Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| from gradio_client import Client, handle_file | |
| import spaces | |
| import os | |
| os.environ["OPENCV_IO_ENABLE_OPENEXR"] = '1' | |
| os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" | |
| os.environ["ATTN_BACKEND"] = "flash_attn_3" | |
| os.environ["FLEX_GEMM_AUTOTUNE_CACHE_PATH"] = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'autotune_cache.json') | |
| os.environ["FLEX_GEMM_AUTOTUNER_VERBOSE"] = '1' | |
| from datetime import datetime | |
| import shutil | |
| import cv2 | |
| from typing import * | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import base64 | |
| import io | |
| import tempfile | |
| from trellis2.modules.sparse import SparseTensor | |
| from trellis2.pipelines import Trellis2ImageTo3DPipeline | |
| from trellis2.renderers import EnvMap | |
| from trellis2.utils import render_utils | |
| import o_voxel | |
| MAX_SEED = np.iinfo(np.int32).max | |
| TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
| MODES = [ | |
| {"name": "Normal", "icon": "assets/app/normal.png", "render_key": "normal"}, | |
| {"name": "Clay render", "icon": "assets/app/clay.png", "render_key": "clay"}, | |
| {"name": "Base color", "icon": "assets/app/basecolor.png", "render_key": "base_color"}, | |
| {"name": "HDRI forest", "icon": "assets/app/hdri_forest.png", "render_key": "shaded_forest"}, | |
| {"name": "HDRI sunset", "icon": "assets/app/hdri_sunset.png", "render_key": "shaded_sunset"}, | |
| {"name": "HDRI courtyard", "icon": "assets/app/hdri_courtyard.png", "render_key": "shaded_courtyard"}, | |
| ] | |
| STEPS = 8 | |
| DEFAULT_MODE = 3 | |
| DEFAULT_STEP = 3 | |
| css = """ | |
| /* Overwrite Gradio Default Style */ | |
| .stepper-wrapper { | |
| padding: 0; | |
| } | |
| .stepper-container { | |
| padding: 0; | |
| align-items: center; | |
| } | |
| .step-button { | |
| flex-direction: row; | |
| } | |
| .step-connector { | |
| transform: none; | |
| } | |
| .step-number { | |
| width: 16px; | |
| height: 16px; | |
| } | |
| .step-label { | |
| position: relative; | |
| bottom: 0; | |
| } | |
| .wrap.center.full { | |
| inset: 0; | |
| height: 100%; | |
| } | |
| .wrap.center.full.translucent { | |
| background: var(--block-background-fill); | |
| } | |
| .meta-text-center { | |
| display: block !important; | |
| position: absolute !important; | |
| top: unset !important; | |
| bottom: 0 !important; | |
| right: 0 !important; | |
| transform: unset !important; | |
| } | |
| /* Previewer */ | |
| .previewer-container { | |
| position: relative; | |
| font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif; | |
| width: 100%; | |
| height: 722px; | |
| margin: 0 auto; | |
| padding: 20px; | |
| display: flex; | |
| flex-direction: column; | |
| align-items: center; | |
| justify-content: center; | |
| } | |
| .previewer-container .tips-icon { | |
| position: absolute; | |
| right: 10px; | |
| top: 10px; | |
| z-index: 10; | |
| border-radius: 10px; | |
| color: #fff; | |
| background-color: var(--color-accent); | |
| padding: 3px 6px; | |
| user-select: none; | |
| } | |
| .previewer-container .tips-text { | |
| position: absolute; | |
| right: 10px; | |
| top: 50px; | |
| color: #fff; | |
| background-color: var(--color-accent); | |
| border-radius: 10px; | |
| padding: 6px; | |
| text-align: left; | |
| max-width: 300px; | |
| z-index: 10; | |
| transition: all 0.3s; | |
| opacity: 0%; | |
| user-select: none; | |
| } | |
| .previewer-container .tips-text p { | |
| font-size: 14px; | |
| line-height: 1.2; | |
| } | |
| .tips-icon:hover + .tips-text { | |
| display: block; | |
| opacity: 100%; | |
| } | |
| /* Row 1: Display Modes */ | |
| .previewer-container .mode-row { | |
| width: 100%; | |
| display: flex; | |
| gap: 8px; | |
| justify-content: center; | |
| margin-bottom: 20px; | |
| flex-wrap: wrap; | |
| } | |
| .previewer-container .mode-btn { | |
| width: 24px; | |
| height: 24px; | |
| border-radius: 50%; | |
