Spaces:
Running
Running
RobertoBarrosoLuque
commited on
Commit
·
582e83e
1
Parent(s):
69ab3a1
Add qwen 3 vl
Browse files- notebooks/01-eda-and-fine-tuning.ipynb +37 -1
- notebooks/02-model-evals.ipynb +170 -25
- src/modules/evals.py +132 -14
- src/modules/vlm_inference.py +1 -1
notebooks/01-eda-and-fine-tuning.ipynb
CHANGED
|
@@ -331,10 +331,46 @@
|
|
| 331 |
"! firectl -a pyroworks get sftj bew0pztj"
|
| 332 |
]
|
| 333 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
{
|
| 335 |
"cell_type": "code",
|
| 336 |
"execution_count": null,
|
| 337 |
-
"id": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
"metadata": {},
|
| 339 |
"outputs": [],
|
| 340 |
"source": []
|
|
|
|
| 331 |
"! firectl -a pyroworks get sftj bew0pztj"
|
| 332 |
]
|
| 333 |
},
|
| 334 |
+
{
|
| 335 |
+
"cell_type": "markdown",
|
| 336 |
+
"id": "28",
|
| 337 |
+
"metadata": {},
|
| 338 |
+
"source": [
|
| 339 |
+
"##### Fine tune Qwen 3 vl 8B"
|
| 340 |
+
]
|
| 341 |
+
},
|
| 342 |
{
|
| 343 |
"cell_type": "code",
|
| 344 |
"execution_count": null,
|
| 345 |
+
"id": "29",
|
| 346 |
+
"metadata": {},
|
| 347 |
+
"outputs": [],
|
| 348 |
+
"source": [
|
| 349 |
+
"! firectl -a pyroworks create sftj --base-model accounts/fireworks/models/qwen3-vl-8b-instruct --dataset accounts/pyroworks/datasets/fashion-catalog-train --output-model qwen3-8b-fashion-catalog --display-name \"Qwen3-8B-fashion-catalog\" --epochs 3 --learning-rate 0.0001 --early-stop --eval-auto-carveout"
|
| 350 |
+
]
|
| 351 |
+
},
|
| 352 |
+
{
|
| 353 |
+
"cell_type": "markdown",
|
| 354 |
+
"id": "30",
|
| 355 |
+
"metadata": {},
|
| 356 |
+
"source": [
|
| 357 |
+
"##### Fine tune Qwen 3 VL 32B"
|
| 358 |
+
]
|
| 359 |
+
},
|
| 360 |
+
{
|
| 361 |
+
"cell_type": "code",
|
| 362 |
+
"execution_count": null,
|
| 363 |
+
"id": "31",
|
| 364 |
+
"metadata": {},
|
| 365 |
+
"outputs": [],
|
| 366 |
+
"source": [
|
| 367 |
+
"! firectl -a pyroworks create sftj --base-model accounts/fireworks/models/qwen3-vl-32b-instruct --dataset accounts/pyroworks/datasets/fashion-catalog-train --output-model qwen3-32b-fashion-catalog --display-name \"Qwen3-32B-fashion-catalog\" --epochs 3 --learning-rate 0.0001 --early-stop --eval-auto-carveout"
|
| 368 |
+
]
|
| 369 |
+
},
|
| 370 |
+
{
|
| 371 |
+
"cell_type": "code",
|
| 372 |
+
"execution_count": null,
|
| 373 |
+
"id": "32",
|
| 374 |
"metadata": {},
|
| 375 |
"outputs": [],
|
| 376 |
"source": []
|
notebooks/02-model-evals.ipynb
CHANGED
|
@@ -7,9 +7,9 @@
|
|
| 7 |
"metadata": {},
|
| 8 |
"outputs": [],
|
| 9 |
"source": [
|
| 10 |
-
"from
|
| 11 |
-
"from
|
| 12 |
-
"from
|
| 13 |
"from dotenv import load_dotenv\n",
|
| 14 |
"import os\n",
|
| 15 |
"from PIL import Image\n",
|
|
@@ -137,8 +137,7 @@
|
|
| 137 |
"id": "10",
|
| 138 |
"metadata": {},
|
| 139 |
"source": [
|
| 140 |
-
"##### Run inference on Qwen 2.5 VL 32B
|
| 141 |
-
"m"
|
| 142 |
]
|
| 143 |
},
|
| 144 |
{
|
|
@@ -235,9 +234,65 @@
|
|
| 235 |
]
|
| 236 |
},
|
| 237 |
{
