
|
| 172 |
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
text = safe_trunc(text, MAX_INPUT_CHARS)
|
| 176 |
paras = [p.strip() for p in re.split(r"\n\s*\n+", text) if p.strip()]
|
| 177 |
-
|
| 178 |
-
chunks: List[str] = []
|
| 179 |
buf = ""
|
|
|
|
| 180 |
for p in paras:
|
| 181 |
if not buf:
|
| 182 |
buf = p
|
| 183 |
-
|
| 184 |
-
if len(buf) + 2 + len(p) <= CHUNK_TARGET_CHARS:
|
| 185 |
buf = buf + "\n\n" + p
|
| 186 |
else:
|
| 187 |
chunks.append(buf.strip())
|
| 188 |
buf = p
|
| 189 |
if len(chunks) >= MAX_CHUNKS:
|
| 190 |
break
|
|
|
|
| 191 |
if buf and len(chunks) < MAX_CHUNKS:
|
| 192 |
chunks.append(buf.strip())
|
| 193 |
|
| 194 |
-
#
|
| 195 |
-
|
| 196 |
-
|
| 197 |
for c in chunks:
|
| 198 |
-
if len(c) <=
|
| 199 |
-
|
| 200 |
continue
|
| 201 |
-
sents = [
|
| 202 |
b = ""
|
| 203 |
for s in sents:
|
| 204 |
if not b:
|
| 205 |
b = s
|
| 206 |
-
|
| 207 |
-
if len(b) + 1 + len(s) <= CHUNK_TARGET_CHARS:
|
| 208 |
b = b + " " + s
|
| 209 |
else:
|
| 210 |
-
|
| 211 |
b = s
|
| 212 |
-
if len(
|
| 213 |
break
|
| 214 |
-
if b and len(
|
| 215 |
-
|
| 216 |
-
if len(
|
| 217 |
break
|
| 218 |
|
| 219 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
|
|
|
|
|
|
| 221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
@torch.inference_mode()
|
| 223 |
-
def
|
| 224 |
m = mask.unsqueeze(-1).bool()
|
| 225 |
x = last_hidden.masked_fill(~m, 0.0)
|
| 226 |
summed = x.sum(dim=1)
|
| 227 |
denom = mask.sum(dim=1).clamp(min=1).unsqueeze(-1)
|
| 228 |
return summed / denom
|
| 229 |
|
| 230 |
-
|
| 231 |
@torch.inference_mode()
|
| 232 |
def embed_texts(texts: List[str], is_query: bool) -> np.ndarray:
|
| 233 |
-
tok, model =
|
| 234 |
-
|
| 235 |
-
# E5 prefix convention improves retrieval
|
| 236 |
prefix = "query: " if is_query else "passage: "
|
| 237 |
-
batch_texts = [prefix +
|
| 238 |
|
| 239 |
vecs = []
|
| 240 |
-
for i in range(0, len(batch_texts),
|
| 241 |
-
batch = batch_texts[i:i +
|
| 242 |
enc = tok(batch, padding=True, truncation=True, max_length=512, return_tensors="pt")
|
| 243 |
out = model(**enc)
|
| 244 |
-
pooled =
|
| 245 |
pooled = torch.nn.functional.normalize(pooled, p=2, dim=1)
|
| 246 |
vecs.append(pooled.cpu().numpy().astype(np.float32))
|
| 247 |
-
return np.vstack(vecs)
|
| 248 |
|
|
|
|
| 249 |
|
| 250 |
def topk_cosine(q: np.ndarray, mat: np.ndarray, k: int) -> List[Tuple[int, float]]:
|
| 251 |
scores = (mat @ q.reshape(-1, 1)).squeeze(1)
|
|
@@ -258,394 +225,335 @@ def topk_cosine(q: np.ndarray, mat: np.ndarray, k: int) -> List[Tuple[int, float
|
|
| 258 |
|
| 259 |
|
| 260 |
@dataclass
|
| 261 |
-
class
|
|
|
|
| 262 |
text: str
|
| 263 |
chunks: List[str]
|
| 264 |
-
emb:
|
| 265 |
|
| 266 |
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
if not chunks:
|
| 271 |
-
return IndexState(text=text, chunks=[], emb=None)
|
| 272 |
-
emb = embed_texts(chunks, is_query=False)
|
| 273 |
-
return IndexState(text=text, chunks=chunks, emb=emb)
|
| 274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
st = build_index(text)
|
| 280 |
-
return st
|
| 281 |
-
return IndexState(text=state["text"], chunks=state["chunks"], emb=state["emb"])
|
| 282 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
|
| 284 |
-
|
|
|
|
|
|
|
| 285 |
query = (query or "").strip()
|
| 286 |
-
if not query or
|
| 287 |
return []
|
| 288 |
qv = embed_texts([query], is_query=True)[0]
|
| 289 |
-
hits = topk_cosine(qv,
|
| 290 |
-
return [(score,
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
# ============================================================
|
| 294 |
-
# Generator (mT5 / flan)
|
| 295 |
-
# ============================================================
|
| 296 |
-
@torch.inference_mode()
|
| 297 |
-
def generate_text(prompt: str,
|
| 298 |
-
max_new_tokens: int = GEN_MAX_NEW_TOKENS,
|
| 299 |
-
min_new_tokens: int = 0,
|
| 300 |
-
do_sample: bool = False) -> str:
|
| 301 |
-
tok, model = load_gen()
|
| 302 |
-
enc = tok(prompt, return_tensors="pt", truncation=True, max_length=512)
|
| 303 |
-
|
| 304 |
-
out = model.generate(
|
| 305 |
-
**enc,
|
| 306 |
-
max_new_tokens=max_new_tokens,
|
| 307 |
-
min_new_tokens=min_new_tokens,
|
| 308 |
-
num_beams=4 if not do_sample else 1,
|
| 309 |
-
do_sample=do_sample,
|
| 310 |
-
temperature=0.9 if do_sample else None,
|
| 311 |
-
top_p=0.95 if do_sample else None,
|
| 312 |
-
repetition_penalty=1.05,
|
| 313 |
-
no_repeat_ngram_size=3,
|
| 314 |
-
early_stopping=True,
|
| 315 |
-
)
|
| 316 |
-
s = tok.decode(out[0], skip_special_tokens=True).strip()
|
| 317 |
-
return s
|
| 318 |
|
| 319 |
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
)
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
)
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
|
| 354 |
-
return
|
| 355 |
|
| 356 |
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
"Вопросы:\n"
|
| 367 |
-
)
|
| 368 |
-
raw = generate_text(prompt, max_new_tokens=220, min_new_tokens=80, do_sample=True)
|
| 369 |
-
|
| 370 |
-
# parse numbered list
|
| 371 |
-
qs = []
|
| 372 |
-
for line in raw.splitlines():
|
| 373 |
-
line = line.strip()
|
| 374 |
-
m = re.match(r"^\d+[\)\.\-]\s*(.+)$", line)
|
| 375 |
-
if m:
|
| 376 |
-
q = m.group(1).strip()
|
| 377 |
-
if q and not q.endswith("?"):
|
| 378 |
-
q += "?"
