Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,8 @@
|
|
| 1 |
import os
|
| 2 |
-
import sys
|
| 3 |
import re
|
| 4 |
-
import shutil
|
| 5 |
import tempfile
|
| 6 |
-
import
|
| 7 |
-
import
|
| 8 |
-
from io import StringIO, BytesIO
|
| 9 |
-
from typing import List, Tuple
|
| 10 |
|
| 11 |
import gradio as gr
|
| 12 |
import torch
|
|
@@ -15,185 +11,61 @@ from PIL import Image, ImageDraw, ImageFont, ImageOps
|
|
| 15 |
import fitz # PyMuPDF
|
| 16 |
|
| 17 |
from transformers import (
|
| 18 |
-
AutoModel,
|
| 19 |
-
AutoTokenizer,
|
| 20 |
AutoProcessor,
|
| 21 |
VisionEncoderDecoderModel,
|
| 22 |
BlipProcessor,
|
| 23 |
BlipForConditionalGeneration,
|
| 24 |
)
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
except Exception:
|
| 32 |
-
def gpu_decorator(*args, **kwargs):
|
| 33 |
-
def wrap(fn):
|
| 34 |
-
return fn
|
| 35 |
-
return wrap
|
| 36 |
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
#
|
| 39 |
-
#
|
| 40 |
-
#
|
| 41 |
-
|
| 42 |
-
|
| 43 |
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
| 47 |
try:
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
| 50 |
except Exception:
|
| 51 |
-
|
| 52 |
-
return torch.float16
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
DEVICE = get_device()
|
| 56 |
-
CUDA_DTYPE = get_cuda_dtype() if DEVICE == "cuda" else torch.float32
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
# =========================
|
| 60 |
-
# Model names
|
| 61 |
-
# =========================
|
| 62 |
-
DEEPSEEK_OCR_NAME = os.getenv("DEEPSEEK_OCR_MODEL", "deepseek-ai/DeepSeek-OCR")
|
| 63 |
-
# Optional pin to a specific revision/commit to avoid auto-updating remote code.
|
| 64 |
-
DEEPSEEK_OCR_REVISION = os.getenv("DEEPSEEK_OCR_REVISION", None)
|
| 65 |
|
| 66 |
-
|
| 67 |
-
BLIP_NAME = os.getenv("BLIP_MODEL", "Salesforce/blip-image-captioning-base")
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
#
|
| 71 |
-
# Load DeepSeek-OCR safely
|
| 72 |
-
# =========================
|
| 73 |
-
def load_deepseek_ocr():
|
| 74 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 75 |
-
DEEPSEEK_OCR_NAME,
|
| 76 |
-
trust_remote_code=True,
|
| 77 |
-
revision=DEEPSEEK_OCR_REVISION,
|
| 78 |
-
)
|
| 79 |
|
| 80 |
-
base_kwargs = dict(
|
| 81 |
-
trust_remote_code=True,
|
| 82 |
-
use_safetensors=True,
|
| 83 |
-
revision=DEEPSEEK_OCR_REVISION,
|
| 84 |
-
)
|
| 85 |
|
| 86 |
-
|
| 87 |
-
# - Do NOT force flash_attention_2 on CPU.
|
| 88 |
-
# - On CUDA: try flash_attention_2, but gracefully fallback if unavailable.
|
| 89 |
-
if DEVICE == "cuda":
|
| 90 |
-
# Try FlashAttention2 first
|
| 91 |
-
try:
|
| 92 |
-
model = AutoModel.from_pretrained(
|
| 93 |
-
DEEPSEEK_OCR_NAME,
|
| 94 |
-
torch_dtype=CUDA_DTYPE,
|
| 95 |
-
_attn_implementation="flash_attention_2",
|
| 96 |
-
**base_kwargs,
|
| 97 |
-
)
|
| 98 |
-
except Exception as e:
|
| 99 |
-
warnings.warn(
|
| 100 |
-
f"FlashAttention2 unavailable or failed ({e}). Falling back to SDPA/eager."
|
| 101 |
-
)
|
| 102 |
-
# Try SDPA
|
| 103 |
-
try:
|
| 104 |
-
model = AutoModel.from_pretrained(
|
| 105 |
-
DEEPSEEK_OCR_NAME,
|
| 106 |
-
torch_dtype=CUDA_DTYPE,
|
| 107 |
-
_attn_implementation="sdpa",
|
| 108 |
-
**base_kwargs,
|
| 109 |
-
)
|
| 110 |
-
except Exception:
|
| 111 |
-
# Final fallback
|
| 112 |
-
model = AutoModel.from_pretrained(
|
| 113 |
-
DEEPSEEK_OCR_NAME,
|
| 114 |
-
torch_dtype=CUDA_DTYPE,
|
| 115 |
-
_attn_implementation="eager",
|
| 116 |
-
**base_kwargs,
|
| 117 |
-
)
|
| 118 |
-
|
| 119 |
-
model = model.eval().to(DEVICE)
|
| 120 |
-
|
| 121 |
-
else:
|
| 122 |
-
# CPU path: no flash attention, use float32 for stability
|
| 123 |
-
model = AutoModel.from_pretrained(
|
| 124 |
-
DEEPSEEK_OCR_NAME,
|
| 125 |
-
torch_dtype=torch.float32,
|
| 126 |
-
_attn_implementation="eager",
|
| 127 |
-
**base_kwargs,
|
| 128 |
-
)
|
| 129 |
-
model = model.eval().to(DEVICE)
|
| 130 |
-
|
| 131 |
-
return tokenizer, model
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
tokenizer, deepseek_model = load_deepseek_ocr()
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
# =========================
|
| 138 |
-
# Load TrOCR and BLIP
|
| 139 |
-
