Spaces:
Runtime error
Runtime error
| import json | |
| import os | |
| import h5py | |
| import numpy as np | |
| import torch | |
| from unik3d.datasets.image_dataset import ImageDataset | |
| from unik3d.datasets.utils import DatasetFromList | |
| class Mapillary(ImageDataset): | |
| min_depth = 0.01 | |
| max_depth = 70.0 | |
| depth_scale = 256.0 | |
| test_split = "mapillary_val.txt" | |
| train_split = "mapillary_train_clean.txt" | |
| intrisics_file = "intrinsics.json" | |
| hdf5_paths = ["Mapillary.hdf5"] | |
| def __init__( | |
| self, | |
| image_shape, | |
| split_file, | |
| test_mode, | |
| crop=None, | |
| benchmark=False, | |
| augmentations_db={}, | |
| normalize=True, | |
| resize_method="hard", | |
| mini=1.0, | |
| **kwargs, | |
| ): | |
| super().__init__( | |
| image_shape=image_shape, | |
| split_file=split_file, | |
| test_mode=test_mode, | |
| benchmark=benchmark, | |
| normalize=normalize, | |
| augmentations_db=augmentations_db, | |
| resize_method=resize_method, | |
| mini=mini, | |
| **kwargs, | |
| ) | |
| self.test_mode = test_mode | |
| self.crop = crop | |
| self.load_dataset() | |
| def load_dataset(self): | |
| h5file = h5py.File( | |
| os.path.join(self.data_root, self.hdf5_paths[0]), | |
| "r", | |
| libver="latest", | |
| swmr=True, | |
| ) | |
| txt_file = np.array(h5file[self.split_file]) | |
| txt_string = txt_file.tostring().decode("ascii") # [:-1] # correct the -1 | |
| intrinsics = np.array(h5file[self.intrisics_file]).tostring().decode("ascii") | |
| intrinsics = json.loads(intrinsics) | |
| dataset = [] | |
| for line in txt_string.split("\n"): | |
| image_filename, depth_filename = line.strip().split(" ") | |
| intrinsics_val = torch.tensor(intrinsics[image_filename]).squeeze()[:, :3] | |
| sample = [image_filename, depth_filename, intrinsics_val] | |
| dataset.append(sample) | |
| h5file.close() | |
| if not self.test_mode: | |
| dataset = self.chunk(dataset, chunk_dim=1, pct=self.mini) | |
| if self.test_mode: | |
| dataset = self.chunk(dataset, chunk_dim=1, pct=0.05) | |
| self.dataset = DatasetFromList(dataset) | |
| self.log_load_dataset() | |
| def pre_pipeline(self, results): | |
| results = super().pre_pipeline(results) | |
| results["si"] = [True] * self.num_copies | |
| results["valid_camera"] = [False] * self.num_copies | |
| results["dense"] = [False] * self.num_copies | |
| results["quality"] = [2] * self.num_copies | |
| return results | |