Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,718 Bytes
917a889 fdcc6ec 917a889 163fb7c 4f41697 1aa888c 917a889 a1e3f5f 98b3116 917a889 a1e3f5f faaf8be a1e3f5f faaf8be a1e3f5f f69400c a1e3f5f 917a889 1d2bd93 98b3116 917a889 98b3116 917a889 1d2bd93 98b3116 1d2bd93 917a889 a3c6a70 917a889 a1e3f5f 917a889 71d5a9d 917a889 36c86a2 a1e3f5f 917a889 a1e3f5f faaf8be a1e3f5f 917a889 9c70317 917a889 a1e3f5f 917a889 0ed9085 8c65cde 917a889 a3c6a70 917a889 2128820 917a889 a3c6a70 faaf8be 917a889 a1e3f5f 917a889 8fd2f97 917a889 a1e3f5f 917a889 f69400c 917a889 a1e3f5f 917a889 8fd2f97 917a889 a1e3f5f 917a889 a1e3f5f 540a9b3 163fb7c 540a9b3 691d6b0 917a889 a1e3f5f 917a889 a1e3f5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 |
import gradio as gr
from gradio_client import Client, handle_file
import spaces
import os
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = '1'
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
os.environ["ATTN_BACKEND"] = "flash_attn_3"
os.environ["FLEX_GEMM_AUTOTUNE_CACHE_PATH"] = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'autotune_cache.json')
os.environ["FLEX_GEMM_AUTOTUNER_VERBOSE"] = '1'
from datetime import datetime
import shutil
import cv2
from typing import *
import torch
import numpy as np
from PIL import Image
import base64
import io
import tempfile
from trellis2.modules.sparse import SparseTensor
from trellis2.pipelines import Trellis2ImageTo3DPipeline
from trellis2.renderers import EnvMap
from trellis2.utils import render_utils
import o_voxel
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
MODES = [
{"name": "Normal", "icon": "assets/app/normal.png", "render_key": "normal"},
{"name": "Clay render", "icon": "assets/app/clay.png", "render_key": "clay"},
{"name": "Base color", "icon": "assets/app/basecolor.png", "render_key": "base_color"},
{"name": "HDRI forest", "icon": "assets/app/hdri_forest.png", "render_key": "shaded_forest"},
{"name": "HDRI sunset", "icon": "assets/app/hdri_sunset.png", "render_key": "shaded_sunset"},
{"name": "HDRI courtyard", "icon": "assets/app/hdri_courtyard.png", "render_key": "shaded_courtyard"},
]
STEPS = 8
DEFAULT_MODE = 3
DEFAULT_STEP = 3
css = """
/* Overwrite Gradio Default Style */
.stepper-wrapper {
padding: 0;
}
.stepper-container {
padding: 0;
align-items: center;
}
.step-button {
flex-direction: row;
}
.step-connector {
transform: none;
}
.step-number {
width: 16px;
height: 16px;
}
.step-label {
position: relative;
bottom: 0;
}
.wrap.center.full {
inset: 0;
height: 100%;
}
.wrap.center.full.translucent {
background: var(--block-background-fill);
}
.meta-text-center {
display: block !important;
position: absolute !important;
top: unset !important;
bottom: 0 !important;
right: 0 !important;
transform: unset !important;
}
/* Previewer */
.previewer-container {
position: relative;
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
width: 100%;
height: 722px;
margin: 0 auto;
padding: 20px;
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
}
.previewer-container .tips-icon {
position: absolute;
right: 10px;
top: 10px;
z-index: 10;
border-radius: 10px;
color: #fff;
background-color: var(--color-accent);
padding: 3px 6px;
user-select: none;
}
.previewer-container .tips-text {
position: absolute;
right: 10px;
top: 50px;
color: #fff;
background-color: var(--color-accent);
border-radius: 10px;
padding: 6px;
text-align: left;
max-width: 300px;
z-index: 10;
transition: all 0.3s;
opacity: 0%;
user-select: none;
}
.previewer-container .tips-text p {
font-size: 14px;
line-height: 1.2;
}
.tips-icon:hover + .tips-text {
display: block;
opacity: 100%;
}
/* Row 1: Display Modes */
.previewer-container .mode-row {
width: 100%;
display: flex;
gap: 8px;
justify-content: center;
margin-bottom: 20px;
flex-wrap: wrap;
}
.previewer-container .mode-btn {
width: 24px;
height: 24px;
border-radius: 50%;
cursor: pointer;
opacity: 0.5;
transition: all 0.2s;
border: 2px solid #ddd;
object-fit: cover;
}