# =========================
|
| 140 |
-
def load_trocr():
|
| 141 |
-
processor = AutoProcessor.from_pretrained(TROCR_NAME)
|
| 142 |
-
model = VisionEncoderDecoderModel.from_pretrained(TROCR_NAME).eval()
|
| 143 |
-
if DEVICE == "cuda":
|
| 144 |
-
model = model.to(DEVICE).to(dtype=CUDA_DTYPE)
|
| 145 |
-
else:
|
| 146 |
-
model = model.to(DEVICE)
|
| 147 |
-
return processor, model
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
def load_blip():
|
| 151 |
-
processor = BlipProcessor.from_pretrained(BLIP_NAME)
|
| 152 |
-
model = BlipForConditionalGeneration.from_pretrained(BLIP_NAME).eval()
|
| 153 |
-
if DEVICE == "cuda":
|
| 154 |
-
model = model.to(DEVICE).to(dtype=CUDA_DTYPE)
|
| 155 |
-
else:
|
| 156 |
-
model = model.to(DEVICE)
|
| 157 |
-
return processor, model
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
trocr_processor, trocr_model = load_trocr()
|
| 161 |
-
blip_processor, blip_model = load_blip()
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
# =========================
|
| 165 |
-
# App configs
|
| 166 |
-
# =========================
|
| 167 |
-
MODEL_CONFIGS = {
|
| 168 |
-
"Gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True},
|
| 169 |
-
"Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
|
| 170 |
-
"Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
|
| 171 |
-
"Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
|
| 172 |
-
"Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
|
| 173 |
-
}
|
| 174 |
-
|
| 175 |
-
TASK_PROMPTS = {
|
| 176 |
-
"📋 Markdown": {
|
| 177 |
-
"prompt": "<image>\n<|grounding|>Convert the document to markdown.",
|
| 178 |
-
"has_grounding": True,
|
| 179 |
-
},
|
| 180 |
-
# NOTE: Free OCR теперь делаем через TrOCR (быстро, text-only)
|
| 181 |
-
"📝 Free OCR": {"prompt": "", "has_grounding": False},
|
| 182 |
-
# Locate оставляем на DeepSeek (grounding)
|
| 183 |
-
"📍 Locate": {
|
| 184 |
-
"prompt": "<image>\nLocate <|ref|>text<|/ref|> in the image.",
|
| 185 |
-
"has_grounding": True,
|
| 186 |
-
},
|
| 187 |
-
# Describe теперь делаем через BLIP
|
| 188 |
-
"🔍 Describe": {"prompt": "", "has_grounding": False},
|
| 189 |
-
"✏️ Custom": {"prompt": "", "has_grounding": False},
|
| 190 |
-
}
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
# =========================
|
| 194 |
# Helpers
|
| 195 |
-
#
|
| 196 |
-
def
|
| 197 |
candidates = [
|
| 198 |
"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
|
| 199 |
"/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf",
|
|
@@ -203,373 +75,376 @@ def safe_load_font(size: int = 30) -> ImageFont.FreeTypeFont:
|
|
| 203 |
if os.path.exists(p):
|
| 204 |
return ImageFont.truetype(p, size)
|
| 205 |
except Exception:
|
| 206 |
-
|
| 207 |
return ImageFont.load_default()
|
| 208 |
|
| 209 |
|
| 210 |
-
def
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
|
| 215 |
-
def draw_bounding_boxes(image: Image.Image, refs, extract_images: bool = False):
|
| 216 |
-
img_w, img_h = image.size
|
| 217 |
-
img_draw = image.copy()
|
| 218 |
-
draw = ImageDraw.Draw(img_draw)
|
| 219 |
-
overlay = Image.new("RGBA", img_draw.size, (0, 0, 0, 0))
|
| 220 |
-
draw2 = ImageDraw.Draw(overlay)
|
| 221 |
-
font = safe_load_font(30)
|
| 222 |
-
crops = []
|
| 223 |
-
|
| 224 |
-
color_map = {}
|
| 225 |
-
np.random.seed(42)
|
| 226 |
-
|
| 227 |
-
for ref in refs:
|
| 228 |
-
label = ref[1]
|
| 229 |
-
if label not in color_map:
|
| 230 |
-
color_map[label] = (
|
| 231 |
-
int(np.random.randint(50, 255)),
|
| 232 |
-
int(np.random.randint(50, 255)),
|
| 233 |
-
int(np.random.randint(50, 255)),
|
| 234 |
-
)
|
| 235 |
-
|
| 236 |
-
color = color_map[label]
|
| 237 |
-
try:
|
| 238 |
-
coords = eval(ref[2])
|
| 239 |
-
except Exception:
|
| 240 |
-
continue
|
| 241 |
|
| 242 |
-
|
|
|
|
| 243 |
|
| 244 |
-
for box in coords:
|
| 245 |
-
x1, y1, x2, y2 = (
|
| 246 |
-
int(box[0] / 999 * img_w),
|
| 247 |
-
int(box[1] / 999 * img_h),
|
| 248 |
-
int(box[2] / 999 * img_w),
|
| 249 |
-
int(box[3] / 999 * img_h),
|
| 250 |
-
)
|
| 251 |
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
|
|
|
|
|
|
| 258 |
|
| 259 |
-
text_bbox = draw.textbbox((0, 0), label, font=font)