|
| 379 |
-
qs.append(q)
|
| 380 |
-
# fallback: split by '?'
|
| 381 |
-
if not qs:
|
| 382 |
-
parts = [p.strip() for p in re.split(r"\?\s*", raw) if p.strip()]
|
| 383 |
-
qs = [(p + "?") for p in parts[:n]]
|
| 384 |
-
# unique + cap
|
| 385 |
-
seen = set()
|
| 386 |
out = []
|
| 387 |
-
for
|
| 388 |
-
|
| 389 |
-
if
|
| 390 |
-
|
| 391 |
-
seen.add(ql)
|
| 392 |
-
out.append(q)
|
| 393 |
-
if len(out) >= n:
|
| 394 |
-
break
|
| 395 |
return out
|
| 396 |
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
def extractive_qa(question: str, context: str) -> Tuple[str, str]:
|
| 403 |
-
question = (question or "").strip()
|
| 404 |
-
context = (context or "").strip()
|
| 405 |
-
if not question or not context:
|
| 406 |
-
return "", ""
|
| 407 |
-
|
| 408 |
-
tok, model = load_qa()
|
| 409 |
-
context = safe_trunc(context, MAX_CONTEXT_CHARS)
|
| 410 |
-
|
| 411 |
-
enc = tok(
|
| 412 |
-
question,
|
| 413 |
-
context,
|
| 414 |
-
truncation="only_second",
|
| 415 |
-
max_length=QA_MAX_LENGTH,
|
| 416 |
-
stride=QA_STRIDE,
|
| 417 |
-
return_overflowing_tokens=True,
|
| 418 |
-
return_offsets_mapping=True,
|
| 419 |
-
padding=True,
|
| 420 |
-
return_tensors="pt",
|
| 421 |
-
)
|
| 422 |
-
|
| 423 |
-
offset_mapping = enc.pop("offset_mapping")
|
| 424 |
-
# IMPORTANT: do not pass these to model
|
| 425 |
-
enc.pop("overflow_to_sample_mapping", None)
|
| 426 |
-
enc.pop("num_truncated_tokens", None)
|
| 427 |
-
enc.pop("special_tokens_mask", None)
|
| 428 |
-
|
| 429 |
-
# Only model inputs
|
| 430 |
-
model_inputs = {k: v for k, v in enc.items() if k in ("input_ids", "attention_mask", "token_type_ids")}
|
| 431 |
-
outputs = model(**model_inputs)
|
| 432 |
-
|
| 433 |
-
start = outputs.start_logits.detach().cpu().numpy()
|
| 434 |
-
end = outputs.end_logits.detach().cpu().numpy()
|
| 435 |
-
|
| 436 |
-
best_score = -1e9
|
| 437 |
-
best_span = (0, 0)
|
| 438 |
-
best_ctx = context
|
| 439 |
-
|
| 440 |
-
for i in range(start.shape[0]):
|
| 441 |
-
seq_ids = tok.sequence_ids(i)
|
| 442 |
-
offsets = offset_mapping[i].detach().cpu().numpy()
|
| 443 |
-
|
| 444 |
-
# context token indices
|
| 445 |
-
ctx_idxs = [j for j, sid in enumerate(seq_ids) if sid == 1 and not (offsets[j][0] == 0 and offsets[j][1] == 0)]
|
| 446 |
-
if not ctx_idxs:
|
| 447 |
continue
|
|
|
|
|
|
|
| 448 |
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
top_e = sorted(ctx_idxs, key=lambda j: e_logits[j], reverse=True)[:20]
|
| 455 |
-
|
| 456 |
-
for s_idx in top_s:
|
| 457 |
-
for e_idx in top_e:
|
| 458 |
-
if e_idx < s_idx:
|
| 459 |
-
continue
|
| 460 |
-
if (e_idx - s_idx) > MAX_ANSWER_LEN_TOKENS:
|
| 461 |
-
continue
|
| 462 |
-
score = float(s_logits[s_idx] + e_logits[e_idx])
|
| 463 |
-
if score > best_score:
|
| 464 |
-
a = int(offsets[s_idx][0])
|
| 465 |
-
b = int(offsets[e_idx][1])
|
| 466 |
-
if b > a:
|
| 467 |
-
best_score = score
|
| 468 |
-
best_span = (a, b)
|
| 469 |
-
|
| 470 |
-
ans = best_ctx[best_span[0]:best_span[1]].strip()
|
| 471 |
-
if not ans:
|
| 472 |
-
return "", ""
|
| 473 |
-
|
| 474 |
-
left = max(0, best_span[0] - 120)
|
| 475 |
-
right = min(len(best_ctx), best_span[1] + 180)
|
| 476 |
-
snippet = best_ctx[left:right].strip()
|
| 477 |
-
if left > 0:
|
| 478 |
-
snippet = "…" + snippet
|
| 479 |
-
if right < len(best_ctx):
|
| 480 |
-
snippet = snippet + "…"
|
| 481 |
|
| 482 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 483 |
|
|
|
|
| 484 |
|
| 485 |
-
|
| 486 |
-
#
|
| 487 |
-
#
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
k = min(k, len(st.chunks))
|
| 498 |
-
idx = np.argpartition(-sims, k - 1)[:k]
|
| 499 |
-
idx = idx[np.argsort(-sims[idx])]
|
| 500 |
-
return "\n\n".join(st.chunks[i] for i in idx.tolist())
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
def do_summary(text: str, state: Optional[Dict[str, Any]], level: str) -> Tuple[str, Dict[str, Any]]:
|
| 504 |
-
st = ensure_index(state, text)
|
| 505 |
-
selected = select_central_text(st, level)
|
| 506 |
-
if not selected:
|
| 507 |
-
return "Нет текста для пересказа.", st.__dict__
|
| 508 |
-
title, summ = robust_summary(selected)
|
| 509 |
-
md = f"### Заголовок\n{title}\n\n### Пересказ\n{summ}"
|
| 510 |
-
return md, st.__dict__
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
def do_search(text: str, state: Optional[Dict[str, Any]], query: str, k: int) -> Tuple[str, Dict[str, Any]]:
|
| 514 |
-
st = ensure_index(state, text)
|
| 515 |
-
query = (query or "").strip()
|
| 516 |
-
if not query:
|
| 517 |
-
return "Введите запрос.", st.__dict__
|
| 518 |
-
hits = retrieve(st, query, k=int(max(1, min(k, 10))))