|
| 238 |
-
"cell_type": "
|
|
|
|
| 239 |
"id": "18",
|
| 240 |
"metadata": {},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
"source": [
|
| 242 |
"#### Run test set through fine tuned FW Qwen model\n",
|
| 243 |
"1. Create a Lora deployment of our fine tuned model\n",
|
|
@@ -247,33 +302,41 @@
|
|
| 247 |
},
|
| 248 |
{
|
| 249 |
"cell_type": "markdown",
|
| 250 |
-
"id": "
|
| 251 |
"metadata": {},
|
| 252 |
"source": [
|
| 253 |
-
"#### Run evals on Qwen 32B SFT
|
| 254 |
]
|
| 255 |
},
|
| 256 |
{
|
| 257 |
"cell_type": "code",
|
| 258 |
"execution_count": null,
|
| 259 |
-
"id": "
|
| 260 |
"metadata": {},
|
| 261 |
"outputs": [],
|
| 262 |
"source": [
|
| 263 |
-
"!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
]
|
| 265 |
},
|
| 266 |
{
|
| 267 |
"cell_type": "code",
|
| 268 |
"execution_count": null,
|
| 269 |
-
"id": "
|
| 270 |
"metadata": {},
|
| 271 |
"outputs": [],
|
| 272 |
"source": [
|
| 273 |
"# Run with concurrent requests using await directly in Jupyter\n",
|
| 274 |
"df_predictions_qwen_32b_fine_tuned = await run_inference_on_dataframe_async(\n",
|
| 275 |
" df_test,\n",
|
| 276 |
-
" model=\"accounts/pyroworks/deployedModels/qwen-32b-fashion-catalog-
|
| 277 |
" provider=\"FireworksAI\",\n",
|
| 278 |
" api_key=FIREWORKS_API_KEY,\n",
|
| 279 |
" max_concurrent_requests=20, # Adjust based on rate limits\n",
|
|
@@ -288,7 +351,7 @@
|
|
| 288 |
},
|
| 289 |
{
|
| 290 |
"cell_type": "markdown",
|
| 291 |
-
"id": "
|
| 292 |
"metadata": {},
|
| 293 |
"source": [
|
| 294 |
"#### Run evals on Qwen 72B SFT"
|
|
@@ -297,7 +360,7 @@
|
|
| 297 |
{
|
| 298 |
"cell_type": "code",
|
| 299 |
"execution_count": null,
|
| 300 |
-
"id": "
|
| 301 |
"metadata": {},
|
| 302 |
"outputs": [],
|
| 303 |
"source": [
|
|
@@ -307,17 +370,17 @@
|
|
| 307 |
{
|
| 308 |
"cell_type": "code",
|
| 309 |
"execution_count": null,
|
| 310 |
-
"id": "
|
| 311 |
"metadata": {},
|
| 312 |
"outputs": [],
|
| 313 |
"source": [
|
| 314 |
-
"!firectl
|
| 315 |
]
|
| 316 |
},
|
| 317 |
{
|
| 318 |
"cell_type": "code",
|
| 319 |
"execution_count": null,
|
| 320 |
-
"id": "
|
| 321 |
"metadata": {},
|
| 322 |
"outputs": [],
|
| 323 |
"source": [
|
|
@@ -339,7 +402,89 @@
|
|
| 339 |
},
|
| 340 |
{
|
| 341 |
"cell_type": "markdown",
|
| 342 |
-
"id": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 343 |
"metadata": {},
|
| 344 |
"source": [
|
| 345 |
"#### Run test set through closed source model"
|
|
@@ -348,7 +493,7 @@
|
|
| 348 |
{
|
| 349 |
"cell_type": "code",
|
| 350 |
"execution_count": null,
|
| 351 |
-
"id": "
|
| 352 |
"metadata": {},
|
| 353 |
"outputs": [],
|
| 354 |
"source": [
|
|
@@ -371,7 +516,7 @@
|
|
| 371 |
},
|
| 372 |
{
|
| 373 |
"cell_type": "markdown",
|
| 374 |
-
"id": "
|
| 375 |
"metadata": {},
|
| 376 |
"source": [
|
| 377 |
"### Compare eval metrics across models"
|
|
@@ -380,7 +525,7 @@
|
|
| 380 |
{
|
| 381 |
"cell_type": "code",
|
| 382 |
"execution_count": null,
|
| 383 |
-
"id": "
|
