Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,141 Bytes
6a2ab89 2648824 f5559e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import spaces
import gradio as gr
from PIL import Image
import torch
import io
import base64
import tempfile
import os
from diffusers import AutoPipelineForInpainting, AutoencoderKL
import numpy as np
# Global variables for models
pipeline = None
segment_body = None
def load_models():
"""Load all required models"""
global pipeline, segment_body
print("π Loading VAE...")
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16
)
print("π Loading inpainting pipeline...")
pipeline = AutoPipelineForInpainting.from_pretrained(
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
vae=vae,
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True
)
pipeline = pipeline.to("cuda")
print("π Loading IP-Adapter...")
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name="ip-adapter_sdxl.bin",
low_cpu_mem_usage=True
)
print("π Loading body segmentation...")
try:
from SegBody import segment_body as seg_func
segment_body = seg_func
print("β
Body segmentation loaded!")
except ImportError:
print("β οΈ SegBody module not found, segmentation will be disabled")
print("β
All models loaded successfully!")
# Load models on startup
load_models()
def create_mask(person_img):
"""Generate body segmentation mask"""
if segment_body is None:
# Create a simple fallback mask (full body) if segmentation not available
return Image.new('L', (512, 512), 255)
try:
# Try calling segment_body - it might expect a file path or PIL Image
try:
# First try with PIL Image directly
seg_image, mask_img = segment_body(person_img, face=False)
except (TypeError, AttributeError):
# If that fails, try with file path
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp_file:
temp_path = tmp_file.name
person_img.save(temp_path)
seg_image, mask_img = segment_body(temp_path, face=False)
os.unlink(temp_path)
# Ensure mask is PIL Image and resize
if isinstance(mask_img, str):
mask_img = Image.open(mask_img).convert('L')
mask_img = mask_img.resize((512, 512))
return mask_img
except Exception as e:
print(f"β οΈ Segmentation failed: {e}, using full mask")
return Image.new('L', (512, 512), 255)
@spaces.GPU
def virtual_tryon(
person_image,
clothing_image,
prompt="photorealistic, perfect body, beautiful skin, realistic skin, natural skin",
negative_prompt="ugly, bad quality, bad anatomy, deformed body, deformed hands, deformed feet, deformed face, deformed clothing, deformed skin, bad skin, leggings, tights, stockings",
ip_scale=0.8,
strength=0.99,
guidance_scale=7.5,
num_steps=50
):
"""
Virtual Try-On function
Args:
person_image: PIL Image of the person
clothing_image: PIL Image of the clothing
prompt: Generation prompt
negative_prompt: Negative prompt
ip_scale: IP-Adapter influence (0.0-1.0)
strength: Inpainting strength (0.0-1.0)
guidance_scale: CFG scale
num_steps: Number of inference steps
Returns:
Generated PIL Image
"""
try:
if pipeline is None:
raise ValueError("Models not loaded yet")
print("π₯ Processing images...")
# Ensure images are PIL Images and resize
if isinstance(person_image, np.ndarray):
person_image = Image.fromarray(person_image)
if isinstance(clothing_image, np.ndarray):
clothing_image = Image.fromarray(clothing_image)
person_img = person_image.convert('RGB').resize((512, 512))
clothing_img = clothing_image.convert('RGB').resize((512, 512))
# Generate body segmentation mask
print("π Generating segmentation mask...")
mask_img = create_mask(person_img)
# Set IP-Adapter scale
pipeline.set_ip_adapter_scale(ip_scale)
# Generate virtual try-on
print("π¨ Generating virtual try-on...")
result = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
image=person_img,
mask_image=mask_img,
ip_adapter_image=clothing_img,
strength=strength,
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
)
generated_image = result.images[0]
print("β
Generation completed!")
return generated_image
except Exception as e:
print(f"β Error: {str(e)}")
raise gr.Error(f"Generation failed: {str(e)}")
# Create Gradio interface with simpler structure for better compatibility
demo = gr.Interface(
fn=virtual_tryon,
inputs=[
gr.Image(label="Person Image", type="pil"),
gr.Image(label="Clothing Image", type="pil"),
gr.Textbox(
label="Prompt",
value="photorealistic, perfect body, beautiful skin, realistic skin, natural skin",
lines=2
),
gr.Textbox(
label="Negative Prompt",
value="ugly, bad quality, bad anatomy, deformed body, deformed hands, deformed feet, deformed face, deformed clothing, deformed skin, bad skin, leggings, tights, stockings",
lines=2
),
gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.8,
step=0.05,
label="IP-Adapter Scale (clothing influence)"
),
gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.99,
step=0.01,
label="Inpainting Strength"
),
gr.Slider(
minimum=1.0,
maximum=20.0,
value=7.5,
step=0.5,
label="Guidance Scale"
),
gr.Slider(
minimum=20,
maximum=100,
value=50,
step=5,
label="Number of Steps"
)
],
outputs=gr.Image(label="Result", type="pil"),
title="π Virtual Try-On",
description="""
Upload a photo of yourself and a clothing item to see how it looks on you!
**Powered by Stable Diffusion XL + IP-Adapter + ZeroGPU**
### Tips for Best Results:
- Use clear, well-lit photos
- Person should be facing forward
- Clothing image should show the item clearly
- Higher steps = better quality but slower
- Adjust IP-Adapter scale to control how much the clothing influences the result
""",
examples=None,
cache_examples=False,
allow_flagging="never"
)
# Launch the app
if __name__ == "__main__":
demo.queue(max_size=20)
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|