File size: 5,486 Bytes
d411ac6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#!/usr/bin/env python3
"""
Gradio app for ASR model with support for:
- Microphone input
- File upload
- Word-level timestamps
- Speaker diarization
"""

import os

# Fix OpenMP environment variable if invalid
if not os.environ.get("OMP_NUM_THREADS", "").isdigit():
    os.environ["OMP_NUM_THREADS"] = "1"

# Set matplotlib config dir to avoid warning in Hugging Face Spaces
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"

# Disable tokenizer parallelism warning
os.environ["TOKENIZERS_PARALLELISM"] = "false"

import gradio as gr
import torch
from transformers import pipeline


def format_timestamp(seconds):
    """Format seconds as MM:SS.ms"""
    mins = int(seconds // 60)
    secs = seconds % 60
    return f"{mins:02d}:{secs:05.2f}"


def format_words_with_timestamps(words):
    """Format word timestamps as readable text."""
    if not words:
        return ""

    lines = []
    for w in words:
        start = format_timestamp(w["start"])
        end = format_timestamp(w["end"])
        speaker = w.get("speaker", "")
        if speaker:
            lines.append(f"[{start} - {end}] ({speaker}) {w['word']}")
        else:
            lines.append(f"[{start} - {end}] {w['word']}")

    return "\n".join(lines)


def format_speaker_segments(segments):
    """Format speaker segments as readable text."""
    if not segments:
        return ""

    lines = []
    for seg in segments:
        start = format_timestamp(seg["start"])
        end = format_timestamp(seg["end"])
        lines.append(f"[{start} - {end}] {seg['speaker']}")

    return "\n".join(lines)


def create_demo(model_path="mazesmazes/tiny-audio"):
    """Create Gradio demo interface using transformers pipeline."""

    # Determine device
    if torch.cuda.is_available():
        device = 0
    elif torch.backends.mps.is_available():
        device = "mps"
    else:
        device = -1

    # Load pipeline - uses custom ASRPipeline from the model repo
    pipe = pipeline(
        "automatic-speech-recognition",
        model=model_path,
        trust_remote_code=True,
        device=device,
    )

    def process_audio(audio, show_timestamps, show_diarization):
        """Process audio file for transcription."""
        if audio is None:
            return "Please provide audio input", "", ""

        # Build kwargs
        kwargs = {}
        if show_timestamps:
            kwargs["return_timestamps"] = True
        if show_diarization:
            kwargs["return_speakers"] = True

        # Transcribe the audio
        result = pipe(audio, **kwargs)

        # Format outputs
        transcript = result.get("text", "")

        # Format timestamps
        if show_timestamps and "words" in result:
            timestamps_text = format_words_with_timestamps(result["words"])
        elif "timestamp_error" in result:
            timestamps_text = f"Error: {result['timestamp_error']}"
        else:
            timestamps_text = ""

        # Format diarization
        if show_diarization and "speaker_segments" in result:
            diarization_text = format_speaker_segments(result["speaker_segments"])
        elif "diarization_error" in result:
            diarization_text = f"Error: {result['diarization_error']}"
        else:
            diarization_text = ""

        return transcript, timestamps_text, diarization_text

    # Create Gradio interface
    with gr.Blocks(title="Tiny Audio") as demo:
        gr.Markdown("# Tiny Audio")
        gr.Markdown("Speech recognition with optional word timestamps and speaker diarization.")

        with gr.Row():
            with gr.Column(scale=2):
                audio_input = gr.Audio(
                    sources=["microphone", "upload"],
                    type="filepath",
                    label="Audio Input",
                )

                with gr.Row():
                    show_timestamps = gr.Checkbox(
                        label="Word Timestamps",
                        value=False,
                    )
                    show_diarization = gr.Checkbox(
                        label="Speaker Diarization",
                        value=False,
                    )

                process_btn = gr.Button("Transcribe", variant="primary")

            with gr.Column(scale=3):
                output_text = gr.Textbox(
                    label="Transcript",
                    lines=5,
                )
                timestamps_output = gr.Textbox(
                    label="Word Timestamps",
                    lines=8,
                )
                diarization_output = gr.Textbox(
                    label="Speaker Segments",
                    lines=5,
                )

        # Wire up events
        process_btn.click(
            fn=process_audio,
            inputs=[audio_input, show_timestamps, show_diarization],
            outputs=[output_text, timestamps_output, diarization_output],
        )

    return demo


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(description="ASR Gradio Demo")
    parser.add_argument(
        "--model",
        type=str,
        default=os.environ.get("MODEL_ID", "mazesmazes/tiny-audio"),
        help="HuggingFace Hub model ID",
    )
    parser.add_argument("--port", type=int, default=7860)
    parser.add_argument("--share", action="store_true")

    args = parser.parse_args()

    demo = create_demo(args.model)
    demo.launch(server_port=args.port, share=args.share, server_name="0.0.0.0")