|
| 260 |
-
tw, th = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
|
| 261 |
-
ty = max(0, y1 - 20)
|
| 262 |
-
draw.rectangle([x1, ty, x1 + tw + 4, ty + th + 4], fill=color)
|
| 263 |
-
draw.text((x1 + 2, ty + 2), label, font=font, fill=(255, 255, 255))
|
| 264 |
|
| 265 |
-
|
| 266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
|
| 268 |
|
| 269 |
-
def
|
| 270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
return ""
|
| 272 |
-
pattern = r"(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)"
|
| 273 |
-
matches = re.findall(pattern, text, re.DOTALL)
|
| 274 |
-
img_num = 0
|
| 275 |
-
|
| 276 |
-
for match in matches:
|
| 277 |
-
if "<|ref|>image<|/ref|>" in match[0]:
|
| 278 |
-
if include_images:
|
| 279 |
-
text = text.replace(match[0], f"\n\n**[Figure {img_num + 1}]**\n\n", 1)
|
| 280 |
-
img_num += 1
|
| 281 |
-
else:
|
| 282 |
-
text = text.replace(match[0], "", 1)
|
| 283 |
-
else:
|
| 284 |
-
text = re.sub(rf"(?m)^[^\n]*{re.escape(match[0])}[^\n]*\n?", "", text)
|
| 285 |
|
| 286 |
-
|
|
|
|
|
|
|
| 287 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
-
|
| 290 |
-
if not crops:
|
| 291 |
-
return markdown
|
| 292 |
-
for i, img in enumerate(crops):
|
| 293 |
-
buf = BytesIO()
|
| 294 |
-
img.save(buf, format="PNG")
|
| 295 |
-
b64 = base64.b64encode(buf.getvalue()).decode()
|
| 296 |
-
markdown = markdown.replace(
|
| 297 |
-
f"**[Figure {i + 1}]**",
|
| 298 |
-
f"\n\n\n\n",
|
| 299 |
-
1,
|
| 300 |
-
)
|
| 301 |
-
return markdown
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
def trocr_ocr(image: Image.Image) -> str:
|
| 305 |
-
if image.mode != "RGB":
|
| 306 |
-
image = image.convert("RGB")
|
| 307 |
-
pixel_values = trocr_processor(images=image, return_tensors="pt").pixel_values.to(DEVICE)
|
| 308 |
-
with torch.no_grad():
|
| 309 |
-
# Keep generation modest (faster)
|
| 310 |
-
generated_ids = trocr_model.generate(pixel_values, max_new_tokens=256)
|
| 311 |
-
text = trocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 312 |
-
return text.strip()
|
| 313 |
|
|
|
|
|
|
|
| 314 |
|
| 315 |
-
def blip_describe(image: Image.Image) -> str:
|
| 316 |
-
if image.mode != "RGB":
|
| 317 |
-
image = image.convert("RGB")
|
| 318 |
-
inputs = blip_processor(images=image, return_tensors="pt").to(DEVICE)
|
| 319 |
-
with torch.no_grad():
|
| 320 |
-
out = blip_model.generate(**inputs, max_new_tokens=80)
|
| 321 |
-
caption = blip_processor.decode(out[0], skip_special_tokens=True)
|
| 322 |
-
return caption.strip()
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
# =========================
|
| 326 |
-
# Core processing
|
| 327 |
-
# =========================
|
| 328 |
-
@gpu_decorator(duration=60)
|
| 329 |
-
def process_image(image: Image.Image, mode: str, task: str, custom_prompt: str):
|
| 330 |
-
if image is None:
|
| 331 |
-
return "Error: upload image", "", "", None, []
|
| 332 |
-
|
| 333 |
-
if task in ["✏️ Custom", "📍 Locate"] and not custom_prompt.strip():
|
| 334 |
-
return "Error: enter prompt", "", "", None, []
|
| 335 |
-
|
| 336 |
-
if image.mode in ("RGBA", "LA", "P"):
|
| 337 |
-
image = image.convert("RGB")
|
| 338 |
-
image = ImageOps.exif_transpose(image)
|
| 339 |
-
|
| 340 |
-
# --- Route tasks to the best backend ---
|
| 341 |
-
if task == "📝 Free OCR":
|
| 342 |
-
text = trocr_ocr(image)
|
| 343 |
-
if not text:
|
| 344 |
-
return "No text", "", "", None, []
|
| 345 |
-
md = "```text\n" + text + "\n```"
|
| 346 |
-
return text, md, text, None, []
|
| 347 |
-
|
| 348 |
-
if task == "🔍 Describe":
|
| 349 |
-
desc = blip_describe(image)
|
| 350 |
-
if not desc:
|
| 351 |
-
return "No description", "", "", None, []
|
| 352 |
-
md = f"**Description:** {desc}"
|
| 353 |
-
return desc, md, desc, None, []
|
| 354 |
-
|
| 355 |
-
# --- DeepSeek-OCR for Markdown / Locate / Custom ---
|
| 356 |
-
config = MODEL_CONFIGS[mode]
|
| 357 |
-
|
| 358 |
-
if task == "✏️ Custom":
|
| 359 |
-
prompt = f"<image>\n{custom_prompt.strip()}"
|
| 360 |
-
has_grounding = "<|grounding|>" in custom_prompt
|
| 361 |
-
elif task == "📍 Locate":
|
| 362 |
-
prompt = f"<image>\nLocate <|ref|>{custom_prompt.strip()}<|/ref|> in the image."