| cursor: pointer; | |
| opacity: 0.5; | |
| transition: all 0.2s; | |
| border: 2px solid #ddd; | |
| object-fit: cover; | |
| } | |
| .previewer-container .mode-btn:hover { opacity: 0.9; transform: scale(1.1); } | |
| .previewer-container .mode-btn.active { | |
| opacity: 1; | |
| border-color: var(--color-accent); | |
| transform: scale(1.1); | |
| } | |
| /* Row 2: Display Image */ | |
| .previewer-container .display-row { | |
| margin-bottom: 20px; | |
| min-height: 400px; | |
| width: 100%; | |
| flex-grow: 1; | |
| display: flex; | |
| justify-content: center; | |
| align-items: center; | |
| } | |
| .previewer-container .previewer-main-image { | |
| max-width: 100%; | |
| max-height: 100%; | |
| flex-grow: 1; | |
| object-fit: contain; | |
| display: none; | |
| } | |
| .previewer-container .previewer-main-image.visible { | |
| display: block; | |
| } | |
| /* Row 3: Custom HTML Slider */ | |
| .previewer-container .slider-row { | |
| width: 100%; | |
| display: flex; | |
| flex-direction: column; | |
| align-items: center; | |
| gap: 10px; | |
| padding: 0 10px; | |
| } | |
| .previewer-container input[type=range] { | |
| -webkit-appearance: none; | |
| width: 100%; | |
| max-width: 400px; | |
| background: transparent; | |
| } | |
| .previewer-container input[type=range]::-webkit-slider-runnable-track { | |
| width: 100%; | |
| height: 8px; | |
| cursor: pointer; | |
| background: #ddd; | |
| border-radius: 5px; | |
| } | |
| .previewer-container input[type=range]::-webkit-slider-thumb { | |
| height: 20px; | |
| width: 20px; | |
| border-radius: 50%; | |
| background: var(--color-accent); | |
| cursor: pointer; | |
| -webkit-appearance: none; | |
| margin-top: -6px; | |
| box-shadow: 0 2px 5px rgba(0,0,0,0.2); | |
| transition: transform 0.1s; | |
| } | |
| .previewer-container input[type=range]::-webkit-slider-thumb:hover { | |
| transform: scale(1.2); | |
| } | |
| /* Overwrite Previewer Block Style */ | |
| .gradio-container .padded:has(.previewer-container) { | |
| padding: 0 !important; | |
| } | |
| .gradio-container:has(.previewer-container) [data-testid="block-label"] { | |
| position: absolute; | |
| top: 0; | |
| left: 0; | |
| } | |
| """ | |
| head = """ | |
| <script> | |
| function refreshView(mode, step) { | |
| // 1. Find current mode and step | |
| const allImgs = document.querySelectorAll('.previewer-main-image'); | |
| for (let i = 0; i < allImgs.length; i++) { | |
| const img = allImgs[i]; | |
| if (img.classList.contains('visible')) { | |
| const id = img.id; | |
| const [_, m, s] = id.split('-'); | |
| if (mode === -1) mode = parseInt(m.slice(1)); | |
| if (step === -1) step = parseInt(s.slice(1)); | |
| break; | |
| } | |
| } | |
| // 2. Hide ALL images | |
| // We select all elements with class 'previewer-main-image' | |
| allImgs.forEach(img => img.classList.remove('visible')); | |
| // 3. Construct the specific ID for the current state | |
| // Format: view-m{mode}-s{step} | |
| const targetId = 'view-m' + mode + '-s' + step; | |
| const targetImg = document.getElementById(targetId); | |
| // 4. Show ONLY the target | |
| if (targetImg) { | |
| targetImg.classList.add('visible'); | |
| } | |
| // 5. Update Button Highlights | |
| const allBtns = document.querySelectorAll('.mode-btn'); | |
| allBtns.forEach((btn, idx) => { | |
| if (idx === mode) btn.classList.add('active'); | |
| else btn.classList.remove('active'); | |
| }); | |
| } | |
| // --- Action: Switch Mode --- | |
| function selectMode(mode) { | |
| refreshView(mode, -1); | |
| } | |
| // --- Action: Slider Change --- | |
| function onSliderChange(val) { | |
| refreshView(-1, parseInt(val)); | |
| } | |
| </script> | |
| """ | |
| empty_html = f""" | |
| <div class="previewer-container"> | |
| <svg style=" opacity: .5; height: var(--size-5); color: var(--body-text-color);" | |
| xmlns="http://www.w3.org/2000/svg" width="100%" height="100%" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="feather feather-image"><rect x="3" y="3" width="18" height="18" rx="2" ry="2"></rect><circle cx="8.5" cy="8.5" r="1.5"></circle><polyline points="21 15 16 10 5 21"></polyline></svg> | |