| 384 |
"metadata": {},
|
| 385 |
"outputs": [],
|
| 386 |
"source": [
|
|
@@ -401,7 +546,7 @@
|
|
| 401 |
{
|
| 402 |
"cell_type": "code",
|
| 403 |
"execution_count": null,
|
| 404 |
-
"id": "
|
| 405 |
"metadata": {},
|
| 406 |
"outputs": [],
|
| 407 |
"source": [
|
|
@@ -416,7 +561,7 @@
|
|
| 416 |
{
|
| 417 |
"cell_type": "code",
|
| 418 |
"execution_count": null,
|
| 419 |
-
"id": "
|
| 420 |
"metadata": {},
|
| 421 |
"outputs": [],
|
| 422 |
"source": [
|
|
@@ -453,7 +598,7 @@
|
|
| 453 |
{
|
| 454 |
"cell_type": "code",
|
| 455 |
"execution_count": null,
|
| 456 |
-
"id": "
|
| 457 |
"metadata": {},
|
| 458 |
"outputs": [],
|
| 459 |
"source": [
|
|
@@ -463,7 +608,7 @@
|
|
| 463 |
{
|
| 464 |
"cell_type": "code",
|
| 465 |
"execution_count": null,
|
| 466 |
-
"id": "
|
| 467 |
"metadata": {},
|
| 468 |
"outputs": [],
|
| 469 |
"source": [
|
|
|
|
| 7 |
"metadata": {},
|
| 8 |
"outputs": [],
|
| 9 |
"source": [
|
| 10 |
+
"from modules.vlm_inference import analyze_product_image\n",
|
| 11 |
+
"from modules.data_processing import load_test_data, image_to_base64\n",
|
| 12 |
+
"from modules.evals import run_inference_on_dataframe_async, evaluate_all_categories, extract_metrics\n",
|
| 13 |
"from dotenv import load_dotenv\n",
|
| 14 |
"import os\n",
|
| 15 |
"from PIL import Image\n",
|
|
|
|
| 137 |
"id": "10",
|
| 138 |
"metadata": {},
|
| 139 |
"source": [
|
| 140 |
+
"##### Run inference on Qwen 2.5 VL 32B"
|
|
|
|
| 141 |
]
|
| 142 |
},
|
| 143 |
{
|
|
|
|
| 234 |
]
|
| 235 |
},
|
| 236 |
{
|
| 237 |
+
"cell_type": "code",
|
| 238 |
+
"execution_count": null,
|
| 239 |
"id": "18",
|
| 240 |
"metadata": {},
|
| 241 |
+
"outputs": [],
|
| 242 |
+
"source": [
|
| 243 |
+
"# Run with concurrent requests using await directly in Jupyter\n",
|
| 244 |
+
"df_predictions_qwen3_8B_base = await run_inference_on_dataframe_async(\n",
|
| 245 |
+
" df_test,\n",
|
| 246 |
+
" model=\"accounts/pyroworks/deployedModels/qwen3-vl-8b-instruct-y147m785\",\n",
|
| 247 |
+
" provider=\"FireworksAI\",\n",
|
| 248 |
+
" api_key=FIREWORKS_API_KEY,\n",
|
| 249 |
+
" max_concurrent_requests=20, # Adjust based on rate limits\n",
|
| 250 |
+
")\n",
|
| 251 |
+
"\n",
|
| 252 |
+
"results_qwen3_8B_base = evaluate_all_categories(\n",
|
| 253 |
+
" df_ground_truth=df_test,\n",
|
| 254 |
+
" df_predictions=df_predictions_qwen3_8B_base,\n",
|
| 255 |
+
" categories=[\"masterCategory\", \"gender\", \"subCategory\"]\n",
|
| 256 |
+
")"
|
| 257 |
+
]
|
| 258 |
+
},
|
| 259 |
+
{
|
| 260 |
+
"cell_type": "code",
|
| 261 |
+
"execution_count": null,
|
| 262 |
+
"id": "19",
|
| 263 |
+
"metadata": {},
|
| 264 |
+
"outputs": [],
|
| 265 |
+
"source": [
|
| 266 |
+
"! firectl create deployment accounts/fireworks/models/qwen3-vl-32b-instruct --deployment-shape THROUGHPUT"
|
| 267 |
+
]
|
| 268 |
+
},
|
| 269 |
+
{
|
| 270 |
+
"cell_type": "code",
|
| 271 |
+
"execution_count": null,
|
| 272 |
+
"id": "20",
|
| 273 |
+
"metadata": {},
|
| 274 |
+
