Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
from fastapi import FastAPI, HTTPException, Request
|
|
|
|
| 2 |
from onnxruntime import InferenceSession
|
| 3 |
from transformers import AutoTokenizer
|
| 4 |
import numpy as np
|
| 5 |
-
import os
|
| 6 |
import uvicorn
|
| 7 |
|
| 8 |
app = FastAPI()
|
|
@@ -15,21 +15,23 @@ tokenizer = AutoTokenizer.from_pretrained(
|
|
| 15 |
)
|
| 16 |
|
| 17 |
# Load ONNX model
|
| 18 |
-
|
| 19 |
-
session = InferenceSession("model.onnx")
|
| 20 |
-
print("Model loaded successfully")
|
| 21 |
-
except Exception as e:
|
| 22 |
-
print(f"Failed to load model: {str(e)}")
|
| 23 |
-
raise
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
@app.post("/api/predict")
|
| 30 |
async def predict(request: Request):
|
| 31 |
try:
|
| 32 |
-
# Get JSON input
|
| 33 |
data = await request.json()
|
| 34 |
text = data.get("text", "")
|
| 35 |
|
|
@@ -45,30 +47,22 @@ async def predict(request: Request):
|
|
| 45 |
max_length=32
|
| 46 |
)
|
| 47 |
|
| 48 |
-
#
|
| 49 |
-
|
| 50 |
"input_ids": inputs["input_ids"].astype(np.int64),
|
| 51 |
"attention_mask": inputs["attention_mask"].astype(np.int64)
|
| 52 |
-
}
|
| 53 |
-
|
| 54 |
-
# Run inference
|
| 55 |
-
outputs = session.run(None, onnx_inputs)
|
| 56 |
-
|
| 57 |
-
# Convert outputs to list and handle numpy types
|
| 58 |
-
embedding = outputs[0][0].astype(float).tolist() # First output, first batch
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
|
|
|
| 62 |
"tokens": tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
|
| 63 |
}
|
| 64 |
|
|
|
|
|
|
|
| 65 |
except Exception as e:
|
| 66 |
raise HTTPException(status_code=500, detail=str(e))
|
| 67 |
|
| 68 |
if __name__ == "__main__":
|
| 69 |
-
uvicorn.run(
|
| 70 |
-
"app:app",
|
| 71 |
-
host="0.0.0.0",
|
| 72 |
-
port=7860,
|
| 73 |
-
reload=False
|
| 74 |
-
)
|
|
|
|
| 1 |
from fastapi import FastAPI, HTTPException, Request
|
| 2 |
+
from fastapi.encoders import jsonable_encoder
|
| 3 |
from onnxruntime import InferenceSession
|
| 4 |
from transformers import AutoTokenizer
|
| 5 |
import numpy as np
|
|
|
|
| 6 |
import uvicorn
|
| 7 |
|
| 8 |
app = FastAPI()
|
|
|
|
| 15 |
)
|
| 16 |
|
| 17 |
# Load ONNX model
|
| 18 |
+
session = InferenceSession("model.onnx")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
def convert_output(value):
|
| 21 |
+
"""Recursively convert numpy types to native Python types"""
|
| 22 |
+
if isinstance(value, (np.generic, np.ndarray)):
|
| 23 |
+
if value.size == 1:
|
| 24 |
+
return float(value.item()) # Convert single values to float
|
| 25 |
+
return value.astype(float).tolist() # Convert arrays to list
|
| 26 |
+
elif isinstance(value, list):
|
| 27 |
+
return [convert_output(x) for x in value]
|
| 28 |
+
elif isinstance(value, dict):
|
| 29 |
+
return {k: convert_output(v) for k, v in value.items()}
|
| 30 |
+
return value
|
| 31 |
|
| 32 |
@app.post("/api/predict")
|
| 33 |
async def predict(request: Request):
|
| 34 |
try:
|
|
|
|
| 35 |
data = await request.json()
|
| 36 |
text = data.get("text", "")
|
| 37 |
|
|
|
|
| 47 |
max_length=32
|
| 48 |
)
|
| 49 |
|
| 50 |
+
# Run model
|
| 51 |
+
outputs = session.run(None, {
|
| 52 |
"input_ids": inputs["input_ids"].astype(np.int64),
|
| 53 |
"attention_mask": inputs["attention_mask"].astype(np.int64)
|
| 54 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
# Prepare response with converted types
|
| 57 |
+
response = {
|
| 58 |
+
"embedding": convert_output(outputs[0]), # Process main output
|
| 59 |
"tokens": tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
|
| 60 |
}
|
| 61 |
|
| 62 |
+
return jsonable_encoder(response)
|
| 63 |
+
|
| 64 |
except Exception as e:
|
| 65 |
raise HTTPException(status_code=500, detail=str(e))
|
| 66 |
|
| 67 |
if __name__ == "__main__":
|
| 68 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|