Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -190,16 +190,16 @@ with gr.Blocks(css=STYLE) as hf_endpoint:
|
|
| 190 |
with gr.Column(elem_classes=["group-border"]):
|
| 191 |
with gr.Row():
|
| 192 |
with gr.Column():
|
| 193 |
-
gr.Markdown("""
|
| 194 |
hf_account_input = gr.Textbox(show_label=False, elem_classes=["no-label", "small-big"])
|
| 195 |
|
| 196 |
with gr.Column():
|
| 197 |
-
gr.Markdown("
|
| 198 |
hf_token_input = gr.Textbox(show_label=False, type="password", elem_classes=["no-label", "small-big"])
|
| 199 |
|
| 200 |
with gr.Row():
|
| 201 |
with gr.Column():
|
| 202 |
-
gr.Markdown("""
|
| 203 |
|
| 204 |
Model from the Hugging Face hub""")
|
| 205 |
repository_selector = gr.Textbox(
|
|
@@ -210,7 +210,7 @@ Model from the Hugging Face hub""")
|
|
| 210 |
)
|
| 211 |
|
| 212 |
with gr.Column():
|
| 213 |
-
gr.Markdown("""
|
| 214 |
|
| 215 |
Branch name of the Model""")
|
| 216 |
revision_selector = gr.Textbox(
|
|
@@ -222,14 +222,14 @@ Branch name of the Model""")
|
|
| 222 |
|
| 223 |
with gr.Column(elem_classes=["group-border"]):
|
| 224 |
with gr.Column():
|
| 225 |
-
gr.Markdown("""
|
| 226 |
|
| 227 |
Name for your new endpoint""")
|
| 228 |
endpoint_name_input = gr.Textbox(show_label=False, elem_classes=["no-label", "small-big"])
|
| 229 |
|
| 230 |
with gr.Row():
|
| 231 |
with gr.Column():
|
| 232 |
-
gr.Markdown("""
|
| 233 |
provider_selector = gr.Dropdown(
|
| 234 |
choices=providers.keys(),
|
| 235 |
interactive=True,
|
|
@@ -238,7 +238,7 @@ Name for your new endpoint""")
|
|
| 238 |
)
|
| 239 |
|
| 240 |
with gr.Column():
|
| 241 |
-
gr.Markdown("""
|
| 242 |
region_selector = gr.Dropdown(
|
| 243 |
[],
|
| 244 |
value="",
|
|
@@ -249,7 +249,7 @@ Name for your new endpoint""")
|
|
| 249 |
|
| 250 |
with gr.Row(visible=False):
|
| 251 |
with gr.Column():
|
| 252 |
-
gr.Markdown("
|
| 253 |
task_selector = gr.Textbox(
|
| 254 |
value="Text Generation",
|
| 255 |
interactive=False,
|
|
@@ -258,7 +258,7 @@ Name for your new endpoint""")
|
|
| 258 |
)
|
| 259 |
|
| 260 |
with gr.Column():
|
| 261 |
-
gr.Markdown("
|
| 262 |
framework_selector = gr.Textbox(
|
| 263 |
value="PyTorch",
|
| 264 |
interactive=False,
|
|
@@ -267,7 +267,7 @@ Name for your new endpoint""")
|
|
| 267 |
)
|
| 268 |
|
| 269 |
with gr.Column():
|
| 270 |
-
gr.Markdown("""
|
| 271 |
compute_selector = gr.Dropdown(
|
| 272 |
[],
|
| 273 |
value="",
|
|
@@ -279,7 +279,7 @@ Name for your new endpoint""")
|
|
| 279 |
with gr.Row():
|
| 280 |
with gr.Row(scale=1):
|
| 281 |
with gr.Column():
|
| 282 |
-
gr.Markdown("""
|
| 283 |
min_node_selector = gr.Number(
|
| 284 |
value=1,
|
| 285 |
interactive=True,
|
|
@@ -288,7 +288,7 @@ Name for your new endpoint""")
|
|
| 288 |
)
|
| 289 |
|
| 290 |
with gr.Column():
|
| 291 |
-
gr.Markdown("""
|
| 292 |
max_node_selector = gr.Number(
|
| 293 |
value=1,
|
| 294 |
interactive=True,
|
|
@@ -297,7 +297,7 @@ Name for your new endpoint""")
|
|
| 297 |
)
|
| 298 |
|
| 299 |
with gr.Column(scale=2):
|
| 300 |
-
gr.Markdown("""
|
| 301 |
security_selector = gr.Radio(
|
| 302 |
choices=["Protected", "Public", "Private"],
|
| 303 |
value="Public",
|
|
@@ -308,14 +308,14 @@ Name for your new endpoint""")
|
|
| 308 |
|
| 309 |
with gr.Column(elem_classes=["group-border"]):
|
| 310 |
with gr.Column():
|
| 311 |
-
gr.Markdown("""
|
| 312 |
|
| 313 |
Text Generation Inference is an optimized container for text generation task""")
|
| 314 |
_ = gr.Textbox("Text Generation Inference", show_label=False, elem_classes=["no-label", "small-big"])
|
| 315 |
|
| 316 |
with gr.Row():
|
| 317 |
with gr.Column():
|
| 318 |
-
gr.Markdown("""
|
| 319 |
|
| 320 |
TGI uses custom kernels to speed up inference for some models. You can try disabling them if you encounter issues.""")