|
| 519 |
-
if not hits:
|
| 520 |
-
return "Ничего не найдено.", st.__dict__
|
| 521 |
-
out = ["### Результаты\n"]
|
| 522 |
-
for i, (score, chunk) in enumerate(hits, 1):
|
| 523 |
-
out.append(f"**{i}. score={score:.3f}**\n{chunk}\n")
|
| 524 |
-
return "\n".join(out).strip(), st.__dict__
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
def do_quiz(text: str, state: Optional[Dict[str, Any]], n: int) -> Tuple[str, Dict[str, Any]]:
|
| 528 |
-
st = ensure_index(state, text)
|
| 529 |
-
if not st.chunks:
|
| 530 |
-
return "Нет текста.", st.__dict__
|
| 531 |
-
|
| 532 |
-
# build a compact source for question generation (central passages)
|
| 533 |
-
central = select_central_text(st, "Подробнее")
|
| 534 |
-
if not central:
|
| 535 |
-
central = safe_trunc(st.text, 3000)
|
| 536 |
-
|
| 537 |
-
questions = generate_questions(central, int(n))
|
| 538 |
-
if not questions:
|
| 539 |
-
return "Не удалось сгенерировать вопросы.", st.__dict__
|
| 540 |
-
|
| 541 |
-
# answer each question from retrieved context
|
| 542 |
-
lines = ["### Вопросы и ответы\n"]
|
| 543 |
-
for i, q in enumerate(questions, 1):
|
| 544 |
-
hits = retrieve(st, q, k=4)
|
| 545 |
-
ctx = "\n\n".join([c for _, c in hits]) if hits else central
|
| 546 |
-
ctx = safe_trunc(ctx, MAX_CONTEXT_CHARS)
|
| 547 |
-
|
| 548 |
-
ans, ev = extractive_qa(q, ctx)
|
| 549 |
-
if not ans:
|
| 550 |
-
# fallback: generator open-book answer
|
| 551 |
-
prompt = (
|
| 552 |
-
"Ответь на вопрос, используя ТОЛЬКО данный текст. "
|
| 553 |
-
"Если ответа нет, скажи 'В тексте это не указано'.\n\n"
|
| 554 |
-
f"Текст:\n{ctx}\n\n"
|
| 555 |
-
f"Вопрос: {q}\nОтвет:"
|
| 556 |
-
)
|
| 557 |
-
ans = generate_text(prompt, max_new_tokens=120, min_new_tokens=20, do_sample=False).strip()
|
| 558 |
-
ev = ctx[:320].strip()
|
| 559 |
-
|
| 560 |
-
lines.append(f"**{i}. {q}**")
|
| 561 |
-
lines.append(f"- Ответ: {ans}")
|
| 562 |
-
lines.append(f"- Фрагмент: {ev}")
|
| 563 |
-
lines.append("")
|
| 564 |
-
return "\n".join(lines).strip(), st.__dict__
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
def do_chat(text: str, state: Optional[Dict[str, Any]], chat: List[Tuple[str, str]], user_q: str):
|
| 568 |
-
st = ensure_index(state, text)
|
| 569 |
-
user_q = (user_q or "").strip()
|
| 570 |
-
if not user_q:
|
| 571 |
-
return chat, st.__dict__, ""
|
| 572 |
-
|
| 573 |
-
hits = retrieve(st, user_q, k=5)
|
| 574 |
-
ctx = "\n\n".join([c for _, c in hits]) if hits else safe_trunc(st.text, 2500)
|
| 575 |
-
ctx = safe_trunc(ctx, MAX_CONTEXT_CHARS)
|
| 576 |
-
|
| 577 |
-
ans, ev = extractive_qa(user_q, ctx)
|
| 578 |
-
if not ans:
|
| 579 |
-
prompt = (
|
| 580 |
-
"Ответь на вопрос по тексту. "
|
| 581 |
-
"Если ответа нет, скажи 'В тексте это не указано'.\n\n"
|
| 582 |
-
f"Текст:\n{ctx}\n\n"
|
| 583 |
-
f"Вопрос: {user_q}\nОтвет:"
|
| 584 |
)
|
| 585 |
-
|
| 586 |
-
|
| 587 |
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 591 |
|
|
|
|
|
|
|
|
|
|
| 592 |
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
"Используемые модели (3 трансформера):\n"
|
| 596 |
-
f"1) Генерация (пересказ/вопросы): {GEN_ID}\n"
|
| 597 |
-
f"2) Эмбеддинги (поиск): {EMB_ID}\n"
|
| 598 |
-
f"3) Extractive QA (ответ+фрагмент): {QA_ID}\n"
|
| 599 |
-
"\nCPU-only, без GPU. Память обычно < 16GB."
|
| 600 |
-
)
|
| 601 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 602 |
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 608 |
|
| 609 |
-
state = gr.State({"text": "", "chunks": [], "emb": None})
|
| 610 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 611 |
with gr.Row():
|
| 612 |
with gr.Column(scale=2):
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
|
| 617 |
with gr.Column(scale=3):
|
| 618 |
with gr.Tabs():
|
| 619 |
with gr.Tab("Пересказ"):
|
| 620 |
-
sum_level = gr.Radio(["Коротко", "Подробнее"], value="Коротко", label="Уровень")
|
| 621 |
sum_btn = gr.Button("Сделать пересказ", variant="primary")
|
| 622 |
sum_out = gr.Markdown()
|
| 623 |
|
| 624 |
-
with gr.Tab("Вопросы"):
|
| 625 |
-
q_n = gr.Slider(1, 12, value=6, step=1, label="Количество вопросов")
|
| 626 |
-
q_btn = gr.Button("Сгенерировать вопросы", variant="primary")
|
| 627 |
-
q_out = gr.Markdown()
|
| 628 |
-
|
| 629 |
-
with gr.Tab("Чат по тексту"):
|
| 630 |
-
chat = gr.Chatbot(height=380)
|
| 631 |
-
with gr.Row():
|
| 632 |
-
user_q = gr.Textbox(label="Вопрос", placeholder="Задайте вопрос по тексту…", lines=1)
|
| 633 |
-
send = gr.Button("Отправить")
|
| 634 |
-
gr.Markdown("Ответ: поиск по чанкам → extractive QA с доказательством → fallback на генерацию.")