.previewer-container .mode-btn:hover { opacity: 0.9; transform: scale(1.1); }
.previewer-container .mode-btn.active {
opacity: 1;
border-color: var(--color-accent);
transform: scale(1.1);
}
/* Row 2: Display Image */
.previewer-container .display-row {
margin-bottom: 20px;
min-height: 400px;
width: 100%;
flex-grow: 1;
display: flex;
justify-content: center;
align-items: center;
}
.previewer-container .previewer-main-image {
max-width: 100%;
max-height: 100%;
flex-grow: 1;
object-fit: contain;
display: none;
}
.previewer-container .previewer-main-image.visible {
display: block;
}
/* Row 3: Custom HTML Slider */
.previewer-container .slider-row {
width: 100%;
display: flex;
flex-direction: column;
align-items: center;
gap: 10px;
padding: 0 10px;
}
.previewer-container input[type=range] {
-webkit-appearance: none;
width: 100%;
max-width: 400px;
background: transparent;
}
.previewer-container input[type=range]::-webkit-slider-runnable-track {
width: 100%;
height: 8px;
cursor: pointer;
background: #ddd;
border-radius: 5px;
}
.previewer-container input[type=range]::-webkit-slider-thumb {
height: 20px;
width: 20px;
border-radius: 50%;
background: var(--color-accent);
cursor: pointer;
-webkit-appearance: none;
margin-top: -6px;
box-shadow: 0 2px 5px rgba(0,0,0,0.2);
transition: transform 0.1s;
}
.previewer-container input[type=range]::-webkit-slider-thumb:hover {
transform: scale(1.2);
}
/* Overwrite Previewer Block Style */
.gradio-container .padded:has(.previewer-container) {
padding: 0 !important;
}
.gradio-container:has(.previewer-container) [data-testid="block-label"] {
position: absolute;
top: 0;
left: 0;
}
"""
head = """
<script>
function refreshView(mode, step) {
// 1. Find current mode and step
const allImgs = document.querySelectorAll('.previewer-main-image');
for (let i = 0; i < allImgs.length; i++) {
const img = allImgs[i];
if (img.classList.contains('visible')) {
const id = img.id;
const [_, m, s] = id.split('-');
if (mode === -1) mode = parseInt(m.slice(1));
if (step === -1) step = parseInt(s.slice(1));
break;
}
}
// 2. Hide ALL images
// We select all elements with class 'previewer-main-image'
allImgs.forEach(img => img.classList.remove('visible'));
// 3. Construct the specific ID for the current state
// Format: view-m{mode}-s{step}
const targetId = 'view-m' + mode + '-s' + step;
const targetImg = document.getElementById(targetId);
// 4. Show ONLY the target
if (targetImg) {
targetImg.classList.add('visible');
}
// 5. Update Button Highlights
const allBtns = document.querySelectorAll('.mode-btn');
allBtns.forEach((btn, idx) => {
if (idx === mode) btn.classList.add('active');
else btn.classList.remove('active');
});
}
// --- Action: Switch Mode ---
function selectMode(mode) {
refreshView(mode, -1);
}
// --- Action: Slider Change ---
function onSliderChange(val) {
refreshView(-1, parseInt(val));
}
</script>
"""
empty_html = f"""
<div class="previewer-container">
<svg style=" opacity: .5; height: var(--size-5); color: var(--body-text-color);"
xmlns="http://www.w3.org/2000/svg" width="100%" height="100%" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="feather feather-image"><rect x="3" y="3" width="18" height="18" rx="2" ry="2"></rect><circle cx="8.5" cy="8.5" r="1.5"></circle><polyline points="21 15 16 10 5 21"></polyline></svg>
</div>
"""
def image_to_base64(image):
buffered = io.BytesIO()
image = image.convert("RGB")
image.save(buffered, format="jpeg", quality=85)
img_str = base64.b64encode(buffered.getvalue()).decode()
return f"data:image/jpeg;base64,{img_str}"
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
shutil.rmtree(user_dir)
def remove_background(input: Image.Image) -> Image.Image:
with tempfile.NamedTemporaryFile(suffix='.png') as f:
input = input.convert('RGB')
input.save(f.name)
output = rmbg_client.predict(handle_file(f.name), api_name="/image")[0][0]
output = Image.open(output)
return output
def preprocess_image(input: Image.Image) -> Image.Image:
"""
Preprocess the input image.