|
| 363 |
-
has_grounding = True
|
| 364 |
-
else:
|
| 365 |
-
prompt = TASK_PROMPTS[task]["prompt"]
|
| 366 |
-
has_grounding = TASK_PROMPTS[task]["has_grounding"]
|
| 367 |
-
|
| 368 |
-
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
|
| 369 |
-
image.save(tmp.name, "JPEG", quality=95)
|
| 370 |
-
tmp.close()
|
| 371 |
-
out_dir = tempfile.mkdtemp()
|
| 372 |
-
|
| 373 |
-
stdout = sys.stdout
|
| 374 |
-
sys.stdout = StringIO()
|
| 375 |
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
try:
|
| 409 |
-
|
|
|
|
|
|
|
| 410 |
except Exception:
|
| 411 |
pass
|
| 412 |
-
shutil.rmtree(out_dir, ignore_errors=True)
|
| 413 |
-
|
| 414 |
-
if not result:
|
| 415 |
-
return "No text", "", "", None, []
|
| 416 |
|
| 417 |
-
|
| 418 |
-
|
| 419 |
|
| 420 |
-
|
| 421 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 422 |
|
| 423 |
-
if
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
img_out, crops = draw_bounding_boxes(image, refs, extract_images=True)
|
| 427 |
|
| 428 |
-
markdown = embed_images(markdown, crops)
|
| 429 |
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
def process_pdf(path: str, mode: str, task: str, custom_prompt: str, page_num: int):
|
| 435 |
-
doc = fitz.open(path)
|
| 436 |
-
total_pages = len(doc)
|
| 437 |
-
if page_num < 1 or page_num > total_pages:
|
| 438 |
-
doc.close()
|
| 439 |
-
return f"Invalid page number. PDF has {total_pages} pages.", "", "", None, []
|
| 440 |
-
page = doc.load_page(page_num - 1)
|
| 441 |
-
pix = page.get_pixmap(matrix=fitz.Matrix(300 / 72, 300 / 72), alpha=False)
|
| 442 |
-
img = Image.open(BytesIO(pix.tobytes("png")))
|
| 443 |
-
doc.close()
|
| 444 |
-
return process_image(img, mode, task, custom_prompt)
|
| 445 |
|
| 446 |
|
| 447 |
-
|
|
|
|
|
|
|
|
|
|
| 448 |
if not path:
|
| 449 |
-
return "
|
| 450 |
-
if path.lower().endswith(".pdf"):
|
| 451 |
-
return process_pdf(path, mode, task, custom_prompt, page_num)
|
| 452 |
-
return process_image(Image.open(path), mode, task, custom_prompt)
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
def toggle_prompt(task: str):
|
| 456 |
-
if task == "✏️ Custom":
|
| 457 |
-
return gr.update(visible=True, label="Custom Prompt", placeholder="Add <|grounding|> for boxes")
|
| 458 |
-
if task == "📍 Locate":
|
| 459 |
-
return gr.update(visible=True, label="Text to Locate", placeholder="Enter text")
|
| 460 |
-
return gr.update(visible=False)
|
| 461 |
|
|
|
|
| 462 |
|
| 463 |
-
|
| 464 |
-
if
|
| 465 |
-
|
| 466 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 467 |
|
|
|
|
|
|
|
|
|
|
| 468 |
|
| 469 |
-
def get_pdf_page_count(file_path: str) -> int:
|
| 470 |
-
if not file_path or not file_path.lower().endswith(".pdf"):
|
| 471 |
-
return 1
|
| 472 |
doc = fitz.open(file_path)
|
| 473 |
-
|
| 474 |
doc.close()
|
| 475 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 476 |
|
| 477 |
|
| 478 |
-
def
|
| 479 |
if not file_path:
|
| 480 |
return None
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
img = Image.open(BytesIO(pix.tobytes("png")))
|
| 487 |
-
doc.close()
|
| 488 |
-
return img
|
| 489 |
-
return Image.open(file_path)
|
| 490 |
|
| 491 |
|
| 492 |
-
def
|
| 493 |
-
|
| 494 |
-
return gr.update(visible=False)
|
| 495 |
-
if file_path.lower().endswith(".pdf"):
|
| 496 |
-
page_count = get_pdf_page_count(file_path)
|
| 497 |
-
return gr.update(
|
| 498 |
-
visible=True,
|
| 499 |
-
maximum=page_count,
|
| 500 |
-
value=1,
|
| 501 |
-
minimum=1,
|
| 502 |
-
label=f"Select Page (1-{page_count})",
|
| 503 |
-
)
|
| 504 |
-
return gr.update(visible=False)
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
# =========================
|
| 508 |
-
# UI
|
| 509 |
-
# =========================
|
| 510 |
-
with gr.Blocks(theme=gr.themes.Soft(), title="DeepSeek-OCR + TrOCR + BLIP") as demo:
|
| 511 |
-
gr.Markdown(
|
| 512 |
-
f"""
|
| 513 |
-
# DeepSeek-OCR Demo (with TrOCR + BLIP)
|
| 514 |
-
|
| 515 |
-
This app supports:
|
| 516 |
-
- **Markdown**: DeepSeek-OCR (structured markdown + optional grounding boxes)
|
| 517 |
-
- **Free OCR**: TrOCR (fast text-only OCR)
|
| 518 |
-
- **Locate**: DeepSeek-OCR (grounding boxes)
|
| 519 |
-
- **Describe**: BLIP (image captioning)
|
| 520 |
-
|
| 521 |
-
Runtime device: **{DEVICE}**
|
| 522 |
-
"""
|
| 523 |
-
)
|
| 524 |
|
| 525 |
-
with gr.Row():
|
| 526 |
-
with gr.Column(scale=1):
|
| 527 |
-
file_in = gr.File(label="Upload Image or PDF", file_types=["image", ".pdf"], type="filepath")
|
| 528 |
-
input_img = gr.Image(label="Input Image", type="pil", height=300)
|
| 529 |
-
page_selector = gr.Number(label="Select Page", value=1, minimum=1, step=1, visible=False)
|
| 530 |
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 534 |
|
| 535 |
-
|
| 536 |
|
| 537 |
with gr.Column(scale=2):
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
# Prompt visibility and tab switch
|
| 557 |
-
task.change(toggle_prompt, [task], [prompt])
|
| 558 |
-
task.change(select_boxes, [task], [tabs])
|
| 559 |
-
|
| 560 |
-
def run(image, file_path, mode, task, custom_prompt, page_num):
|
| 561 |
-
if file_path:
|
| 562 |
-
return process_file(file_path, mode, task, custom_prompt, int(page_num))
|
| 563 |
-
if image is not None:
|
| 564 |
-
return process_image(image, mode, task, custom_prompt)
|
| 565 |
-
return "Error: upload file or image", "", "", None, []
|
| 566 |
-
|