|
| 635 |
-
|
| 636 |
with gr.Tab("Поиск"):
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
sum_btn.click(do_summary, inputs=[src_text, state, sum_level], outputs=[sum_out, state])
|
| 643 |
-
q_btn.click(do_quiz, inputs=[src_text, state, q_n], outputs=[q_out, state])
|
| 644 |
|
| 645 |
-
|
| 646 |
-
|
|
|
|
|
|
|
| 647 |
|
| 648 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 649 |
|
| 650 |
if __name__ == "__main__":
|
| 651 |
demo.queue(max_size=32).launch(server_name="0.0.0.0", server_port=7860, show_error=True)
|
|
|
|
| 1 |
import os
|
| 2 |
import re
|
| 3 |
+
import hashlib
|
|
|
|
|
|
|
| 4 |
from dataclasses import dataclass
|
| 5 |
+
from collections import OrderedDict
|
| 6 |
+
from typing import List, Tuple, Optional, Dict, Any
|
| 7 |
|
| 8 |
import numpy as np
|
| 9 |
import torch
|
| 10 |
import gradio as gr
|
| 11 |
|
|
|
|
| 12 |
from transformers import (
|
| 13 |
AutoTokenizer,
|
| 14 |
AutoModel,
|
| 15 |
+
pipeline,
|
|
|
|
| 16 |
)
|
| 17 |
from transformers.utils import logging as hf_logging
|
| 18 |
|
| 19 |
|
| 20 |
+
# =========================
|
| 21 |
+
# CPU-only + quieter logs
|
| 22 |
+
# =========================
|
| 23 |
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
|
| 24 |
os.environ.setdefault("HF_HUB_DISABLE_PROGRESS_BARS", "1")
|
| 25 |
os.environ.setdefault("TRANSFORMERS_NO_ADVISORY_WARNINGS", "1")
|
|
|
|
|
|
|
|
|
|
| 26 |
hf_logging.set_verbosity_error()
|
| 27 |
|
|
|
|
| 28 |
torch.set_grad_enabled(False)
|
| 29 |
torch.set_num_threads(int(os.getenv("TORCH_NUM_THREADS", "4")))
|
| 30 |
|
| 31 |
+
# =========================
|
| 32 |
+
# Models (3 transformers)
|
| 33 |
+
# =========================
|
| 34 |
+
SUM_MODEL_CANDIDATES = [
|
| 35 |
+
"d0rj/rut5-base-summ", # RU summarization
|
| 36 |
+
"cointegrated/rut5-base-absum", # RU summarization fallback
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
]
|
| 38 |
|
| 39 |
+
QA_MODEL_CANDIDATES = [
|
| 40 |
+
"mrm8488/bert-multi-cased-finetuned-xquadv1", # multilingual QA
|
| 41 |
+
"mrm8488/bert-multi-cased-finedtuned-xquad-tydiqa-goldp",
|
| 42 |
]
|
| 43 |
|
| 44 |
+
EMB_MODEL_CANDIDATES = [
|
| 45 |
+
"intfloat/multilingual-e5-small", # retrieval embeddings
|
| 46 |
+
"intfloat/e5-small-v2",
|
| 47 |
]
|
| 48 |
|
| 49 |
+
DEVICE = -1 # CPU for pipelines
|
| 50 |
+
|
| 51 |
+
# =========================
|
| 52 |
+
# Limits (memory & speed)
|
| 53 |
+
# =========================
|
| 54 |
+
MAX_TEXT_CHARS = 120_000
|
| 55 |
+
CHUNK_CHARS = 1400
|
| 56 |
+
MAX_CHUNKS = 140
|
| 57 |
+
EMB_BATCH = 16
|
| 58 |
+
|
| 59 |
+
TOPK_DEFAULT = 5
|
| 60 |
+
CTX_MAX_CHARS = 4500
|
| 61 |
+
|
| 62 |
+
# =========================
|
| 63 |
+
# Helpers
|
| 64 |
+
# =========================
|
| 65 |
+
RU_STOP = {
|
| 66 |
+
"и","в","во","на","но","а","что","это","как","к","ко","из","за","по","у","от","до","при","для","над",
|
| 67 |
+
"под","же","ли","бы","не","ни","то","его","ее","их","мы","вы","они","она","он","оно","этот","эта","эти",
|
| 68 |
+
"там","тут","здесь","так","такие","такой","есть","быть","был","была","были","будет","будут"
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
def safe_text(s: str, max_chars: int = MAX_TEXT_CHARS) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
s = (s or "").strip()
|
| 73 |
if len(s) > max_chars:
|
| 74 |
+
s = s[:max_chars].rstrip() + "\n\n[Обрезано по лимиту длины]"
|
| 75 |
return s
|
| 76 |
|
| 77 |
+
def normalize_space(s: str) -> str:
|
|
|
|
| 78 |
return re.sub(r"\s+", " ", (s or "")).strip()
|
| 79 |
|
| 80 |
+
def split_into_chunks(text: str) -> List[str]:
|
| 81 |
+
text = safe_text(text)
|
|
|
|
| 82 |
paras = [p.strip() for p in re.split(r"\n\s*\n+", text) if p.strip()]
|
| 83 |
+
chunks = []
|
|
|
|
| 84 |
buf = ""
|
| 85 |
+
|
| 86 |
for p in paras:
|
| 87 |
if not buf:
|
| 88 |
buf = p
|
| 89 |
+
elif len(buf) + 2 + len(p) <= CHUNK_CHARS:
|
|
|
|
| 90 |
buf = buf + "\n\n" + p
|
| 91 |
else:
|
| 92 |
chunks.append(buf.strip())
|
| 93 |
buf = p
|
| 94 |
if len(chunks) >= MAX_CHUNKS:
|
| 95 |
break
|
| 96 |
+
|
| 97 |
if buf and len(chunks) < MAX_CHUNKS:
