File size: 7,545 Bytes
5cd3431
 
 
2ed7fce
5cd3431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ed7fce
 
 
5cd3431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae920ed
5cd3431
 
 
ae920ed
 
5cd3431
ae920ed
 
 
5cd3431
ae920ed
5cd3431
ae920ed
 
 
5cd3431
ae920ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd3431
ae920ed
5cd3431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from fastapi import FastAPI, UploadFile, File, HTTPException, WebSocket
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
from typing import List, Optional, Dict, AsyncGenerator
import os
from dotenv import load_dotenv
from aimakerspace.vectordatabase import VectorDatabase
from aimakerspace.openai_utils.embedding import EmbeddingModel
from aimakerspace.text_utils import CharacterTextSplitter, PDFLoader
from aimakerspace.openai_utils.prompts import (
    UserRolePrompt,
    SystemRolePrompt,
    AssistantRolePrompt,
)
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
import asyncio
import tempfile
import shutil
import json
from uuid import uuid4

# Load environment variables
load_dotenv()

app = FastAPI()

# Mount static files
app.mount("/", StaticFiles(directory="static", html=True), name="static")

# Configure CORS
app.add_middleware(
    CORSMiddleware,
    allow_origins=["http://localhost:3000"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Initialize components
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chat_openai = ChatOpenAI()

# Define prompts
system_template = """\
You are a helpful assistant that provides concise, direct answers based on the provided context. 
If the answer cannot be found in the context, simply say "I don't know" or "The information is not available in the provided context."
Keep your answers brief and to the point."""
system_role_prompt = SystemRolePrompt(system_template)

user_prompt_template = """\
Context:
{context}

Question:
{question}

Answer the question concisely based on the context above."""
user_role_prompt = UserRolePrompt(user_prompt_template)

# Session management
sessions: Dict[str, Dict] = {}

class Query(BaseModel):
    text: str
    k: int = 4

class DocumentResponse(BaseModel):
    text: str
    type: str  # 'answer' or 'context'
    score: Optional[float] = None

class RetrievalAugmentedQAPipeline:
    def __init__(self, llm: ChatOpenAI, vector_db_retriever: VectorDatabase) -> None:
        self.llm = llm
        self.vector_db_retriever = vector_db_retriever

    async def arun_pipeline(self, user_query: str, k: int = 4) -> AsyncGenerator[str, None]:
        # Get top k most relevant chunks
        context_list = self.vector_db_retriever.search_by_text(user_query, k=k)
        
        # Format context
        context_prompt = ""
        for context in context_list:
            context_prompt += context[0] + "\n"

        # Format prompts
        formatted_system_prompt = system_role_prompt.create_message()
        formatted_user_prompt = user_role_prompt.create_message(
            question=user_query, 
            context=context_prompt
        )

        # Stream only the LLM response
        async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
            yield json.dumps({
                "type": "token",
                "text": chunk
            })

        # Send context information once at the end
        yield json.dumps({
            "type": "context",
            "context": [{"text": text, "score": score} for text, score in context_list]
        })

def process_file(file_path: str, file_name: str):
    if file_name.lower().endswith('.pdf'):
        loader = PDFLoader(file_path)
    else:
        raise HTTPException(status_code=400, detail="Only PDF files are supported")
        
    documents = loader.load_documents()
    texts = text_splitter.split_texts(documents)
    return texts

@app.post("/upload")
async def upload_document(file: UploadFile = File(...)):
    if not file.filename.lower().endswith('.pdf'):
        raise HTTPException(status_code=400, detail="Only PDF files are supported")
    
    try:
        # Read the file content directly into memory
        content = await file.read()
        
        # Create a temporary file in a directory we know exists
        temp_dir = "/tmp"  # Using /tmp which is writable in most environments
        os.makedirs(temp_dir, exist_ok=True)
        
        temp_path = os.path.join(temp_dir, f"upload_{file.filename}")
        
        # Write the content to the temporary file
        with open(temp_path, 'wb') as temp_file:
            temp_file.write(content)
        
        try:
            # Process the file
            texts = process_file(temp_path, file.filename)
            
            # Create a new session
            session_id = str(uuid4())
            vector_db = VectorDatabase()
            await vector_db.abuild_from_list(texts)
            
            # Store session data
            sessions[session_id] = {
                "vector_db": vector_db,
                "texts": texts
            }
            
            return {
                "session_id": session_id,
                "message": f"Document processed successfully. Added {len(texts)} chunks to the database."
            }
            
        finally:
            # Clean up the temporary file
            try:
                if os.path.exists(temp_path):
                    os.unlink(temp_path)
            except Exception as e:
                print(f"Warning: Could not delete temporary file: {e}")
                
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error processing file: {str(e)}")

@app.post("/query/{session_id}")
async def query_documents(session_id: str, query: Query):
    if session_id not in sessions:
        raise HTTPException(status_code=404, detail="Session not found")
    
    try:
        session = sessions[session_id]
        vector_db = session["vector_db"]
        
        # Initialize RAG pipeline
        rag_pipeline = RetrievalAugmentedQAPipeline(
            llm=chat_openai,
            vector_db_retriever=vector_db
        )
        
        # Create streaming response
        async def generate():
            async for chunk in rag_pipeline.arun_pipeline(query.text, query.k):
                yield f"data: {chunk}\n\n"
        
        return StreamingResponse(
            generate(),
            media_type="text/event-stream"
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.websocket("/ws/{session_id}")
async def websocket_endpoint(websocket: WebSocket, session_id: str):
    await websocket.accept()
    
    if session_id not in sessions:
        await websocket.close(code=1008, reason="Session not found")
        return
    
    try:
        session = sessions[session_id]
        vector_db = session["vector_db"]
        
        while True:
            data = await websocket.receive_text()
            query = json.loads(data)
            
            # Initialize RAG pipeline
            rag_pipeline = RetrievalAugmentedQAPipeline(
                llm=chat_openai,
                vector_db_retriever=vector_db
            )
            
            # Stream response
            async for chunk in rag_pipeline.arun_pipeline(query["text"], query.get("k", 4)):
                await websocket.send_text(json.dumps({
                    "type": "token" if isinstance(chunk, str) else "context",
                    "text": chunk if isinstance(chunk, str) else chunk
                }))
            
    except Exception as e:
        await websocket.close(code=1011, reason=str(e))

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=9000)