"outputs": [],
|
| 275 |
+
"source": [
|
| 276 |
+
"# Run with concurrent requests using await directly in Jupyter\n",
|
| 277 |
+
"df_predictions_qwen3_32B_base = await run_inference_on_dataframe_async(\n",
|
| 278 |
+
" df_test,\n",
|
| 279 |
+
" model=\"accounts/pyroworks/deployedModels/qwen3-vl-32b-instruct-jalntd80\",\n",
|
| 280 |
+
" provider=\"FireworksAI\",\n",
|
| 281 |
+
" api_key=FIREWORKS_API_KEY,\n",
|
| 282 |
+
" max_concurrent_requests=20, # Adjust based on rate limits\n",
|
| 283 |
+
")\n",
|
| 284 |
+
"\n",
|
| 285 |
+
"results_qwen3_32B_base = evaluate_all_categories(\n",
|
| 286 |
+
" df_ground_truth=df_test,\n",
|
| 287 |
+
" df_predictions=df_predictions_qwen3_32B_base,\n",
|
| 288 |
+
" categories=[\"masterCategory\", \"gender\", \"subCategory\"]\n",
|
| 289 |
+
")"
|
| 290 |
+
]
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"cell_type": "markdown",
|
| 294 |
+
"id": "21",
|
| 295 |
+
"metadata": {},
|
| 296 |
"source": [
|
| 297 |
"#### Run test set through fine tuned FW Qwen model\n",
|
| 298 |
"1. Create a Lora deployment of our fine tuned model\n",
|
|
|
|
| 302 |
},
|
| 303 |
{
|
| 304 |
"cell_type": "markdown",
|
| 305 |
+
"id": "22",
|
| 306 |
"metadata": {},
|
| 307 |
"source": [
|
| 308 |
+
"#### Run evals on Qwen 32B SFT"
|
| 309 |
]
|
| 310 |
},
|
| 311 |
{
|
| 312 |
"cell_type": "code",
|
| 313 |
"execution_count": null,
|
| 314 |
+
"id": "23",
|
| 315 |
"metadata": {},
|
| 316 |
"outputs": [],
|
| 317 |
"source": [
|
| 318 |
+
"!firectl -a pyroworks create deployment accounts/pyroworks/models/qwen-32b-fashion-catalog"
|
| 319 |
+
]
|
| 320 |
+
},
|
| 321 |
+
{
|
| 322 |
+
"cell_type": "markdown",
|
| 323 |
+
"id": "24",
|
| 324 |
+
"metadata": {},
|
| 325 |
+
"source": [
|
| 326 |
+
"Deployment ID: accounts/pyroworks/deployments/c09a2c4q"
|
| 327 |
]
|
| 328 |
},
|
| 329 |
{
|
| 330 |
"cell_type": "code",
|
| 331 |
"execution_count": null,
|
| 332 |
+
"id": "25",
|
| 333 |
"metadata": {},
|
| 334 |
"outputs": [],
|
| 335 |
"source": [
|
| 336 |
"# Run with concurrent requests using await directly in Jupyter\n",
|
| 337 |
"df_predictions_qwen_32b_fine_tuned = await run_inference_on_dataframe_async(\n",
|
| 338 |
" df_test,\n",
|
| 339 |
+
" model=\"accounts/pyroworks/deployedModels/qwen-32b-fashion-catalog-pwb1mga2\",\n",
|
| 340 |
" provider=\"FireworksAI\",\n",
|
| 341 |
" api_key=FIREWORKS_API_KEY,\n",
|
| 342 |
" max_concurrent_requests=20, # Adjust based on rate limits\n",
|
|
|
|
| 351 |
},
|
| 352 |
{
|
| 353 |
"cell_type": "markdown",
|
| 354 |
+
"id": "26",
|
| 355 |
"metadata": {},
|
| 356 |
"source": [
|
| 357 |
"#### Run evals on Qwen 72B SFT"
|
|
|
|
| 360 |
{
|
| 361 |
"cell_type": "code",
|
| 362 |
"execution_count": null,
|
| 363 |
+
"id": "27",
|
| 364 |
"metadata": {},
|
| 365 |
"outputs": [],
|
| 366 |
"source": [
|
|
|
|
| 370 |
{
|
| 371 |
"cell_type": "code",
|
| 372 |
"execution_count": null,
|
| 373 |
+
"id": "28",
|
| 374 |
"metadata": {},
|
| 375 |