|
| 98 |
chunks.append(buf.strip())
|
| 99 |
|
| 100 |
+
# If still too big, split long chunks by sentences
|
| 101 |
+
sent_re = re.compile(r"(?<=[\.\!\?…])\s+")
|
| 102 |
+
final_chunks = []
|
| 103 |
for c in chunks:
|
| 104 |
+
if len(c) <= int(CHUNK_CHARS * 1.6):
|
| 105 |
+
final_chunks.append(c)
|
| 106 |
continue
|
| 107 |
+
sents = [x.strip() for x in sent_re.split(c) if x.strip()]
|
| 108 |
b = ""
|
| 109 |
for s in sents:
|
| 110 |
if not b:
|
| 111 |
b = s
|
| 112 |
+
elif len(b) + 1 + len(s) <= CHUNK_CHARS:
|
|
|
|
| 113 |
b = b + " " + s
|
| 114 |
else:
|
| 115 |
+
final_chunks.append(b.strip())
|
| 116 |
b = s
|
| 117 |
+
if len(final_chunks) >= MAX_CHUNKS:
|
| 118 |
break
|
| 119 |
+
if b and len(final_chunks) < MAX_CHUNKS:
|
| 120 |
+
final_chunks.append(b.strip())
|
| 121 |
+
if len(final_chunks) >= MAX_CHUNKS:
|
| 122 |
break
|
| 123 |
|
| 124 |
+
return final_chunks[:MAX_CHUNKS]
|
| 125 |
+
|
| 126 |
+
def sha_key(text: str) -> str:
|
| 127 |
+
h = hashlib.sha1(text.encode("utf-8")).hexdigest()
|
| 128 |
+
return h[:12]
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
# =========================
|
| 132 |
+
# Global model holders
|
| 133 |
+
# =========================
|
| 134 |
+
_SUM_PIPE = None
|
| 135 |
+
_SUM_ID = None
|
| 136 |
|
| 137 |
+
_QA_PIPE = None
|
| 138 |
+
_QA_ID = None
|
| 139 |
|
| 140 |
+
_EMB_TOK = None
|
| 141 |
+
_EMB_MODEL = None
|
| 142 |
+
_EMB_ID = None
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def _try_load_summarizer() -> Tuple[Any, str]:
|
| 146 |
+
last_err = None
|
| 147 |
+
for mid in SUM_MODEL_CANDIDATES:
|
| 148 |
+
try:
|
| 149 |
+
pipe = pipeline("summarization", model=mid, device=DEVICE)
|
| 150 |
+
return pipe, mid
|
| 151 |
+
except Exception as e:
|
| 152 |
+
last_err = e
|
| 153 |
+
raise RuntimeError(f"Cannot load summarization model. Last error: {last_err}")
|
| 154 |
+
|
| 155 |
+
def _try_load_qa() -> Tuple[Any, str]:
|
| 156 |
+
last_err = None
|
| 157 |
+
for mid in QA_MODEL_CANDIDATES:
|
| 158 |
+
try:
|
| 159 |
+
pipe = pipeline("question-answering", model=mid, device=DEVICE)
|
| 160 |
+
return pipe, mid
|
| 161 |
+
except Exception as e:
|
| 162 |
+
last_err = e
|
| 163 |
+
raise RuntimeError(f"Cannot load QA model. Last error: {last_err}")
|
| 164 |
+
|
| 165 |
+
def _try_load_emb() -> Tuple[Any, Any, str]:
|
| 166 |
+
last_err = None
|
| 167 |
+
for mid in EMB_MODEL_CANDIDATES:
|
| 168 |
+
try:
|
| 169 |
+
tok = AutoTokenizer.from_pretrained(mid, use_fast=True)
|
| 170 |
+
model = AutoModel.from_pretrained(mid, torch_dtype=torch.float32, low_cpu_mem_usage=True).eval()
|
| 171 |
+
return tok, model, mid
|
| 172 |
+
except Exception as e:
|
| 173 |
+
last_err = e
|
| 174 |
+
raise RuntimeError(f"Cannot load embedding model. Last error: {last_err}")
|
| 175 |
+
|
| 176 |
+
def get_models():
|
| 177 |
+
global _SUM_PIPE, _SUM_ID, _QA_PIPE, _QA_ID, _EMB_TOK, _EMB_MODEL, _EMB_ID
|
| 178 |
+
|
| 179 |
+
if _SUM_PIPE is None:
|
| 180 |
+
_SUM_PIPE, _SUM_ID = _try_load_summarizer()
|
| 181 |
+
if _QA_PIPE is None:
|
| 182 |
+
_QA_PIPE, _QA_ID = _try_load_qa()
|
| 183 |
+
if _EMB_MODEL is None:
|
| 184 |
+
_EMB_TOK, _EMB_MODEL, _EMB_ID = _try_load_emb()
|
| 185 |
+
|
| 186 |
+
return _SUM_PIPE, _SUM_ID, _QA_PIPE, _QA_ID, _EMB_TOK, _EMB_MODEL, _EMB_ID
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
# =========================
|
| 190 |
+
# Embeddings + retrieval
|
| 191 |
+
# =========================
|
| 192 |
@torch.inference_mode()
|
| 193 |
+
def _mean_pool(last_hidden: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
|
| 194 |
m = mask.unsqueeze(-1).bool()
|
| 195 |
x = last_hidden.masked_fill(~m, 0.0)
|
| 196 |
summed = x.sum(dim=1)
|
| 197 |
denom = mask.sum(dim=1).clamp(min=1).unsqueeze(-1)
|
| 198 |
return summed / denom
|
| 199 |
|
|
|
|
| 200 |
@torch.inference_mode()
|
| 201 |
def embed_texts(texts: List[str], is_query: bool) -> np.ndarray:
|
| 202 |
+
_, _, _, _, tok, model, _ = get_models()
|
|
|
|
|
|
|
| 203 |
prefix = "query: " if is_query else "passage: "
|
| 204 |
+
batch_texts = [prefix + normalize_space(t) for t in texts]