| 567 |
-
submit_event = btn.click(
|
| 568 |
-
run,
|
| 569 |
-
[input_img, file_in, mode, task, prompt, page_selector],
|
| 570 |
-
[text_out, md_out, raw_out, img_out, gallery],
|
| 571 |
)
|
| 572 |
-
submit_event.then(select_boxes, [task], [tabs])
|
| 573 |
|
| 574 |
if __name__ == "__main__":
|
| 575 |
-
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import re
|
|
|
|
| 3 |
import tempfile
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
from typing import List, Tuple, Optional
|
|
|
|
|
|
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
import torch
|
|
|
|
| 11 |
import fitz # PyMuPDF
|
| 12 |
|
| 13 |
from transformers import (
|
|
|
|
|
|
|
| 14 |
AutoProcessor,
|
| 15 |
VisionEncoderDecoderModel,
|
| 16 |
BlipProcessor,
|
| 17 |
BlipForConditionalGeneration,
|
| 18 |
)
|
| 19 |
|
| 20 |
+
# -------------------------
|
| 21 |
+
# CPU-only setup
|
| 22 |
+
# -------------------------
|
| 23 |
+
DEVICE = torch.device("cpu")
|
| 24 |
+
torch.set_num_threads(int(os.getenv("TORCH_NUM_THREADS", "4")))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
TROCR_NAME = os.getenv("TROCR_MODEL", "microsoft/trocr-base-printed")
|
| 27 |
+
BLIP_NAME = os.getenv("BLIP_MODEL", "Salesforce/blip-image-captioning-base")
|
| 28 |
|
| 29 |
+
# -------------------------
|
| 30 |
+
# Models (CPU)
|
| 31 |
+
# -------------------------
|
| 32 |
+
trocr_processor = AutoProcessor.from_pretrained(TROCR_NAME)
|
| 33 |
+
trocr_model = VisionEncoderDecoderModel.from_pretrained(TROCR_NAME).eval().to(DEVICE)
|
| 34 |
|
| 35 |
+
blip_processor = BlipProcessor.from_pretrained(BLIP_NAME)
|
| 36 |
+
blip_model = BlipForConditionalGeneration.from_pretrained(BLIP_NAME).eval().to(DEVICE)
|
| 37 |
|
| 38 |
+
# -------------------------
|
| 39 |
+
# Optional: pytesseract (for boxes on images)
|
| 40 |
+
# -------------------------
|
| 41 |
+
def _try_import_tesseract():
|
| 42 |
try:
|
| 43 |
+
import pytesseract # type: ignore
|
| 44 |
+
# Quick sanity check: version call triggers binary lookup
|
| 45 |
+
_ = pytesseract.get_tesseract_version()
|
| 46 |
+
return pytesseract
|
| 47 |
except Exception:
|
| 48 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
PYTESS = _try_import_tesseract()
|
|
|
|
| 51 |
|
| 52 |
+
# -------------------------
|
| 53 |
+
# UI / tasks
|
| 54 |
+
# -------------------------
|
| 55 |
+
TASKS = [
|
| 56 |
+
"OCR",
|
| 57 |
+
"Markdown",
|
| 58 |
+
"Locate",
|
| 59 |
+
"Describe",
|
| 60 |
+
]
|
| 61 |
|
| 62 |
+
DEFAULT_DPI = 200 # PDF render DPI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
# -------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
# Helpers
|
| 67 |
+
# -------------------------
|
| 68 |
+
def _safe_font(size: int = 28):
|
| 69 |
candidates = [
|
| 70 |
"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
|
| 71 |
"/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf",
|
|
|
|
| 75 |
if os.path.exists(p):
|
| 76 |
return ImageFont.truetype(p, size)
|
| 77 |
except Exception:
|
| 78 |
+
pass
|
| 79 |
return ImageFont.load_default()
|
| 80 |
|
| 81 |
|
| 82 |
+
def _to_rgb(img: Image.Image) -> Image.Image:
|
| 83 |
+
if img.mode in ("RGBA", "LA", "P"):
|
| 84 |
+
img = img.convert("RGB")
|
| 85 |
+
return ImageOps.exif_transpose(img)
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
def _tokenize(s: str) -> List[str]:
|
| 89 |
+
return re.findall(r"[A-Za-zА-Яа-я0-9]+", s.lower())
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
+
def trocr_ocr(img: Image.Image) -> str:
|
| 93 |
+
img = _to_rgb(img)
|
| 94 |
+
inputs = trocr_processor(images=img, return_tensors="pt")
|
| 95 |
+
pixel_values = inputs.pixel_values.to(DEVICE)
|
| 96 |
+
with torch.no_grad():
|
| 97 |
+
ids = trocr_model.generate(pixel_values, max_new_tokens=256)
|
| 98 |
+
text = trocr_processor.batch_decode(ids, skip_special_tokens=True)[0]
|
| 99 |
+
return text.strip()
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
+
def blip_describe(img: Image.Image) -> str:
|
| 103 |
+
img = _to_rgb(img)
|
| 104 |
+
inputs = blip_processor(images=img, return_tensors="pt").to(DEVICE)
|
| 105 |
+
with torch.no_grad():
|
| 106 |
+
out = blip_model.generate(**inputs, max_new_tokens=80)
|
| 107 |
+
return blip_processor.decode(out[0], skip_special_tokens=True).strip()
|
| 108 |
|
| 109 |
|
| 110 |
+
def render_pdf_page(path: str, page_num: int, dpi: int = DEFAULT_DPI) -> Tuple[fitz.Document, fitz.Page, Image.Image, float]:
|
| 111 |
+
doc = fitz.open(path)
|
| 112 |
+
page_idx = max(0, min(page_num - 1, len(doc) - 1))
|
| 113 |
+
page = doc.load_page(page_idx)
|
| 114 |
+
zoom = dpi / 72.0
|
| 115 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(zoom, zoom), alpha=False)
|
| 116 |
+
img = Image.open(BytesIO(pix.tobytes("png")))
|
| 117 |
+
return doc, page, img, zoom
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def pdf_has_text(page: fitz.Page) -> bool:
|
| 121 |
+
# words is empty for scanned pages
|
| 122 |
+
words = page.get_text("words")
|
| 123 |
+
return bool(words)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def pdf_extract_text(page: fitz.Page) -> str:
|
| 127 |
+
txt = page.get_text("text") or ""
|
| 128 |
+
return txt.strip()
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def pdf_to_markdown_simple(page: fitz.Page) -> str:
|
| 132 |
+
"""
|
| 133 |
+
Lightweight markdown for selectable-text PDFs.
