Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import logging | |
| from copy import deepcopy | |
| from typing import Callable, Dict, List, Optional, Tuple, Union | |
| from einops import rearrange | |
| import fvcore.nn.weight_init as weight_init | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from detectron2.config import configurable | |
| from detectron2.layers import Conv2d, ShapeSpec, get_norm | |
| from detectron2.modeling import SEM_SEG_HEADS_REGISTRY | |
| from ..transformer.cat_seg_predictor import CATSegPredictor | |
| class CATSegHead(nn.Module): | |
| def __init__( | |
| self, | |
| input_shape: Dict[str, ShapeSpec], | |
| *, | |
| num_classes: int, | |
| ignore_value: int = -1, | |
| # extra parameters | |
| feature_resolution: list, | |
| transformer_predictor: nn.Module, | |
| ): | |
| """ | |
| NOTE: this interface is experimental. | |
| Args: | |
| input_shape: shapes (channels and stride) of the input features | |
| num_classes: number of classes to predict | |
| pixel_decoder: the pixel decoder module | |
| loss_weight: loss weight | |
| ignore_value: category id to be ignored during training. | |
| transformer_predictor: the transformer decoder that makes prediction | |
| transformer_in_feature: input feature name to the transformer_predictor | |
| """ | |
| super().__init__() | |
| input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride) | |
| self.in_features = [k for k, v in input_shape] | |
| self.ignore_value = ignore_value | |
| self.predictor = transformer_predictor | |
| self.num_classes = num_classes | |
| self.feature_resolution = feature_resolution | |
| def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]): | |
| return { | |
| "input_shape": { | |
| k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES | |
| }, | |
| "ignore_value": cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE, | |
| "num_classes": cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES, | |
| "feature_resolution": cfg.MODEL.SEM_SEG_HEAD.FEATURE_RESOLUTION, | |
| "transformer_predictor": CATSegPredictor( | |
| cfg, | |
| ), | |
| } | |
| def forward(self, features, guidance_features): | |
| """ | |
| Arguments: | |
| img_feats: (B, C, HW) | |
| affinity_features: (B, C, ) | |
| """ | |
| img_feat = rearrange(features[:, 1:, :], "b (h w) c->b c h w", h=self.feature_resolution[0], w=self.feature_resolution[1]) | |
| return self.predictor(img_feat, guidance_features) |