|
| 205 |
|
| 206 |
vecs = []
|
| 207 |
+
for i in range(0, len(batch_texts), EMB_BATCH):
|
| 208 |
+
batch = batch_texts[i:i + EMB_BATCH]
|
| 209 |
enc = tok(batch, padding=True, truncation=True, max_length=512, return_tensors="pt")
|
| 210 |
out = model(**enc)
|
| 211 |
+
pooled = _mean_pool(out.last_hidden_state, enc["attention_mask"])
|
| 212 |
pooled = torch.nn.functional.normalize(pooled, p=2, dim=1)
|
| 213 |
vecs.append(pooled.cpu().numpy().astype(np.float32))
|
|
|
|
| 214 |
|
| 215 |
+
return np.vstack(vecs) if vecs else np.zeros((0, 384), dtype=np.float32)
|
| 216 |
|
| 217 |
def topk_cosine(q: np.ndarray, mat: np.ndarray, k: int) -> List[Tuple[int, float]]:
|
| 218 |
scores = (mat @ q.reshape(-1, 1)).squeeze(1)
|
|
|
|
| 225 |
|
| 226 |
|
| 227 |
@dataclass
|
| 228 |
+
class Index:
|
| 229 |
+
key: str
|
| 230 |
text: str
|
| 231 |
chunks: List[str]
|
| 232 |
+
emb: np.ndarray
|
| 233 |
|
| 234 |
|
| 235 |
+
# Small LRU cache (keeps RAM bounded)
|
| 236 |
+
_INDEX_CACHE: "OrderedDict[str, Index]" = OrderedDict()
|
| 237 |
+
CACHE_MAX = 4
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
|
| 239 |
+
def get_index(text: str) -> Index:
|
| 240 |
+
text = safe_text(text)
|
| 241 |
+
k = sha_key(text)
|
| 242 |
+
if k in _INDEX_CACHE:
|
| 243 |
+
_INDEX_CACHE.move_to_end(k)
|
| 244 |
+
return _INDEX_CACHE[k]
|
| 245 |
|
| 246 |
+
chunks = split_into_chunks(text)
|
| 247 |
+
emb = embed_texts(chunks, is_query=False) if chunks else np.zeros((0, 384), dtype=np.float32)
|
| 248 |
+
idx = Index(key=k, text=text, chunks=chunks, emb=emb)
|
|
|
|
|
|
|
|
|
|
| 249 |
|
| 250 |
+
_INDEX_CACHE[k] = idx
|
| 251 |
+
_INDEX_CACHE.move_to_end(k)
|
| 252 |
+
while len(_INDEX_CACHE) > CACHE_MAX:
|
| 253 |
+
_INDEX_CACHE.popitem(last=False)
|
| 254 |
|
| 255 |
+
return idx
|
| 256 |
+
|
| 257 |
+
def retrieve(idx: Index, query: str, k: int) -> List[Tuple[float, str]]:
|
| 258 |
query = (query or "").strip()
|
| 259 |
+
if not query or idx.emb.shape[0] == 0:
|
| 260 |
return []
|
| 261 |
qv = embed_texts([query], is_query=True)[0]
|
| 262 |
+
hits = topk_cosine(qv, idx.emb, k=k)
|
| 263 |
+
return [(score, idx.chunks[i]) for i, score in hits]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
|
| 265 |
|
| 266 |
+
# =========================
|
| 267 |
+
# Summarization (hierarchical, stable)
|
| 268 |
+
# =========================
|
| 269 |
+
def summarize_one(text: str, out_max: int, out_min: int) -> str:
|
| 270 |
+
sum_pipe, _, _, _, _, _, _ = get_models()
|
| 271 |
+
text = normalize_space(text)
|
| 272 |
+
if not text:
|
| 273 |
+
return ""
|
| 274 |
+
# pipeline expects token lengths; we keep conservative values
|
| 275 |
+
res = sum_pipe(text, max_length=out_max, min_length=out_min, do_sample=False)
|
| 276 |
+
if isinstance(res, list) and res:
|
| 277 |
+
return (res[0].get("summary_text") or "").strip()
|
| 278 |
+
return ""
|
| 279 |
+
|
| 280 |
+
def smart_summary(text: str) -> str:
|
| 281 |
+
text = safe_text(text)
|
| 282 |
+
if not text:
|
| 283 |
+
return "Нет текста."
|
| 284 |
+
|
| 285 |
+
chunks = split_into_chunks(text)
|
| 286 |
+
if not chunks:
|
| 287 |
+
return "Нет текста."
|
| 288 |
+
|
| 289 |
+
# For short text: direct
|
| 290 |
+
if len(text) < 2500 and len(chunks) <= 2:
|
| 291 |
+
s = summarize_one(text, out_max=220, out_min=80)
|
| 292 |
+
return s if s else summarize_one(text, out_max=160, out_min=50)
|
| 293 |
+
|
| 294 |
+
# For long text: summarize chunks then summarize the combined summaries
|
| 295 |
+
parts = chunks[:8]
|
| 296 |
+
partial = []
|
| 297 |
+
for p in parts:
|
| 298 |
+
sp = summarize_one(p, out_max=140, out_min=40)
|
| 299 |
+
if sp:
|
| 300 |
+
partial.append(sp)
|
| 301 |
+
|
| 302 |
+
combined = " ".join(partial).strip()
|
| 303 |
+
if not combined:
|
| 304 |
+
combined = " ".join(parts)[:4000]
|
| 305 |
+
|
| 306 |
+
final = summarize_one(combined, out_max=240, out_min=90)
|
| 307 |
+
if not final:
|
| 308 |
+
final = summarize_one(combined, out_max=180, out_min=60)
|
| 309 |
+
|
| 310 |
+
return final if final else "Не удалось получить пересказ."
