Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import torch | |
| from torch.utils.data import Dataset | |
| class Dummy(Dataset): | |
| train_split = None | |
| test_split = None | |
| def __init__(self, *args, **kwargs): | |
| super().__init__() | |
| self.dataset = np.arange(1_000_000) | |
| def get_single_item(self, idx): | |
| # results = {} | |
| # results["cam2w"] = torch.eye(4).unsqueeze(0) | |
| # results["K"] = torch.eye(3).unsqueeze(0) | |
| # results["image"] = torch.zeros(1, 3, 1024, 1024).to(torch.uint8) | |
| # results["depth"] = torch.zeros(1, 1, 1024, 1024).to(torch.float32) | |
| return { | |
| "x": {(0, 0): torch.rand(1, 3, 1024, 1024, dtype=torch.float32)}, | |
| "img_metas": {"val": torch.rand(1, 1024, dtype=torch.float32)}, | |
| } | |
| def __getitem__(self, idx): | |
| if isinstance(idx, (list, tuple)): | |
| results = [self.get_single_item(i) for i in idx] | |
| else: | |
| results = self.get_single_item(idx) | |
| return results | |
| def __len__(self): | |
| return len(self.dataset) | |