|
| 321 |
_ = gr.Dropdown(
|
|
@@ -327,7 +327,7 @@ TGI uses custom kernels to speed up inference for some models. You can try disab
|
|
| 327 |
)
|
| 328 |
|
| 329 |
with gr.Column():
|
| 330 |
-
gr.Markdown("""
|
| 331 |
|
| 332 |
Quantization can reduce the model size and improve latency, with little degradation in model accuracy.""")
|
| 333 |
_ = gr.Dropdown(
|
|
@@ -340,7 +340,7 @@ Quantization can reduce the model size and improve latency, with little degradat
|
|
| 340 |
|
| 341 |
with gr.Row():
|
| 342 |
with gr.Column():
|
| 343 |
-
gr.Markdown("""
|
| 344 |
|
| 345 |
Increasing this value can impact the amount of RAM required. Some models can only handle a finite range of sequences.""")
|
| 346 |
_ = gr.Number(
|
|
@@ -351,7 +351,7 @@ Increasing this value can impact the amount of RAM required. Some models can onl
|
|
| 351 |
)
|
| 352 |
|
| 353 |
with gr.Column():
|
| 354 |
-
gr.Markdown("""
|
| 355 |
|
| 356 |
The larger this value, the more memory each request will consume and the less effective batching can be.""")
|
| 357 |
_ = gr.Number(
|
|
@@ -363,7 +363,7 @@ The larger this value, the more memory each request will consume and the less ef
|
|
| 363 |
|
| 364 |
with gr.Row():
|
| 365 |
with gr.Column():
|
| 366 |
-
gr.Markdown("""
|
| 367 |
|
| 368 |
Number of prefill tokens used during continuous batching. It can be useful to adjust this number since the prefill operation is memory-intensive and compute-bound.""")
|
| 369 |
_ = gr.Number(
|
|
@@ -374,7 +374,7 @@ Number of prefill tokens used during continuous batching. It can be useful to ad
|
|
| 374 |
)
|
| 375 |
|
| 376 |
with gr.Column():
|
| 377 |
-
gr.Markdown("""
|
| 378 |
|
| 379 |
Number of tokens that can be passed before forcing waiting queries to be put on the batch. A value of 1000 can fit 10 queries of 100 tokens or a single query of 1000 tokens.""")
|
| 380 |
_ = gr.Number(
|
|
|
|
| 190 |
with gr.Column(elem_classes=["group-border"]):
|
| 191 |
with gr.Row():
|
| 192 |
with gr.Column():
|
| 193 |
+
gr.Markdown("""### Hugging Face account ID (name)""")
|
| 194 |
hf_account_input = gr.Textbox(show_label=False, elem_classes=["no-label", "small-big"])
|
| 195 |
|
| 196 |
with gr.Column():
|
| 197 |
+
gr.Markdown("### Hugging Face access token")
|
| 198 |
hf_token_input = gr.Textbox(show_label=False, type="password", elem_classes=["no-label", "small-big"])
|
| 199 |
|
| 200 |
with gr.Row():
|
| 201 |
with gr.Column():
|
| 202 |
+
gr.Markdown("""### Target model
|
| 203 |
|
| 204 |
Model from the Hugging Face hub""")
|
| 205 |
repository_selector = gr.Textbox(
|
|
|
|
| 210 |
)
|
| 211 |
|
| 212 |
with gr.Column():
|
| 213 |
+
gr.Markdown("""### Target model version(branch)
|
| 214 |
|
| 215 |
Branch name of the Model""")
|
| 216 |
revision_selector = gr.Textbox(
|
|
|
|
| 222 |
|
| 223 |
with gr.Column(elem_classes=["group-border"]):
|
| 224 |
with gr.Column():
|
| 225 |
+
gr.Markdown("""### Endpoint name
|
| 226 |
|
| 227 |
Name for your new endpoint""")
|
| 228 |
endpoint_name_input = gr.Textbox(show_label=False, elem_classes=["no-label", "small-big"])
|
| 229 |
|
| 230 |
with gr.Row():
|
| 231 |
with gr.Column():
|
| 232 |
+
gr.Markdown("""### Cloud Provider""")
|
| 233 |
provider_selector = gr.Dropdown(
|
| 234 |
choices=providers.keys(),
|
| 235 |
interactive=True,
|
|
|
|
| 238 |
)
|
| 239 |
|
| 240 |
with gr.Column():
|
| 241 |
+
gr.Markdown("""### Cloud Region""")
|
| 242 |
region_selector = gr.Dropdown(
