|
|
import torch |
|
|
import torch.cuda.amp as amp |
|
|
|
|
|
from .fuser import (get_sequence_parallel_rank, |
|
|
get_sequence_parallel_world_size, get_sp_group, |
|
|
init_distributed_environment, initialize_model_parallel, |
|
|
xFuserLongContextAttention) |
|
|
|
|
|
|
|
|
def pad_freqs(original_tensor, target_len): |
|
|
seq_len, s1, s2 = original_tensor.shape |
|
|
pad_size = target_len - seq_len |
|
|
padding_tensor = torch.ones( |
|
|
pad_size, |
|
|
s1, |
|
|
s2, |
|
|
dtype=original_tensor.dtype, |
|
|
device=original_tensor.device) |
|
|
padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0) |
|
|
return padded_tensor |
|
|
|
|
|
@amp.autocast(enabled=False) |
|
|
@torch.compiler.disable() |
|
|
def rope_apply(x, grid_sizes, freqs): |
|
|
""" |
|
|
x: [B, L, N, C]. |
|
|
grid_sizes: [B, 3]. |
|
|
freqs: [M, C // 2]. |
|
|
""" |
|
|
s, n, c = x.size(1), x.size(2), x.size(3) // 2 |
|
|
|
|
|
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1) |
|
|
|
|
|
|
|
|
output = [] |
|
|
for i, (f, h, w) in enumerate(grid_sizes.tolist()): |
|
|
seq_len = f * h * w |
|
|
|
|
|
|
|
|
x_i = torch.view_as_complex(x[i, :s].to(torch.float32).reshape( |
|
|
s, n, -1, 2)) |
|
|
freqs_i = torch.cat([ |
|
|
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), |
|
|
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), |
|
|
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) |
|
|
], |
|
|
dim=-1).reshape(seq_len, 1, -1) |
|
|
|
|
|
|
|
|
sp_size = get_sequence_parallel_world_size() |
|
|
sp_rank = get_sequence_parallel_rank() |
|
|
freqs_i = pad_freqs(freqs_i, s * sp_size) |
|
|
s_per_rank = s |
|
|
freqs_i_rank = freqs_i[(sp_rank * s_per_rank):((sp_rank + 1) * |
|
|
s_per_rank), :, :] |
|
|
x_i = torch.view_as_real(x_i * freqs_i_rank).flatten(2) |
|
|
x_i = torch.cat([x_i, x[i, s:]]) |
|
|
|
|
|
|
|
|
output.append(x_i) |
|
|
return torch.stack(output) |
|
|
|
|
|
def rope_apply_qk(q, k, grid_sizes, freqs): |
|
|
q = rope_apply(q, grid_sizes, freqs) |
|
|
k = rope_apply(k, grid_sizes, freqs) |
|
|
return q, k |
|
|
|
|
|
def usp_attn_forward(self, |
|
|
x, |
|
|
seq_lens, |
|
|
grid_sizes, |
|
|
freqs, |
|
|
dtype=torch.bfloat16, |
|
|
t=0): |
|
|
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim |
|
|
half_dtypes = (torch.float16, torch.bfloat16) |
|
|
|
|
|
def half(x): |
|
|
return x if x.dtype in half_dtypes else x.to(dtype) |
|
|
|
|
|
|
|
|
def qkv_fn(x): |
|
|
q = self.norm_q(self.q(x)).view(b, s, n, d) |
|
|
k = self.norm_k(self.k(x)).view(b, s, n, d) |
|
|
v = self.v(x).view(b, s, n, d) |
|
|
return q, k, v |
|
|
|
|
|
q, k, v = qkv_fn(x) |
|
|
q, k = rope_apply_qk(q, k, grid_sizes, freqs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x = xFuserLongContextAttention()( |
|
|
None, |
|
|
query=half(q), |
|
|
key=half(k), |
|
|
value=half(v), |
|
|
window_size=self.window_size) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x = x.flatten(2) |
|
|
x = self.o(x) |
|
|
return x |
|
|
|
|
|
@amp.autocast(enabled=False) |
|
|
@torch.compiler.disable() |
|
|
def s2v_rope_apply(x, grid_sizes, freqs): |
|
|
s, n, c = x.size(1), x.size(2), x.size(3) // 2 |
|
|
|
|
|
output = [] |
|
|
for i, _ in enumerate(x): |
|
|
s = x.size(1) |
|
|
|
|
|
x_i = torch.view_as_complex(x[i, :s].to(torch.float64).reshape( |
|
|
s, n, -1, 2)) |
|
|
freqs_i = freqs[i] |
|
|
freqs_i_rank = pad_freqs(freqs_i, s) |
|
|
x_i = torch.view_as_real(x_i * freqs_i_rank).flatten(2) |
|
|
x_i = torch.cat([x_i, x[i, s:]]) |
|
|
|
|
|
output.append(x_i) |
|
|
return torch.stack(output).float() |
|
|
|
|
|
def s2v_rope_apply_qk(q, k, grid_sizes, freqs): |
|
|
q = s2v_rope_apply(q, grid_sizes, freqs) |
|
|
k = s2v_rope_apply(k, grid_sizes, freqs) |
|
|
return q, k |
|
|
|
|
|
def usp_attn_s2v_forward(self, |
|
|
x, |
|
|
seq_lens, |
|
|
grid_sizes, |
|
|
freqs, |
|
|
dtype=torch.bfloat16, |
|
|
t=0): |
|
|
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim |
|
|
half_dtypes = (torch.float16, torch.bfloat16) |
|
|
|
|
|
def half(x): |
|
|
return x if x.dtype in half_dtypes else x.to(dtype) |
|
|
|
|
|
|
|
|
def qkv_fn(x): |
|
|
q = self.norm_q(self.q(x)).view(b, s, n, d) |
|
|
k = self.norm_k(self.k(x)).view(b, s, n, d) |
|
|
v = self.v(x).view(b, s, n, d) |
|
|
return q, k, v |
|
|
|
|
|
q, k, v = qkv_fn(x) |
|
|
q, k = s2v_rope_apply_qk(q, k, grid_sizes, freqs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x = xFuserLongContextAttention()( |
|
|
None, |
|
|
query=half(q), |
|
|
key=half(k), |
|
|
value=half(v), |
|
|
window_size=self.window_size) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x = x.flatten(2) |
|
|
x = self.o(x) |
|
|
return x |