|
| 311 |
+
|
| 312 |
+
def make_title(text: str, summary: str) -> str:
|
| 313 |
+
# heuristic title: first 8–12 words of summary, else first sentence of text
|
| 314 |
+
src = summary.strip() if summary.strip() else normalize_space(text[:500])
|
| 315 |
+
words = [w for w in re.split(r"\s+", src) if w]
|
| 316 |
+
title = " ".join(words[:12]).strip(" .,:;—-")
|
| 317 |
+
return title if title else "Краткий пересказ"
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
# =========================
|
| 321 |
+
# QA Chat (retrieval + pipeline QA)
|
| 322 |
+
# =========================
|
| 323 |
+
def qa_answer(question: str, context: str) -> Tuple[str, str, float]:
|
| 324 |
+
_, _, qa_pipe, _, _, _, _ = get_models()
|
| 325 |
+
question = (question or "").strip()
|
| 326 |
+
context = (context or "").strip()
|
| 327 |
+
if not question or not context:
|
| 328 |
+
return "", "", 0.0
|
| 329 |
+
|
| 330 |
+
context = context[:CTX_MAX_CHARS]
|
| 331 |
+
out = qa_pipe(question=question, context=context)
|
| 332 |
+
ans = (out.get("answer") or "").strip()
|
| 333 |
+
score = float(out.get("score") or 0.0)
|
| 334 |
+
start = int(out.get("start") or 0)
|
| 335 |
+
end = int(out.get("end") or 0)
|
| 336 |
+
|
| 337 |
+
# evidence snippet
|
| 338 |
+
left = max(0, start - 140)
|
| 339 |
+
right = min(len(context), end + 220)
|
| 340 |
+
snippet = context[left:right].strip()
|
| 341 |
+
if left > 0:
|
| 342 |
+
snippet = "…" + snippet
|
| 343 |
+
if right < len(context):
|
| 344 |
+
snippet = snippet + "…"
|
| 345 |
|
| 346 |
+
return ans, snippet, score
|
| 347 |
|
| 348 |
|
| 349 |
+
# =========================
|
| 350 |
+
# Quiz (heuristic questions; answers via retrieval+QA)
|
| 351 |
+
# =========================
|
| 352 |
+
def _sentences(text: str) -> List[str]:
|
| 353 |
+
# very simple sentence splitter
|
| 354 |
+
text = normalize_space(text)
|
| 355 |
+
if not text:
|
| 356 |
+
return []
|
| 357 |
+
parts = re.split(r"(?<=[\.\!\?…])\s+", text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
out = []
|
| 359 |
+
for p in parts:
|
| 360 |
+
p = p.strip()
|
| 361 |
+
if 40 <= len(p) <= 240:
|
| 362 |
+
out.append(p)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
return out
|
| 364 |
|
| 365 |
+
def _keywords(text: str) -> Dict[str, int]:
|
| 366 |
+
words = re.findall(r"[А-Яа-яЁёA-Za-z\-]{3,}", text.lower())
|
| 367 |
+
freq: Dict[str, int] = {}
|
| 368 |
+
for w in words:
|
| 369 |
+
if w in RU_STOP:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
continue
|
| 371 |
+
freq[w] = freq.get(w, 0) + 1
|
| 372 |
+
return freq
|
| 373 |
|
| 374 |
+
def generate_quiz_questions(text: str, n: int) -> List[str]:
|
| 375 |
+
n = int(max(1, min(n, 12)))
|
| 376 |
+
sents = _sentences(text)
|
| 377 |
+
if not sents:
|
| 378 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
|
| 380 |
+
freq = _keywords(text)
|
| 381 |
+
if not freq:
|
| 382 |
+
# fallback: use first sentences
|
| 383 |
+
sents = sents[:n]
|
| 384 |
+
return [f"О чем говорится в утверждении: «{s}»?" for s in sents]
|
| 385 |
+
|
| 386 |
+
scored = []
|
| 387 |
+
for s in sents:
|
| 388 |
+
ws = re.findall(r"[А-Яа-яЁёA-Za-z\-]{3,}", s.lower())
|
| 389 |
+
score = sum(freq.get(w, 0) for w in ws if w not in RU_STOP)
|
| 390 |
+
scored.append((score, s))
|
| 391 |
+
scored.sort(key=lambda x: x[0], reverse=True)
|
| 392 |
+
|
| 393 |
+
questions = []
|
| 394 |
+
for _, s in scored[: min(len(scored), n * 2)]:
|
| 395 |
+
ws = [w for w in re.findall(r"[А-Яа-яЁёA-Za-z\-]{3,}", s.lower()) if w not in RU_STOP]
|
| 396 |
+
if not ws:
|
| 397 |
+
continue
|
| 398 |
+
# choose "keyword" to blank
|
| 399 |
+
kw = max(ws, key=lambda w: freq.get(w, 0))
|
| 400 |
+
# blank first occurrence (case-insensitive)
|
| 401 |
+
blanked = re.sub(re.escape(kw), "____", s, count=1, flags=re.IGNORECASE)
|
| 402 |
+
q = f"Заполните пропуск: {blanked}"
|
| 403 |
+
questions.append(q)
|
| 404 |
+
if len(questions) >= n:
|
| 405 |
+
break
|
| 406 |
|
| 407 |
+
return questions[:n]
|
| 408 |
|
| 409 |
+
|
| 410 |
+
# =========================
|
| 411 |
+
# Gradio actions
|
| 412 |
+
# =========================
|
| 413 |
+
def on_load_models() -> str:
|
| 414 |
+
try:
|
| 415 |
+
sum_pipe, sum_id, qa_pipe, qa_id, emb_tok, emb_model, emb_id = get_models()
|
| 416 |
+
return (
|
| 417 |
+
"Модели загружены.\n"
|
| 418 |
+
f"- Summarization: {sum_id}\n"
|
| 419 |
+
f"- QA: {qa_id}\n"
|
| 420 |
+
f"- Embeddings: {emb_id}\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
)
|
| 422 |
+
except Exception as e:
|
| 423 |
+
return f"Ошибка загрузки моделей: {e}"
|
| 424 |
|
| 425 |
+
def on_summary(text: str) -> str:
|
| 426 |
+
try:
|
| 427 |
+
text = safe_text(text)
|
| 428 |
+
if not text:
|
| 429 |
+
return "Нет текста."
|
| 430 |
+
s = smart_summary(text)
|
| 431 |
+
title = make_title(text, s)
|
| 432 |
+
return f"### Заголовок\n{title}\n\n### Пересказ\n{s}"
|
| 433 |
+
except Exception as e:
|
| 434 |
+
return f"Ошибка: {e}"
|
| 435 |
+
|
| 436 |
+
def on_search(text: str, query: str, k: int) -> str:
|
| 437 |
+
try:
|
| 438 |
+
text = safe_text(text)
|
| 439 |
+
query = (query or "").strip()
|
| 440 |
+
if not text:
|
| 441 |
+
return "Нет текста."
|
| 442 |
+
if not query:
|
| 443 |
+
return "Введите запрос."
|
| 444 |
+
idx = get_index(text)
|
| 445 |
+
hits = retrieve(idx, query, int(max(1, min(k, 10))))
|
| 446 |
+
if not hits:
|
| 447 |
+
return "Ничего не найдено."
|
| 448 |
+
out = ["### Результаты"]
|
| 449 |
+
for i, (score, chunk) in enumerate(hits, 1):
|
| 450 |
+
out.append(f"**{i}. score={score:.3f}**\n{chunk}\n")
|
| 451 |
+
return "\n".join(out).strip()
|
| 452 |
+
except Exception as e:
|
| 453 |
+
return f"Ошибка: {e}"
|
| 454 |
+
|
| 455 |
+
def on_quiz(text: str, n: int) -> str:
|
| 456 |
+
try:
|
| 457 |
+
text = safe_text(text)
|
| 458 |
+
if not text:
|
| 459 |
+
return "Нет текста."
|
| 460 |
+
idx = get_index(text)
|
| 461 |
+
|
| 462 |
+
questions = generate_quiz_questions(text, int(n))
|
| 463 |
+
if not questions:
|
| 464 |
+
return "Не удалось сгенерировать вопросы."