"outputs": [],
|
| 376 |
"source": [
|
| 377 |
+
"!firectl get deployment bedocpar"
|
| 378 |
]
|
| 379 |
},
|
| 380 |
{
|
| 381 |
"cell_type": "code",
|
| 382 |
"execution_count": null,
|
| 383 |
+
"id": "29",
|
| 384 |
"metadata": {},
|
| 385 |
"outputs": [],
|
| 386 |
"source": [
|
|
|
|
| 402 |
},
|
| 403 |
{
|
| 404 |
"cell_type": "markdown",
|
| 405 |
+
"id": "30",
|
| 406 |
+
"metadata": {},
|
| 407 |
+
"source": [
|
| 408 |
+
"#### Run evals on Qwen 3 8B SFT"
|
| 409 |
+
]
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"cell_type": "code",
|
| 413 |
+
"execution_count": null,
|
| 414 |
+
"id": "31",
|
| 415 |
+
"metadata": {},
|
| 416 |
+
"outputs": [],
|
| 417 |
+
"source": [
|
| 418 |
+
"! firectl-admin -a pyroworks create deployment accounts/pyroworks/models/qwen3-8b-fashion-catalog"
|
| 419 |
+
]
|
| 420 |
+
},
|
| 421 |
+
{
|
| 422 |
+
"cell_type": "code",
|
| 423 |
+
"execution_count": null,
|
| 424 |
+
"id": "32",
|
| 425 |
+
"metadata": {},
|
| 426 |
+
"outputs": [],
|
| 427 |
+
"source": [
|
| 428 |
+
"# Run with concurrent requests using await directly in Jupyter\n",
|
| 429 |
+
"df_predictions_qwen_3_8b_fine_tuned = await run_inference_on_dataframe_async(\n",
|
| 430 |
+
" df_test,\n",
|
| 431 |
+
" model=\"accounts/pyroworks/deployedModels/qwen3-8b-fashion-catalog-bdo0tqxe\",\n",
|
| 432 |
+
" provider=\"FireworksAI\",\n",
|
| 433 |
+
" api_key=FIREWORKS_API_KEY,\n",
|
| 434 |
+
" max_concurrent_requests=20,\n",
|
| 435 |
+
")\n",
|
| 436 |
+
"\n",
|
| 437 |
+
"results_qwen__3_8b_fine_tuned = evaluate_all_categories(\n",
|
| 438 |
+
" df_ground_truth=df_test,\n",
|
| 439 |
+
" df_predictions=df_predictions_qwen_3_8b_fine_tuned,\n",
|
| 440 |
+
" categories=[\"masterCategory\", \"gender\", \"subCategory\"]\n",
|
| 441 |
+
")"
|
| 442 |
+
]
|
| 443 |
+
},
|
| 444 |
+
{
|
| 445 |
+
"cell_type": "markdown",
|
| 446 |
+
"id": "33",
|
| 447 |
+
"metadata": {},
|
| 448 |
+
"source": [
|
| 449 |
+
"#### Run evals on Qwen 3 32B SFT"
|
| 450 |
+
]
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"cell_type": "code",
|
| 454 |
+
"execution_count": null,
|
| 455 |
+
"id": "34",
|
| 456 |
+
"metadata": {},
|
| 457 |
+
"outputs": [],
|
| 458 |
+
"source": [
|
| 459 |
+
"! firectl -a pyroworks create deployment accounts/pyroworks/models/qwen3-32b-fashion-catalog --world-size 4 --accelerator-type NVIDIA_H200_141GB --min-replica-count 1 --max-replica-count 1"
|
| 460 |
+
]
|
| 461 |
+
},
|
| 462 |
+
{
|
| 463 |
+
"cell_type": "code",
|
| 464 |
+
"execution_count": null,
|
| 465 |
+
"id": "35",
|
| 466 |
+
"metadata": {},
|
| 467 |
+
"outputs": [],
|
| 468 |
+
"source": [
|
| 469 |
+
"# Run with concurrent requests using await directly in Jupyter\n",
|
| 470 |
+
"df_predictions_qwen_3_32b_fine_tuned = await run_inference_on_dataframe_async(\n",
|
| 471 |
+
" df_test,\n",
|
| 472 |
+
" model=\"accounts/pyroworks/deployedModels/qwen-32b-fashion-catalog-pwb1mga2\",\n",
|
| 473 |
+
" provider=\"FireworksAI\",\n",