|
| 134 |
+
- Uses span sizes to guess headers.
|
| 135 |
+
- No heavy layout logic (keeps it stable and fast on CPU).
|
| 136 |
+
"""
|
| 137 |
+
data = page.get_text("dict")
|
| 138 |
+
spans = []
|
| 139 |
+
for b in data.get("blocks", []):
|
| 140 |
+
for ln in b.get("lines", []):
|
| 141 |
+
for sp in ln.get("spans", []):
|
| 142 |
+
t = (sp.get("text") or "").strip()
|
| 143 |
+
if t:
|
| 144 |
+
spans.append(float(sp.get("size", 0.0)))
|
| 145 |
+
if not spans:
|
| 146 |
return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
+
med = float(np.median(spans))
|
| 149 |
+
h1_thr = med * 1.60
|
| 150 |
+
h2_thr = med * 1.35
|
| 151 |
|
| 152 |
+
lines_out: List[str] = []
|
| 153 |
+
for b in data.get("blocks", []):
|
| 154 |
+
if b.get("type") != 0:
|
| 155 |
+
continue
|
| 156 |
+
for ln in b.get("lines", []):
|
| 157 |
+
parts = []
|
| 158 |
+
sizes = []
|
| 159 |
+
for sp in ln.get("spans", []):
|
| 160 |
+
t = (sp.get("text") or "")
|
| 161 |
+
if t.strip():
|
| 162 |
+
parts.append(t.strip())
|
| 163 |
+
sizes.append(float(sp.get("size", 0.0)))
|
| 164 |
+
if not parts:
|
| 165 |
+
continue
|
| 166 |
+
line = " ".join(parts).strip()
|
| 167 |
+
sz = max(sizes) if sizes else med
|
| 168 |
+
|
| 169 |
+
if sz >= h1_thr:
|
| 170 |
+
lines_out.append("# " + line)
|
| 171 |
+
elif sz >= h2_thr:
|
| 172 |
+
lines_out.append("## " + line)
|
| 173 |
+
else:
|
| 174 |
+
lines_out.append(line)
|
| 175 |
|
| 176 |
+
lines_out.append("") # paragraph break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
+
md = "\n".join(lines_out).strip()
|
| 179 |
+
return md
|
| 180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
+
def draw_rects(img: Image.Image, rects_px: List[Tuple[int, int, int, int]]) -> Image.Image:
|
| 183 |
+
out = img.copy()
|
| 184 |
+
draw = ImageDraw.Draw(out)
|
| 185 |
+
overlay = Image.new("RGBA", out.size, (0, 0, 0, 0))
|
| 186 |
+
draw2 = ImageDraw.Draw(overlay)
|
| 187 |
+
for (x0, y0, x1, y1) in rects_px:
|
| 188 |
+
draw.rectangle([x0, y0, x1, y1], outline=(0, 160, 255), width=3)
|
| 189 |
+
draw2.rectangle([x0, y0, x1, y1], fill=(0, 160, 255, 60))
|
| 190 |
+
out.paste(overlay, (0, 0), overlay)
|
| 191 |
+
return out
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def locate_in_pdf_words(page: fitz.Page, query: str) -> List[Tuple[float, float, float, float]]:
|
| 195 |
+
"""
|
| 196 |
+
Returns list of rectangles in PDF coordinate space (points).
|
| 197 |
+
Uses exact word sequence match (token-based).
|
| 198 |
+
"""
|
| 199 |
+
q = _tokenize(query)
|
| 200 |
+
if not q:
|
| 201 |
+
return []
|
| 202 |
+
|
| 203 |
+
words = page.get_text("words") # x0,y0,x1,y1,"word",block,line,wordno
|
| 204 |
+
if not words:
|
| 205 |
+
return []
|
| 206 |
+
|
| 207 |
+
w_tokens = [_tokenize(w[4])[0] if _tokenize(w[4]) else "" for w in words]
|
| 208 |
+
rects: List[Tuple[float, float, float, float]] = []
|
| 209 |
+
|
| 210 |
+
n = len(w_tokens)
|
| 211 |
+
m = len(q)
|
| 212 |
+
for i in range(0, n - m + 1):
|
| 213 |
+
if w_tokens[i:i + m] == q:
|
| 214 |
+
xs0 = [float(words[j][0]) for j in range(i, i + m)]
|
| 215 |
+
ys0 = [float(words[j][1]) for j in range(i, i + m)]
|
| 216 |
+
xs1 = [float(words[j][2]) for j in range(i, i + m)]
|
| 217 |
+
ys1 = [float(words[j][3]) for j in range(i, i + m)]
|
| 218 |
+
rects.append((min(xs0), min(ys0), max(xs1), max(ys1)))
|
| 219 |
+
|
| 220 |
+
return rects
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def locate_in_image_tesseract(img: Image.Image, query: str) -> Tuple[List[Tuple[int, int, int, int]], str]:
|
| 224 |
+
"""
|
| 225 |
+
Returns pixel-space rectangles for located phrase, plus a short status message.
|
| 226 |
+
If pytesseract is not available, returns empty list and message.
|
| 227 |
+
"""
|
| 228 |
+
if PYTESS is None:
|
| 229 |
+
return [], "Tesseract not available: no boxes for images."