|
| 465 |
+
|
| 466 |
+
lines = ["### Вопросы и ответы (с доказательством)"]
|
| 467 |
+
for i, q in enumerate(questions, 1):
|
| 468 |
+
# For cloze question, try to answer via QA using retrieved context.
|
| 469 |
+
# We convert cloze to a QA-style question by removing "Заполните пропуск:"
|
| 470 |
+
qa_q = re.sub(r"^Заполните пропуск:\s*", "", q).strip()
|
| 471 |
+
hits = retrieve(idx, qa_q, k=5)
|
| 472 |
+
ctx = "\n\n".join([c for _, c in hits]) if hits else text[:CTX_MAX_CHARS]
|
| 473 |
+
ctx = ctx[:CTX_MAX_CHARS]
|
| 474 |
+
|
| 475 |
+
ans, ev, score = qa_answer(qa_q, ctx)
|
| 476 |
+
if not ans or score < 0.08:
|
| 477 |
+
ans = "В тексте это не указано (или требуется переформулировать вопрос)."
|
| 478 |
+
|
| 479 |
+
lines.append(f"**{i}. {q}**")
|
| 480 |
+
lines.append(f"- Ответ: {ans}")
|
| 481 |
+
lines.append(f"- Фрагмент: {ev}")
|
| 482 |
+
lines.append("")
|
| 483 |
+
return "\n".join(lines).strip()
|
| 484 |
+
except Exception as e:
|
| 485 |
+
return f"Ошибка: {e}"
|
| 486 |
+
|
| 487 |
+
def on_chat(text: str, history: List[Tuple[str, str]], user_q: str):
|
| 488 |
+
try:
|
| 489 |
+
text = safe_text(text)
|
| 490 |
+
user_q = (user_q or "").strip()
|
| 491 |
+
history = history or []
|
| 492 |
|
| 493 |
+
if not text:
|
| 494 |
+
history.append((user_q, "Нет текста. Вставьте текст слева."))
|
| 495 |
+
return history, ""
|
| 496 |
|
| 497 |
+
if not user_q:
|
| 498 |
+
return history, ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 499 |
|
| 500 |
+
idx = get_index(text)
|
| 501 |
+
hits = retrieve(idx, user_q, k=5)
|
| 502 |
+
ctx = "\n\n".join([c for _, c in hits]) if hits else text[:CTX_MAX_CHARS]
|
| 503 |
+
ctx = ctx[:CTX_MAX_CHARS]
|
| 504 |
|
| 505 |
+
ans, ev, score = qa_answer(user_q, ctx)
|
| 506 |
+
if not ans or score < 0.08:
|
| 507 |
+
reply = "Ответ по тексту не найден. Попробуйте переформулировать вопрос или уточнить термин."
|
| 508 |
+
else:
|
| 509 |
+
reply = f"Ответ: {ans}\n\nДоказательство:\n{ev}"
|
| 510 |
+
|
| 511 |
+
history.append((user_q, reply))
|
| 512 |
+
return history, ""
|
| 513 |
+
except Exception as e:
|
| 514 |
+
history = history or []
|
| 515 |
+
history.append((user_q, f"Ошибка: {e}"))
|
| 516 |
+
return history, ""
|
| 517 |
|
|
|
|
| 518 |
|
| 519 |
+
# =========================
|
| 520 |
+
# UI (minimal)
|
| 521 |
+
# =========================
|
| 522 |
+
with gr.Blocks(title="RU Text Assistant (CPU, 3 Transformers)") as demo:
|
| 523 |
with gr.Row():
|
| 524 |
with gr.Column(scale=2):
|
| 525 |
+
text_in = gr.Textbox(label="Текст (русский)", lines=16, placeholder="Вставьте текст для анализа…")
|
| 526 |
+
load_btn = gr.Button("Загрузить модели", variant="secondary")
|
| 527 |
+
model_status = gr.Textbox(label="Статус", lines=5, interactive=False)
|
| 528 |
|
| 529 |
with gr.Column(scale=3):
|
| 530 |
with gr.Tabs():
|
| 531 |
with gr.Tab("Пересказ"):
|
|
|
|
| 532 |
sum_btn = gr.Button("Сделать пересказ", variant="primary")
|
| 533 |
sum_out = gr.Markdown()
|
| 534 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 535 |
with gr.Tab("Поиск"):
|
| 536 |
+
query_in = gr.Textbox(label="Запрос", placeholder="Например: стандартизация, вариабельность, вывод…")
|
| 537 |
+
k_in = gr.Slider(1, 10, value=TOPK_DEFAULT, step=1, label="Top-K")
|
| 538 |
+
search_btn = gr.Button("Найти фрагменты", variant="primary")
|
| 539 |
+
search_out = gr.Markdown()
|
|
|
|
|
|
|
|
|
|
| 540 |
|
| 541 |
+
with gr.Tab("Вопросы"):
|
| 542 |
+
n_in = gr.Slider(1, 12, value=6, step=1, label="Количество вопросов")
|
| 543 |
+
quiz_btn = gr.Button("Сгенерировать и проверить", variant="primary")
|
| 544 |
+
quiz_out = gr.Markdown()
|
| 545 |
|
| 546 |
+
with gr.Tab("Чат по тексту"):
|
| 547 |
+
chat = gr.Chatbot(height=420)
|
| 548 |
+
user_q = gr.Textbox(label="Вопрос", lines=1, placeholder="Задайте вопрос по тексту…")
|
| 549 |
+
send_btn = gr.Button("Отправить", variant="primary")
|
| 550 |
+
|
| 551 |
+
load_btn.click(on_load_models, outputs=[model_status])
|
| 552 |
+
sum_btn.click(on_summary, inputs=[text_in], outputs=[sum_out])
|
| 553 |
+
search_btn.click(on_search, inputs=[text_in, query_in, k_in], outputs=[search_out])
|
| 554 |
+
quiz_btn.click(on_quiz, inputs=[text_in, n_in], outputs=[quiz_out])
|
| 555 |
+
send_btn.click(on_chat, inputs=[text_in, chat, user_q], outputs=[chat, user_q])
|
| 556 |
+
user_q.submit(on_chat, inputs=[text_in, chat, user_q], outputs=[chat, user_q])
|
| 557 |
|
| 558 |
if __name__ == "__main__":
|
| 559 |
demo.queue(max_size=32).launch(server_name="0.0.0.0", server_port=7860, show_error=True)
|