Spaces:
Runtime error
Runtime error
| import json | |
| import os | |
| from typing import Any | |
| import h5py | |
| import numpy as np | |
| import torch | |
| from unik3d.datasets.image_dataset import ImageDataset | |
| from unik3d.datasets.pipelines import AnnotationMask, KittiCrop | |
| from unik3d.datasets.sequence_dataset import SequenceDataset | |
| from unik3d.datasets.utils import DatasetFromList | |
| from unik3d.utils import identity | |
| class DTURMVD(SequenceDataset): | |
| min_depth = 0.05 | |
| max_depth = 3.0 | |
| depth_scale = 1000.0 | |
| default_fps = 6 | |
| test_split = "test.txt" | |
| train_split = "test.txt" | |
| sequences_file = "sequences.json" | |
| hdf5_paths = ["dtu_rmvd.hdf5"] | |
| def __init__( | |
| self, | |
| image_shape, | |
| split_file, | |
| test_mode, | |
| crop=None, | |
| augmentations_db={}, | |
| normalize=True, | |
| resize_method="hard", | |
| mini: float = 1.0, | |
| num_frames: int = 1, | |
| benchmark: bool = False, | |
| decode_fields: list[str] = ["image", "depth"], | |
| inplace_fields: list[str] = ["K", "cam2w"], | |
| **kwargs, | |
| ): | |
| super().__init__( | |
| image_shape=image_shape, | |
| split_file=split_file, | |
| test_mode=test_mode, | |
| benchmark=benchmark, | |
| normalize=normalize, | |
| augmentations_db=augmentations_db, | |
| resize_method=resize_method, | |
| mini=mini, | |
| num_frames=num_frames, | |
| decode_fields=decode_fields, | |
| inplace_fields=inplace_fields, | |
| **kwargs, | |
| ) | |
| def pre_pipeline(self, results): | |
| results = super().pre_pipeline(results) | |
| results["dense"] = [True] * self.num_frames * self.num_copies | |
| results["si"] = [True] * self.num_frames * self.num_copies | |
| results["quality"] = [1] * self.num_frames * self.num_copies | |
| return results | |