|
| 230 |
+
|
| 231 |
+
q = _tokenize(query)
|
| 232 |
+
if not q:
|
| 233 |
+
return [], "Empty query."
|
| 234 |
+
|
| 235 |
+
img = _to_rgb(img)
|
| 236 |
+
# Use data dict so it works consistently
|
| 237 |
+
data = PYTESS.image_to_data(img, output_type=PYTESS.Output.DICT)
|
| 238 |
+
|
| 239 |
+
texts = data.get("text", [])
|
| 240 |
+
left = data.get("left", [])
|
| 241 |
+
top = data.get("top", [])
|
| 242 |
+
width = data.get("width", [])
|
| 243 |
+
height = data.get("height", [])
|
| 244 |
+
conf = data.get("conf", [])
|
| 245 |
+
|
| 246 |
+
tokens = []
|
| 247 |
+
boxes = []
|
| 248 |
+
for i, t in enumerate(texts):
|
| 249 |
+
t = (t or "").strip()
|
| 250 |
+
if not t:
|
| 251 |
+
continue
|
| 252 |
+
tok = _tokenize(t)
|
| 253 |
+
if not tok:
|
| 254 |
+
continue
|
| 255 |
+
# Keep only "reasonable" confidence if numeric
|
| 256 |
try:
|
| 257 |
+
c = float(conf[i])
|
| 258 |
+
if c < 0:
|
| 259 |
+
continue
|
| 260 |
except Exception:
|
| 261 |
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
|
| 263 |
+
tokens.append(tok[0])
|
| 264 |
+
boxes.append((int(left[i]), int(top[i]), int(left[i] + width[i]), int(top[i] + height[i])))
|
| 265 |
|
| 266 |
+
rects: List[Tuple[int, int, int, int]] = []
|
| 267 |
+
n = len(tokens)
|
| 268 |
+
m = len(q)
|
| 269 |
+
for i in range(0, n - m + 1):
|
| 270 |
+
if tokens[i:i + m] == q:
|
| 271 |
+
xs0 = [boxes[j][0] for j in range(i, i + m)]
|
| 272 |
+
ys0 = [boxes[j][1] for j in range(i, i + m)]
|
| 273 |
+
xs1 = [boxes[j][2] for j in range(i, i + m)]
|
| 274 |
+
ys1 = [boxes[j][3] for j in range(i, i + m)]
|
| 275 |
+
rects.append((min(xs0), min(ys0), max(xs1), max(ys1)))
|
| 276 |
|
| 277 |
+
if not rects:
|
| 278 |
+
return [], "Not found."
|
| 279 |
+
return rects, "Found."
|
|
|
|
| 280 |
|
|
|
|
| 281 |
|
| 282 |
+
def as_markdown_block(text: str) -> str:
|
| 283 |
+
if not text.strip():
|
| 284 |
+
return ""
|
| 285 |
+
return "```text\n" + text.strip() + "\n```"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
|
| 287 |
|
| 288 |
+
# -------------------------
|
| 289 |
+
# Main run
|
| 290 |
+
# -------------------------
|
| 291 |
+
def process(path: str, task: str, page_num: int, query: str):
|
| 292 |
if not path:
|
| 293 |
+
return "Upload a file.", "", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
|
| 295 |
+
ext = os.path.splitext(path)[1].lower()
|
| 296 |
|
| 297 |
+
# ---------- PDF ----------
|
| 298 |
+
if ext == ".pdf":
|
| 299 |
+
doc, page, page_img, zoom = render_pdf_page(path, page_num, dpi=DEFAULT_DPI)
|
| 300 |
+
try:
|
| 301 |
+
if task == "Describe":
|
| 302 |
+
caption = blip_describe(page_img)
|
| 303 |
+
return caption, as_markdown_block(caption), None
|
| 304 |
+
|
| 305 |
+
if task == "OCR":
|
| 306 |
+
if pdf_has_text(page):
|
| 307 |
+
txt = pdf_extract_text(page)
|
| 308 |
+
else:
|
| 309 |
+
txt = trocr_ocr(page_img)
|
| 310 |
+
return txt, as_markdown_block(txt), None
|
| 311 |
+
|
| 312 |
+
if task == "Markdown":
|
| 313 |
+
if pdf_has_text(page):
|
| 314 |
+
md = pdf_to_markdown_simple(page)
|
| 315 |
+
if not md:
|
| 316 |
+
txt = pdf_extract_text(page)
|
| 317 |
+
md = as_markdown_block(txt)
|
| 318 |
+
else:
|
| 319 |
+
txt = trocr_ocr(page_img)
|
| 320 |
+
md = as_markdown_block(txt)
|
| 321 |
+
return md, md, None
|
| 322 |
+
|
| 323 |
+
if task == "Locate":
|
| 324 |
+
if not query.strip():
|
| 325 |
+
return "Enter text to locate.", "", page_img
|
| 326 |
+
|
| 327 |
+
# 1) Prefer precise PDF word boxes (selectable text)
|
| 328 |
+
rects_pdf = locate_in_pdf_words(page, query)
|
| 329 |
+
if rects_pdf:
|
| 330 |
+
# Convert PDF points -> pixels using same render zoom
|
| 331 |
+
rects_px = []
|
| 332 |
+
for (x0, y0, x1, y1) in rects_pdf:
|
| 333 |
+
rects_px.append((int(x0 * zoom), int(y0 * zoom), int(x1 * zoom), int(y1 * zoom)))
|
| 334 |
+
boxed = draw_rects(page_img, rects_px)
|
| 335 |
+
return "Found.", "", boxed
|
| 336 |
+
|
| 337 |
+
# 2) Fallback: if scanned page, try tesseract boxes on rendered image
|
| 338 |
+
rects_px, msg = locate_in_image_tesseract(page_img, query)
|
| 339 |
+
boxed = draw_rects(page_img, rects_px) if rects_px else page_img
|
| 340 |
+
return msg, "", boxed
|
| 341 |
+
|
| 342 |
+
return "Unknown task.", "", None
|
| 343 |
+
finally:
|
| 344 |
+
doc.close()
|
| 345 |
+
|
| 346 |
+
