TRELLIS.2 / app.py
JeffreyXiang's picture
update
4f41697
raw
history blame
12.1 kB
import gradio as gr
import spaces
import os
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = '1'
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
os.environ["FLEX_GEMM_AUTOTUNE_CACHE_PATH"] = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'autotune_cache.json')
from datetime import datetime
import shutil
import cv2
from typing import *
import torch
import numpy as np
from PIL import Image
from trellis2.modules.sparse import SparseTensor
from trellis2.pipelines import Trellis2ImageTo3DPipeline
from trellis2.renderers import EnvMap
from trellis2.utils import render_utils
import o_voxel
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
shutil.rmtree(user_dir)
@spaces.GPU()
def preprocess_image(image: Image.Image) -> Image.Image:
"""
Preprocess the input image.
Args:
image (Image.Image): The input image.
Returns:
Image.Image: The preprocessed image.
"""
processed_image = pipeline.preprocess_image(image)
return processed_image
def pack_state(latents: Tuple[SparseTensor, SparseTensor, int]) -> dict:
shape_slat, tex_slat, res = latents
return {
'shape_slat_feats': shape_slat.feats.cpu().numpy(),
'tex_slat_feats': tex_slat.feats.cpu().numpy(),
'coords': shape_slat.coords.cpu().numpy(),
'res': res,
}
def unpack_state(state: dict) -> Tuple[SparseTensor, SparseTensor, int]:
shape_slat = SparseTensor(
feats=torch.from_numpy(state['shape_slat_feats']).cuda(),
coords=torch.from_numpy(state['coords']).cuda(),
)
tex_slat = shape_slat.replace(torch.from_numpy(state['tex_slat_feats']).cuda())
return shape_slat, tex_slat, state['res']
def get_seed(randomize_seed: bool, seed: int) -> int:
"""
Get the random seed.
"""
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
@spaces.GPU(duration=120)
def image_to_3d(
image: Image.Image,
seed: int,
resolution: str,
ss_guidance_strength: float,
ss_guidance_rescale: float,
ss_sampling_steps: int,
ss_rescale_t: float,
shape_slat_guidance_strength: float,
shape_slat_guidance_rescale: float,
shape_slat_sampling_steps: int,
shape_slat_rescale_t: float,
tex_slat_guidance_strength: float,
tex_slat_guidance_rescale: float,
tex_slat_sampling_steps: int,
tex_slat_rescale_t: float,
req: gr.Request,
progress=gr.Progress(track_tqdm=True),
) -> str:
"""
Convert an image to a 3D model.
Args:
image (Image.Image): The input image.
seed (int): The random seed.
ss_guidance_strength (float): The guidance strength for sparse structure generation.
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
shape_slat_guidance_strength (float): The guidance strength for shape slat generation.
shape_slat_sampling_steps (int): The number of sampling steps for shape slat generation.
tex_slat_guidance_strength (float): The guidance strength for texture slat generation.
tex_slat_sampling_steps (int): The number of sampling steps for texture slat generation.
Returns:
str: The path to the preview video of the 3D model.
str: The path to the 3D model.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
outputs, latents = pipeline.run(
image,
seed=seed,
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"guidance_strength": ss_guidance_strength,
"guidance_rescale": ss_guidance_rescale,
"rescale_t": ss_rescale_t,
},
shape_slat_sampler_params={
"steps": shape_slat_sampling_steps,
"guidance_strength": shape_slat_guidance_strength,
"guidance_rescale": shape_slat_guidance_rescale,
"rescale_t": shape_slat_rescale_t,
},
tex_slat_sampler_params={
"steps": tex_slat_sampling_steps,
"guidance_strength": tex_slat_guidance_strength,
"guidance_rescale": tex_slat_guidance_rescale,
"rescale_t": tex_slat_rescale_t,
},
pipeline_type={
"512": "512",
"1024": "512->1024",
"1536": "512->1536",
}[resolution],
return_latent=True,
)
images = render_utils.make_pbr_vis_frames(
render_utils.render_snapshot(outputs[0], resolution=1024, r=2, fov=36, envmap=envmap),
resolution=1024
)
state = pack_state(latents)
torch.cuda.empty_cache()
return state, [Image.fromarray(image) for image in images]
@spaces.GPU(duration=120)
def extract_glb(
state: dict,
decimation_target: int,
texture_size: int,
req: gr.Request,
progress=gr.Progress(track_tqdm=True),
) -> Tuple[str, str]:
"""
Extract a GLB file from the 3D model.
Args:
state (dict): The state of the generated 3D model.
decimation_target (int): The target face count for decimation.
texture_size (int): The texture resolution.