|
| 474 |
+
" api_key=FIREWORKS_API_KEY,\n",
|
| 475 |
+
" max_concurrent_requests=20,\n",
|
| 476 |
+
")\n",
|
| 477 |
+
"\n",
|
| 478 |
+
"results_qwen__3_32b_fine_tuned = evaluate_all_categories(\n",
|
| 479 |
+
" df_ground_truth=df_test,\n",
|
| 480 |
+
" df_predictions=df_predictions_qwen_3_32b_fine_tuned,\n",
|
| 481 |
+
" categories=[\"masterCategory\", \"gender\", \"subCategory\"]\n",
|
| 482 |
+
")"
|
| 483 |
+
]
|
| 484 |
+
},
|
| 485 |
+
{
|
| 486 |
+
"cell_type": "markdown",
|
| 487 |
+
"id": "36",
|
| 488 |
"metadata": {},
|
| 489 |
"source": [
|
| 490 |
"#### Run test set through closed source model"
|
|
|
|
| 493 |
{
|
| 494 |
"cell_type": "code",
|
| 495 |
"execution_count": null,
|
| 496 |
+
"id": "37",
|
| 497 |
"metadata": {},
|
| 498 |
"outputs": [],
|
| 499 |
"source": [
|
|
|
|
| 516 |
},
|
| 517 |
{
|
| 518 |
"cell_type": "markdown",
|
| 519 |
+
"id": "38",
|
| 520 |
"metadata": {},
|
| 521 |
"source": [
|
| 522 |
"### Compare eval metrics across models"
|
|
|
|
| 525 |
{
|
| 526 |
"cell_type": "code",
|
| 527 |
"execution_count": null,
|
| 528 |
+
"id": "39",
|
| 529 |
"metadata": {},
|
| 530 |
"outputs": [],
|
| 531 |
"source": [
|
|
|
|
| 546 |
{
|
| 547 |
"cell_type": "code",
|
| 548 |
"execution_count": null,
|
| 549 |
+
"id": "40",
|
| 550 |
"metadata": {},
|
| 551 |
"outputs": [],
|
| 552 |
"source": [
|
|
|
|
| 561 |
{
|
| 562 |
"cell_type": "code",
|
| 563 |
"execution_count": null,
|
| 564 |
+
"id": "41",
|
| 565 |
"metadata": {},
|
| 566 |
"outputs": [],
|
| 567 |
"source": [
|
|
|
|
| 598 |
{
|
| 599 |
"cell_type": "code",
|
| 600 |
"execution_count": null,
|
| 601 |
+
"id": "42",
|
| 602 |
"metadata": {},
|
| 603 |
"outputs": [],
|
| 604 |
"source": [
|
|
|
|
| 608 |
{
|
| 609 |
"cell_type": "code",
|
| 610 |
"execution_count": null,
|
| 611 |
+
"id": "43",
|
| 612 |
"metadata": {},
|
| 613 |
"outputs": [],
|
| 614 |
"source": [
|
src/modules/evals.py
CHANGED
|
@@ -8,9 +8,10 @@ from sklearn.metrics import (
|
|
| 8 |
)
|
| 9 |
from tqdm.asyncio import tqdm as async_tqdm
|
| 10 |
import asyncio
|
| 11 |
-
|
| 12 |
-
from
|
| 13 |
-
from
|
|
|
|
| 14 |
from pathlib import Path
|
| 15 |
|
| 16 |
DATA_PATH = Path(__file__).parents[2] / "data"
|
|
@@ -149,7 +150,9 @@ def run_inference_on_dataframe(
|
|
| 149 |
- pred_description: Predicted description
|
| 150 |
"""
|
| 151 |
return asyncio.run(
|
| 152 |
-
run_inference_on_dataframe_async(
|
|
|
|
|
|
|
| 153 |
)
|
| 154 |
|
| 155 |
|
|
@@ -312,13 +315,128 @@ def extract_metrics(results_dict, model_name):
|
|
| 312 |
metrics_list = []
|
| 313 |
|
| 314 |
for category, metrics in results_dict.items():
|
| 315 |
-
metrics_list.append(
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
)
|
| 9 |
from tqdm.asyncio import tqdm as async_tqdm
|
| 10 |
import asyncio
|
| 11 |
+
import re
|
| 12 |
+
from glob import glob
|
| 13 |
+
from modules.vlm_inference import analyze_product_image_async
|
| 14 |
+
from modules.data_processing import image_to_base64