"""
# if has alpha channel, use it directly; otherwise, remove background
has_alpha = False
if input.mode == 'RGBA':
alpha = np.array(input)[:, :, 3]
if not np.all(alpha == 255):
has_alpha = True
max_size = max(input.size)
scale = min(1, 1024 / max_size)
if scale < 1:
input = input.resize((int(input.width * scale), int(input.height * scale)), Image.Resampling.LANCZOS)
if has_alpha:
output = input
else:
output = remove_background(input)
output_np = np.array(output)
alpha = output_np[:, :, 3]
bbox = np.argwhere(alpha > 0.8 * 255)
bbox = np.min(bbox[:, 1]), np.min(bbox[:, 0]), np.max(bbox[:, 1]), np.max(bbox[:, 0])
center = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
size = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
size = int(size * 1)
bbox = center[0] - size // 2, center[1] - size // 2, center[0] + size // 2, center[1] + size // 2
output = output.crop(bbox) # type: ignore
output = np.array(output).astype(np.float32) / 255
output = output[:, :, :3] * output[:, :, 3:4]
output = Image.fromarray((output * 255).astype(np.uint8))
return output
def pack_state(latents: Tuple[SparseTensor, SparseTensor, int]) -> dict:
shape_slat, tex_slat, res = latents
return {
'shape_slat_feats': shape_slat.feats.cpu().numpy(),
'tex_slat_feats': tex_slat.feats.cpu().numpy(),
'coords': shape_slat.coords.cpu().numpy(),
'res': res,
}
def unpack_state(state: dict) -> Tuple[SparseTensor, SparseTensor, int]:
shape_slat = SparseTensor(
feats=torch.from_numpy(state['shape_slat_feats']).cuda(),
coords=torch.from_numpy(state['coords']).cuda(),
)
tex_slat = shape_slat.replace(torch.from_numpy(state['tex_slat_feats']).cuda())
return shape_slat, tex_slat, state['res']
def get_seed(randomize_seed: bool, seed: int) -> int:
"""
Get the random seed.
"""
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
@spaces.GPU(duration=120)
def image_to_3d(
image: Image.Image,
seed: int,
resolution: str,
ss_guidance_strength: float,
ss_guidance_rescale: float,
ss_sampling_steps: int,
ss_rescale_t: float,
shape_slat_guidance_strength: float,
shape_slat_guidance_rescale: float,
shape_slat_sampling_steps: int,
shape_slat_rescale_t: float,
tex_slat_guidance_strength: float,
tex_slat_guidance_rescale: float,
tex_slat_sampling_steps: int,
tex_slat_rescale_t: float,
req: gr.Request,
progress=gr.Progress(track_tqdm=True),
) -> str:
# --- Sampling ---
outputs, latents = pipeline.run(
image,
seed=seed,
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"guidance_strength": ss_guidance_strength,
"guidance_rescale": ss_guidance_rescale,
"rescale_t": ss_rescale_t,
},
shape_slat_sampler_params={
"steps": shape_slat_sampling_steps,
"guidance_strength": shape_slat_guidance_strength,
"guidance_rescale": shape_slat_guidance_rescale,
"rescale_t": shape_slat_rescale_t,
},
tex_slat_sampler_params={
"steps": tex_slat_sampling_steps,
"guidance_strength": tex_slat_guidance_strength,
"guidance_rescale": tex_slat_guidance_rescale,
"rescale_t": tex_slat_rescale_t,
},
pipeline_type={
"512": "512",
"1024": "1024_cascade",
"1536": "1536_cascade",
}[resolution],
return_latent=True,
)
mesh = outputs[0]
mesh.simplify(16777216) # nvdiffrast limit
images = render_utils.render_snapshot(mesh, resolution=1024, r=2, fov=36, nviews=STEPS, envmap=envmap)
state = pack_state(latents)
torch.cuda.empty_cache()