|
| 243 |
[],
|
| 244 |
value="",
|
|
|
|
| 249 |
|
| 250 |
with gr.Row(visible=False):
|
| 251 |
with gr.Column():
|
| 252 |
+
gr.Markdown("### Task")
|
| 253 |
task_selector = gr.Textbox(
|
| 254 |
value="Text Generation",
|
| 255 |
interactive=False,
|
|
|
|
| 258 |
)
|
| 259 |
|
| 260 |
with gr.Column():
|
| 261 |
+
gr.Markdown("### Framework")
|
| 262 |
framework_selector = gr.Textbox(
|
| 263 |
value="PyTorch",
|
| 264 |
interactive=False,
|
|
|
|
| 267 |
)
|
| 268 |
|
| 269 |
with gr.Column():
|
| 270 |
+
gr.Markdown("""### Compute Instance Type""")
|
| 271 |
compute_selector = gr.Dropdown(
|
| 272 |
[],
|
| 273 |
value="",
|
|
|
|
| 279 |
with gr.Row():
|
| 280 |
with gr.Row(scale=1):
|
| 281 |
with gr.Column():
|
| 282 |
+
gr.Markdown("""### Min Number of Nodes""")
|
| 283 |
min_node_selector = gr.Number(
|
| 284 |
value=1,
|
| 285 |
interactive=True,
|
|
|
|
| 288 |
)
|
| 289 |
|
| 290 |
with gr.Column():
|
| 291 |
+
gr.Markdown("""### Max Number of Nodes""")
|
| 292 |
max_node_selector = gr.Number(
|
| 293 |
value=1,
|
| 294 |
interactive=True,
|
|
|
|
| 297 |
)
|
| 298 |
|
| 299 |
with gr.Column(scale=2):
|
| 300 |
+
gr.Markdown("""### Security Level""")
|
| 301 |
security_selector = gr.Radio(
|
| 302 |
choices=["Protected", "Public", "Private"],
|
| 303 |
value="Public",
|
|
|
|
| 308 |
|
| 309 |
with gr.Column(elem_classes=["group-border"]):
|
| 310 |
with gr.Column():
|
| 311 |
+
gr.Markdown("""### Container Type
|
| 312 |
|
| 313 |
Text Generation Inference is an optimized container for text generation task""")
|
| 314 |
_ = gr.Textbox("Text Generation Inference", show_label=False, elem_classes=["no-label", "small-big"])
|
| 315 |
|
| 316 |
with gr.Row():
|
| 317 |
with gr.Column():
|
| 318 |
+
gr.Markdown("""### Custom Cuda Kernels
|
| 319 |
|
| 320 |
TGI uses custom kernels to speed up inference for some models. You can try disabling them if you encounter issues.""")
|
| 321 |
_ = gr.Dropdown(
|
|
|
|
| 327 |
)
|
| 328 |
|
| 329 |
with gr.Column():
|
| 330 |
+
gr.Markdown("""### Quantization
|
| 331 |
|
| 332 |
Quantization can reduce the model size and improve latency, with little degradation in model accuracy.""")
|
| 333 |
_ = gr.Dropdown(
|
|
|
|
| 340 |
|
| 341 |
with gr.Row():
|
| 342 |
with gr.Column():
|
| 343 |
+
gr.Markdown("""### Max Input Length (per Query)
|
| 344 |
|
| 345 |
Increasing this value can impact the amount of RAM required. Some models can only handle a finite range of sequences.""")
|
| 346 |
_ = gr.Number(
|
|
|
|
| 351 |
)
|
| 352 |
|
| 353 |
with gr.Column():
|
| 354 |
+
gr.Markdown("""### Max Number of Tokens (per Query)
|
| 355 |
|
| 356 |
The larger this value, the more memory each request will consume and the less effective batching can be.""")
|
| 357 |
_ = gr.Number(
|
|
|
|
| 363 |
|
| 364 |
with gr.Row():
|
| 365 |
with gr.Column():
|
| 366 |
+
gr.Markdown("""### Max Batch Prefill Tokens
|
| 367 |
|
| 368 |
Number of prefill tokens used during continuous batching. It can be useful to adjust this number since the prefill operation is memory-intensive and compute-bound.""")
|
| 369 |
_ = gr.Number(
|
|
|
|
| 374 |
)
|
| 375 |
|
| 376 |
with gr.Column():
|
| 377 |
+
gr.Markdown("""### Max Batch Total Tokens
|
| 378 |
|
| 379 |
Number of tokens that can be passed before forcing waiting queries to be put on the batch. A value of 1000 can fit 10 queries of 100 tokens or a single query of 1000 tokens.""")
|
| 380 |
_ = gr.Number(
|