|
| 15 |
from pathlib import Path
|
| 16 |
|
| 17 |
DATA_PATH = Path(__file__).parents[2] / "data"
|
|
|
|
| 150 |
- pred_description: Predicted description
|
| 151 |
"""
|
| 152 |
return asyncio.run(
|
| 153 |
+
run_inference_on_dataframe_async(
|
| 154 |
+
df, model, api_key, provider, max_concurrent_requests
|
| 155 |
+
)
|
| 156 |
)
|
| 157 |
|
| 158 |
|
|
|
|
| 315 |
metrics_list = []
|
| 316 |
|
| 317 |
for category, metrics in results_dict.items():
|
| 318 |
+
metrics_list.append(
|
| 319 |
+
{
|
| 320 |
+
"model": model_name,
|
| 321 |
+
"category": category,
|
| 322 |
+
"accuracy": metrics["accuracy"],
|
| 323 |
+
"precision": metrics["precision"],
|
| 324 |
+
"recall": metrics["recall"],
|
| 325 |
+
"num_samples": metrics["num_samples"],
|
| 326 |
+
}
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
return metrics_list
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
def parse_model_name(filename: str) -> str:
|
| 333 |
+
"""
|
| 334 |
+
Parse a human-readable model name from prediction CSV filename.
|
| 335 |
+
|
| 336 |
+
Examples:
|
| 337 |
+
df_pred_FireworksAI_qwen2-vl-72b-BASE-instruct-yaxztv7t.csv -> Qwen2-VL-72B-BASE
|
| 338 |
+
df_pred_OpenAI_gpt-5-mini-2025-08-07.csv -> GPT-5-Mini
|
| 339 |
+
df_pred_FireworksAI_qwen-72b-SFT-fashion-catalog-oueqouqs.csv -> Qwen2-VL-72B-SFT
|
| 340 |
+
df_pred_FireworksAI_qwen2p5-vl-32b-instruct-ralh0ben.csv -> Qwen2.5-VL-32B-BASE
|
| 341 |
+
df_pred_FireworksAI_qwen-32b-SFT-fashion-catalog-c6fhxibo.csv -> Qwen2.5-VL-32B-SFT
|
| 342 |
+
df_pred_FireworksAI_qwen3-vl-8b-instruct-*.csv -> Qwen3-VL-8B-BASE
|
| 343 |
+
df_pred_FireworksAI_qwen3-8b-fashion-catalog-*.csv -> Qwen3-VL-8B-SFT
|
| 344 |
+
"""
|
| 345 |
+
basename = Path(filename).stem
|
| 346 |
+
|
| 347 |
+
# Remove prefix
|
| 348 |
+
name = basename.replace("df_pred_FireworksAI_", "").replace("df_pred_OpenAI_", "")
|
| 349 |
+
|
| 350 |
+
# GPT models
|
| 351 |
+
if "gpt" in name.lower():
|
| 352 |
+
return "GPT-5-Mini"
|
| 353 |
+
|
| 354 |
+
# Check if SFT (fine-tuned) model
|
| 355 |
+
is_sft = "SFT" in name or "fashion-catalog" in name
|
| 356 |
+
|
| 357 |
+
if "qwen3" in name.lower():
|
| 358 |
+
size_match = re.search(r"(\d+)b", name.lower())
|
| 359 |
+
size = size_match.group(1) if size_match else "?"
|
| 360 |
+
suffix = "SFT" if is_sft else "BASE"
|
| 361 |
+
return f"Qwen3-VL-{size}B-{suffix}"
|
| 362 |
+
|
| 363 |
+
if "qwen2p5" in name.lower() or (
|
| 364 |
+
"qwen-32b" in name.lower() and "qwen2-vl" not in name.lower()
|
| 365 |
+
):
|
| 366 |
+
size_match = re.search(r"(\d+)b", name.lower())
|
| 367 |
+
size = size_match.group(1) if size_match else "?"
|
| 368 |
+
suffix = "SFT" if is_sft else "BASE"
|
| 369 |
+
return f"Qwen2.5-VL-{size}B-{suffix}"
|
| 370 |
+
|
| 371 |
+
if "qwen2-vl" in name.lower() or "qwen-72b" in name.lower():
|
| 372 |
+
size_match = re.search(r"(\d+)b", name.lower())
|
| 373 |
+
size = size_match.group(1) if size_match else "?"