# --- HTML Construction ---
# The Stack of 48 Images
images_html = ""
for m_idx, mode in enumerate(MODES):
for s_idx in range(STEPS):
# ID Naming Convention: view-m{mode}-s{step}
unique_id = f"view-m{m_idx}-s{s_idx}"
# Logic: Only Mode 0, Step 0 is visible initially
is_visible = (m_idx == DEFAULT_MODE and s_idx == DEFAULT_STEP)
vis_class = "visible" if is_visible else ""
# Image Source
img_base64 = image_to_base64(Image.fromarray(images[mode['render_key']][s_idx]))
# Render the Tag
images_html += f"""
<img id="{unique_id}"
class="previewer-main-image {vis_class}"
src="{img_base64}"
loading="eager">
"""
# Button Row HTML
btns_html = ""
for idx, mode in enumerate(MODES):
active_class = "active" if idx == DEFAULT_MODE else ""
# Note: onclick calls the JS function defined in Head
btns_html += f"""
<img src="{mode['icon_base64']}"
class="mode-btn {active_class}"
onclick="selectMode({idx})"
title="{mode['name']}">
"""
# Assemble the full component
full_html = f"""
<div class="previewer-container">
<div class="tips-wrapper">
<div class="tips-icon">💡Tips</div>
<div class="tips-text">
<p>● <b>Render Mode</b> - Click on the circular buttons to switch between different render modes.</p>
<p>● <b>View Angle</b> - Drag the slider to change the view angle.</p>
</div>
</div>
<!-- Row 1: Viewport containing 48 static <img> tags -->
<div class="display-row">
{images_html}
</div>
<!-- Row 2 -->
<div class="mode-row" id="btn-group">
{btns_html}
</div>
<!-- Row 3: Slider -->
<div class="slider-row">
<input type="range" id="custom-slider" min="0" max="{STEPS - 1}" value="{DEFAULT_STEP}" step="1" oninput="onSliderChange(this.value)">
</div>
</div>
"""
return state, full_html
@spaces.GPU(duration=60)
def extract_glb(
state: dict,
decimation_target: int,
texture_size: int,
req: gr.Request,
progress=gr.Progress(track_tqdm=True),
) -> Tuple[str, str]:
"""
Extract a GLB file from the 3D model.
Args:
state (dict): The state of the generated 3D model.
decimation_target (int): The target face count for decimation.
texture_size (int): The texture resolution.
Returns:
str: The path to the extracted GLB file.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
shape_slat, tex_slat, res = unpack_state(state)
mesh = pipeline.decode_latent(shape_slat, tex_slat, res)[0]
mesh.simplify(16777216)
glb = o_voxel.postprocess.to_glb(
vertices=mesh.vertices,
faces=mesh.faces,
attr_volume=mesh.attrs,
coords=mesh.coords,
attr_layout=pipeline.pbr_attr_layout,
grid_size=res,
aabb=[[-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]],
decimation_target=decimation_target,
texture_size=texture_size,
remesh=True,
remesh_band=1,
remesh_project=0,
use_tqdm=True,
)
now = datetime.now()
timestamp = now.strftime("%Y-%m-%dT%H%M%S") + f".{now.microsecond // 1000:03d}"
os.makedirs(user_dir, exist_ok=True)
glb_path = os.path.join(user_dir, f'sample_{timestamp}.glb')
glb.export(glb_path, extension_webp=True)
torch.cuda.empty_cache()
return glb_path, glb_path
with gr.Blocks(delete_cache=(600, 600)) as demo:
gr.Markdown("""
## Image to 3D Asset with [TRELLIS.2](https://microsoft.github.io/trellis.2)
* Upload an image (preferably with an alpha-masked foreground object) and click Generate to create a 3D asset.
* Click Extract GLB to export and download the generated GLB file if you're satisfied with the result. Otherwise, try another time.