Returns:
str: The path to the extracted GLB file.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
shape_slat, tex_slat, res = unpack_state(state)
mesh = pipeline.decode_latent(shape_slat, tex_slat, res)[0]
glb = o_voxel.postprocess.to_glb(
vertices=mesh.vertices,
faces=mesh.faces,
attr_volume=mesh.attrs,
coords=mesh.coords,
attr_layout=pipeline.pbr_attr_layout,
grid_size=res,
aabb=[[-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]],
decimation_target=decimation_target,
texture_size=texture_size,
remesh=True,
remesh_band=1,
use_tqdm=True,
)[0]
now = datetime.now()
timestamp = now.strftime("%Y-%m-%dT%H%M%S") + f".{now.microsecond // 1000:03d}"
os.makedirs(user_dir, exist_ok=True)
glb_path = os.path.join(user_dir, f'sample_{timestamp}.glb')
glb.export(glb_path)
torch.cuda.empty_cache()
return glb_path, glb_path
css = """
.stepper-wrapper {
padding: 0;
}
.stepper-container {
padding: 0;
align-items: center;
}
.step-button {
flex-direction: row;
}
.step-connector {
transform: none;
}
.step-number {
width: 16px;
height: 16px;
}
.step-label {
position: relative;
bottom: 0;
}
"""
with gr.Blocks(delete_cache=(600, 600)) as demo:
gr.Markdown("""
## Image to 3D Asset with [TRELLIS.2](https://microsoft.github.io/trellis.2)
* Upload an image and click "Generate" to create a 3D asset.
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
""")
with gr.Row():
with gr.Column(scale=1, min_width=360):
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=400)
resolution = gr.Radio(["512", "1024", "1536"], label="Resolution", value="512")
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
decimation_target = gr.Slider(10000, 500000, label="Decimation Target", value=100000, step=10000)
texture_size = gr.Slider(1024, 4096, label="Texture Size", value=2048, step=1024)
with gr.Accordion(label="Advanced Settings", open=False):
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.7, step=0.01)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
ss_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=5.0, step=0.1)
gr.Markdown("Stage 2: Shape Generation")
with gr.Row():
shape_slat_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
shape_slat_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.5, step=0.01)
shape_slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
shape_slat_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=3.0, step=0.1)
gr.Markdown("Stage 3: Material Generation")
with gr.Row():
tex_slat_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=1.0, step=0.1)
tex_slat_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.0, step=0.01)
tex_slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
tex_slat_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=3.0, step=0.1)
generate_btn = gr.Button("Generate")
with gr.Column(scale=10):
with gr.Walkthrough(selected=0) as walkthrough:
with gr.Step("Preview", id=0):
preview_output = gr.Gallery(label="3D Asset Preview", height=800, show_label=True, preview=True)
extract_btn = gr.Button("Extract GLB")
with gr.Step("Extract", id=1):
glb_output = gr.Model3D(label="Extracted GLB", height=800, show_label=True, display_mode="solid", clear_color=(0.25, 0.25, 0.25, 1.0))
download_btn = gr.DownloadButton(label="Download GLB")
with gr.Column(scale=1, min_width=172):
examples = gr.Examples(
examples=[
f'assets/example_images/{image}'
for image in os.listdir("assets/example_images")
],
inputs=[image_prompt],
fn=preprocess_image,
outputs=[image_prompt],
run_on_click=True,
examples_per_page=18,
)
output_buf = gr.State()
# Handlers
demo.load(start_session)
demo.unload(end_session)
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[image_prompt],
)
generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
lambda: gr.Walkthrough(selected=0), outputs=walkthrough
).then(
image_to_3d,
inputs=[
image_prompt, seed, resolution,
ss_guidance_strength, ss_guidance_rescale, ss_sampling_steps, ss_rescale_t,
shape_slat_guidance_strength, shape_slat_guidance_rescale, shape_slat_sampling_steps, shape_slat_rescale_t,
tex_slat_guidance_strength, tex_slat_guidance_rescale, tex_slat_sampling_steps, tex_slat_rescale_t,
],
outputs=[output_buf, preview_output],
)
extract_btn.click(
lambda: gr.Walkthrough(selected=1), outputs=walkthrough
).then(
extract_glb,
inputs=[output_buf, decimation_target, texture_size],
outputs=[glb_output, download_btn],
)
# Launch the Gradio app
if __name__ == "__main__":
pipeline = Trellis2ImageTo3DPipeline.from_pretrained('JeffreyXiang/TRELLIS.2-4B')
pipeline.cuda()
envmap = EnvMap(torch.tensor(
cv2.cvtColor(cv2.imread('assets/hdri/forest.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB),
dtype=torch.float32, device='cuda'
))
demo.launch(css=css, mcp_server=True)