|
| 374 |
+
suffix = "SFT" if is_sft else "BASE"
|
| 375 |
+
return f"Qwen2-VL-{size}B-{suffix}"
|
| 376 |
+
|
| 377 |
+
return name
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
def compile_evaluation_results(data_path: str = None) -> pd.DataFrame:
|
| 381 |
+
"""
|
| 382 |
+
Compile evaluation results from all prediction CSVs in the data directory.
|
| 383 |
+
|
| 384 |
+
Finds all df_pred_*.csv files, calculates metrics against ground truth,
|
| 385 |
+
and creates a consolidated evaluation_results.csv.
|
| 386 |
+
|
| 387 |
+
Args:
|
| 388 |
+
data_path: Path to data directory. Defaults to project's data/ folder.
|
| 389 |
+
|
| 390 |
+
Returns:
|
| 391 |
+
pd.DataFrame: Compiled evaluation results with columns:
|
| 392 |
+
model, category, accuracy, precision, recall, num_samples
|
| 393 |
+
"""
|
| 394 |
+
if data_path is None:
|
| 395 |
+
data_path = Path(__file__).parents[2] / "data"
|
| 396 |
+
else:
|
| 397 |
+
data_path = Path(data_path)
|
| 398 |
+
|
| 399 |
+
# Load ground truth
|
| 400 |
+
test_csv = data_path / "test.csv"
|
| 401 |
+
df_test = pd.read_csv(test_csv)
|
| 402 |
+
print(f"Loaded {len(df_test)} ground truth samples from {test_csv}")
|
| 403 |
+
|
| 404 |
+
# Find all prediction CSVs
|
| 405 |
+
pred_files = sorted(glob(str(data_path / "df_pred_*.csv")))
|
| 406 |
+
print(f"Found {len(pred_files)} prediction files")
|
| 407 |
+
|
| 408 |
+
all_metrics = []
|
| 409 |
+
|
| 410 |
+
for pred_file in pred_files:
|
| 411 |
+
model_name = parse_model_name(pred_file)
|
| 412 |
+
print(f"\nProcessing: {Path(pred_file).name} -> {model_name}")
|
| 413 |
+
|
| 414 |
+
# Load predictions
|
| 415 |
+
df_pred = pd.read_csv(pred_file)
|
| 416 |
+
|
| 417 |
+
# Calculate metrics
|
| 418 |
+
results = evaluate_all_categories(
|
| 419 |
+
df_ground_truth=df_test,
|
| 420 |
+
df_predictions=df_pred,
|
| 421 |
+
id_col="id",
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
# Skip models with all errors
|
| 425 |
+
valid_results = {k: v for k, v in results.items() if "error" not in v}
|
| 426 |
+
if not valid_results:
|
| 427 |
+
print(f" Skipping {model_name}: no valid predictions")
|
| 428 |
+
continue
|
| 429 |
+
|
| 430 |
+
# Extract metrics for this model (only valid categories)
|
| 431 |
+
metrics = extract_metrics(valid_results, model_name)
|
| 432 |
+
all_metrics.extend(metrics)
|
| 433 |
+
|
| 434 |
+
# Create final DataFrame
|
| 435 |
+
df_eval = pd.DataFrame(all_metrics)
|
| 436 |
+
|
| 437 |
+
# Save results
|
| 438 |
+
output_path = data_path / "evaluation_results.csv"
|
| 439 |
+
df_eval.to_csv(output_path, index=False)
|
| 440 |
+
print(f"\nSaved evaluation results to {output_path}")
|
| 441 |
+
|
| 442 |
+
return df_eval
|
src/modules/vlm_inference.py
CHANGED
|
@@ -2,7 +2,7 @@ import os
|
|
| 2 |
from openai import OpenAI, AsyncOpenAI
|
| 3 |
from pydantic import BaseModel, Field
|
| 4 |
from typing import Optional, Literal
|
| 5 |
-
from
|
| 6 |
|
| 7 |
SYSTEM_PROMPT = """
|
| 8 |
You are an e-commerce fashion catalog assistant.
|
|
|
|
| 2 |
from openai import OpenAI, AsyncOpenAI
|
| 3 |
from pydantic import BaseModel, Field
|
| 4 |
from typing import Optional, Literal
|
| 5 |
+
from modules.constants import PROMPT_LIBRARY
|
| 6 |
|
| 7 |
SYSTEM_PROMPT = """
|
| 8 |
You are an e-commerce fashion catalog assistant.
|