""")
with gr.Row():
with gr.Column(scale=1, min_width=360):
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=400)
resolution = gr.Radio(["512", "1024", "1536"], label="Resolution", value="1024")
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
decimation_target = gr.Slider(100000, 500000, label="Decimation Target", value=300000, step=10000)
texture_size = gr.Slider(1024, 4096, label="Texture Size", value=2048, step=1024)
generate_btn = gr.Button("Generate")
with gr.Accordion(label="Advanced Settings", open=False):
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.7, step=0.01)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
ss_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=5.0, step=0.1)
gr.Markdown("Stage 2: Shape Generation")
with gr.Row():
shape_slat_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
shape_slat_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.5, step=0.01)
shape_slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
shape_slat_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=3.0, step=0.1)
gr.Markdown("Stage 3: Material Generation")
with gr.Row():
tex_slat_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=1.0, step=0.1)
tex_slat_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.0, step=0.01)
tex_slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
tex_slat_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=3.0, step=0.1)
with gr.Column(scale=10):
with gr.Walkthrough(selected=0) as walkthrough:
with gr.Step("Preview", id=0):
preview_output = gr.HTML(empty_html, label="3D Asset Preview", show_label=True, container=True)
extract_btn = gr.Button("Extract GLB")
with gr.Step("Extract", id=1):
glb_output = gr.Model3D(label="Extracted GLB", height=724, show_label=True, display_mode="solid", clear_color=(0.25, 0.25, 0.25, 1.0))
download_btn = gr.DownloadButton(label="Download GLB")
gr.Markdown("*We are actively working on improving the speed of GLB extraction. Currently, it may take half a minute or more and face count is limited.*")
with gr.Column(scale=1, min_width=172):
examples = gr.Examples(
examples=[
f'assets/example_image/{image}'
for image in os.listdir("assets/example_image")
],
inputs=[image_prompt],
fn=preprocess_image,
outputs=[image_prompt],
run_on_click=True,
examples_per_page=18,
)
output_buf = gr.State()
# Handlers
demo.load(start_session)
demo.unload(end_session)
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[image_prompt],
)
generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
lambda: gr.Walkthrough(selected=0), outputs=walkthrough
).then(
image_to_3d,
inputs=[
image_prompt, seed, resolution,
ss_guidance_strength, ss_guidance_rescale, ss_sampling_steps, ss_rescale_t,
shape_slat_guidance_strength, shape_slat_guidance_rescale, shape_slat_sampling_steps, shape_slat_rescale_t,
tex_slat_guidance_strength, tex_slat_guidance_rescale, tex_slat_sampling_steps, tex_slat_rescale_t,
],
outputs=[output_buf, preview_output],
)
extract_btn.click(
lambda: gr.Walkthrough(selected=1), outputs=walkthrough
).then(
extract_glb,
inputs=[output_buf, decimation_target, texture_size],
outputs=[glb_output, download_btn],
)
# Launch the Gradio app
if __name__ == "__main__":
os.makedirs(TMP_DIR, exist_ok=True)
# Construct ui components
btn_img_base64_strs = {}
for i in range(len(MODES)):
icon = Image.open(MODES[i]['icon'])
MODES[i]['icon_base64'] = image_to_base64(icon)
rmbg_client = Client("briaai/BRIA-RMBG-2.0")
pipeline = Trellis2ImageTo3DPipeline.from_pretrained('microsoft/TRELLIS.2-4B')
pipeline.rembg_model = None
pipeline.low_vram = False
pipeline.cuda()
envmap = {
'forest': EnvMap(torch.tensor(
cv2.cvtColor(cv2.imread('assets/hdri/forest.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB),
dtype=torch.float32, device='cuda'
)),
'sunset': EnvMap(torch.tensor(
cv2.cvtColor(cv2.imread('assets/hdri/sunset.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB),
dtype=torch.float32, device='cuda'
)),
'courtyard': EnvMap(torch.tensor(
cv2.cvtColor(cv2.imread('assets/hdri/courtyard.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB),
dtype=torch.float32, device='cuda'
)),
}
demo.launch(css=css, head=head)
|