# ---------- Image ----------
|
| 347 |
+
img = _to_rgb(Image.open(path))
|
| 348 |
+
|
| 349 |
+
if task == "Describe":
|
| 350 |
+
caption = blip_describe(img)
|
| 351 |
+
return caption, as_markdown_block(caption), None
|
| 352 |
+
|
| 353 |
+
if task == "OCR":
|
| 354 |
+
txt = trocr_ocr(img)
|
| 355 |
+
return txt, as_markdown_block(txt), None
|
| 356 |
+
|
| 357 |
+
if task == "Markdown":
|
| 358 |
+
txt = trocr_ocr(img)
|
| 359 |
+
md = as_markdown_block(txt)
|
| 360 |
+
return md, md, None
|
| 361 |
+
|
| 362 |
+
if task == "Locate":
|
| 363 |
+
if not query.strip():
|
| 364 |
+
return "Enter text to locate.", "", img
|
| 365 |
+
|
| 366 |
+
rects_px, msg = locate_in_image_tesseract(img, query)
|
| 367 |
+
boxed = draw_rects(img, rects_px) if rects_px else img
|
| 368 |
+
return msg, "", boxed
|
| 369 |
+
|
| 370 |
+
return "Unknown task.", "", None
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
# -------------------------
|
| 374 |
+
# UI helpers
|
| 375 |
+
# -------------------------
|
| 376 |
+
def update_page_selector(file_path: str):
|
| 377 |
+
if not file_path:
|
| 378 |
+
return gr.update(visible=False), gr.update(value=None)
|
| 379 |
|
| 380 |
+
ext = os.path.splitext(file_path)[1].lower()
|
| 381 |
+
if ext != ".pdf":
|
| 382 |
+
return gr.update(visible=False), gr.update(value=_to_rgb(Image.open(file_path)))
|
| 383 |
|
|
|
|
|
|
|
|
|
|
| 384 |
doc = fitz.open(file_path)
|
| 385 |
+
pages = len(doc)
|
| 386 |
doc.close()
|
| 387 |
+
|
| 388 |
+
# Show first page preview
|
| 389 |
+
_, _, img, _ = render_pdf_page(file_path, 1, dpi=DEFAULT_DPI)
|
| 390 |
+
return (
|
| 391 |
+
gr.update(visible=True, minimum=1, maximum=max(1, pages), value=1),
|
| 392 |
+
gr.update(value=img),
|
| 393 |
+
)
|
| 394 |
|
| 395 |
|
| 396 |
+
def update_preview(file_path: str, page_num: int):
|
| 397 |
if not file_path:
|
| 398 |
return None
|
| 399 |
+
ext = os.path.splitext(file_path)[1].lower()
|
| 400 |
+
if ext != ".pdf":
|
| 401 |
+
return _to_rgb(Image.open(file_path))
|
| 402 |
+
_, _, img, _ = render_pdf_page(file_path, int(page_num), dpi=DEFAULT_DPI)
|
| 403 |
+
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
|
| 405 |
|
| 406 |
+
def toggle_query(task: str):
|
| 407 |
+
return gr.update(visible=(task == "Locate"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 409 |
|
| 410 |
+
# -------------------------
|
| 411 |
+
# Build app (minimal style)
|
| 412 |
+
# -------------------------
|
| 413 |
+
theme = gr.themes.Base(
|
| 414 |
+
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui"],
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
with gr.Blocks(theme=theme, title="Doc Tool (CPU)") as demo:
|
| 418 |
+
with gr.Row():
|
| 419 |
+
with gr.Column(scale=1, min_width=320):
|
| 420 |
+
file_in = gr.File(label="File", file_types=["image", ".pdf"], type="filepath")
|
| 421 |
+
page_num = gr.Slider(label="Page", minimum=1, maximum=1, value=1, step=1, visible=False)
|
| 422 |
+
task = gr.Dropdown(label="Task", choices=TASKS, value="OCR")
|
| 423 |
+
query = gr.Textbox(label="Query", visible=False, placeholder="Text to locate")
|
| 424 |
|
| 425 |
+
run_btn = gr.Button("Run", variant="primary")
|
| 426 |
|
| 427 |
with gr.Column(scale=2):
|
| 428 |
+
preview = gr.Image(label="Preview", type="pil", height=360)
|
| 429 |
+
out_text = gr.Textbox(label="Output", lines=10)
|
| 430 |
+
out_md = gr.Markdown()
|
| 431 |
+
|
| 432 |
+
out_boxes = gr.Image(label="Boxes", type="pil", height=360)
|
| 433 |
+
|
| 434 |
+
file_in.change(update_page_selector, inputs=[file_in], outputs=[page_num, preview])
|
| 435 |
+
page_num.change(update_preview, inputs=[file_in, page_num], outputs=[preview])
|
| 436 |
+
task.change(toggle_query, inputs=[task], outputs=[query])
|
| 437 |
+
|
| 438 |
+
def on_run(file_path, task_name, page, q):
|
| 439 |
+
text, md, boxed = process(file_path, task_name, int(page), q or "")
|
| 440 |
+
return text, md, boxed
|
| 441 |
+
|
| 442 |
+
run_btn.click(
|
| 443 |
+
on_run,
|
| 444 |
+
inputs=[file_in, task, page_num, query],
|
| 445 |
+
outputs=[out_text, out_md, out_boxes],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 446 |
)
|
|
|
|
| 447 |
|
| 448 |
if __name__ == "__main__":
|
| 449 |
+
# Disable SSR to avoid extra startup noise
|
| 450 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, ssr_mode=False)
|