| </div> | |
| """ | |
| def image_to_base64(image): | |
| buffered = io.BytesIO() | |
| image = image.convert("RGB") | |
| image.save(buffered, format="jpeg", quality=85) | |
| img_str = base64.b64encode(buffered.getvalue()).decode() | |
| return f"data:image/jpeg;base64,{img_str}" | |
| def start_session(req: gr.Request): | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| os.makedirs(user_dir, exist_ok=True) | |
| def end_session(req: gr.Request): | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| shutil.rmtree(user_dir) | |
| def remove_background(input: Image.Image) -> Image.Image: | |
| with tempfile.NamedTemporaryFile(suffix='.png') as f: | |
| input = input.convert('RGB') | |
| input.save(f.name) | |
| output = rmbg_client.predict(handle_file(f.name), api_name="/image")[0][0] | |
| output = Image.open(output) | |
| return output | |
| def preprocess_image(input: Image.Image) -> Image.Image: | |
| """ | |
| Preprocess the input image. | |
| """ | |
| # if has alpha channel, use it directly; otherwise, remove background | |
| has_alpha = False | |
| if input.mode == 'RGBA': | |
| alpha = np.array(input)[:, :, 3] | |
| if not np.all(alpha == 255): | |
| has_alpha = True | |
| max_size = max(input.size) | |
| scale = min(1, 1024 / max_size) | |
| if scale < 1: | |
| input = input.resize((int(input.width * scale), int(input.height * scale)), Image.Resampling.LANCZOS) | |
| if has_alpha: | |
| output = input | |
| else: | |
| output = remove_background(input) | |
| output_np = np.array(output) | |
| alpha = output_np[:, :, 3] | |
| bbox = np.argwhere(alpha > 0.8 * 255) | |
| bbox = np.min(bbox[:, 1]), np.min(bbox[:, 0]), np.max(bbox[:, 1]), np.max(bbox[:, 0]) | |
| center = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2 | |
| size = max(bbox[2] - bbox[0], bbox[3] - bbox[1]) | |
| size = int(size * 1) | |
| bbox = center[0] - size // 2, center[1] - size // 2, center[0] + size // 2, center[1] + size // 2 | |
| output = output.crop(bbox) # type: ignore | |
| output = np.array(output).astype(np.float32) / 255 | |
| output = output[:, :, :3] * output[:, :, 3:4] | |
| output = Image.fromarray((output * 255).astype(np.uint8)) | |
| return output | |
| def pack_state(latents: Tuple[SparseTensor, SparseTensor, int]) -> dict: | |
| shape_slat, tex_slat, res = latents | |
| return { | |
| 'shape_slat_feats': shape_slat.feats.cpu().numpy(), | |
| 'tex_slat_feats': tex_slat.feats.cpu().numpy(), | |
| 'coords': shape_slat.coords.cpu().numpy(), | |
| 'res': res, | |
| } | |
| def unpack_state(state: dict) -> Tuple[SparseTensor, SparseTensor, int]: | |
| shape_slat = SparseTensor( | |
| feats=torch.from_numpy(state['shape_slat_feats']).cuda(), | |
| coords=torch.from_numpy(state['coords']).cuda(), | |
| ) | |
| tex_slat = shape_slat.replace(torch.from_numpy(state['tex_slat_feats']).cuda()) | |
| return shape_slat, tex_slat, state['res'] | |
| def get_seed(randomize_seed: bool, seed: int) -> int: | |
| """ | |
| Get the random seed. | |
| """ | |
| return np.random.randint(0, MAX_SEED) if randomize_seed else seed | |
| def image_to_3d( | |
| image: Image.Image, | |
| seed: int, | |
| resolution: str, | |
| ss_guidance_strength: float, | |
| ss_guidance_rescale: float, | |
| ss_sampling_steps: int, | |
| ss_rescale_t: float, | |
| shape_slat_guidance_strength: float, | |
| shape_slat_guidance_rescale: float, | |
| shape_slat_sampling_steps: int, | |
| shape_slat_rescale_t: float, | |
| tex_slat_guidance_strength: float, | |
| tex_slat_guidance_rescale: float, | |
| tex_slat_sampling_steps: int, | |
| tex_slat_rescale_t: float, | |
| req: gr.Request, | |
| progress=gr.Progress(track_tqdm=True), | |
| ) -> str: | |
| # --- Sampling --- | |
| outputs, latents = pipeline.run( | |
| image, | |
| seed=seed, | |
| preprocess_image=False, | |
| sparse_structure_sampler_params={ | |
| "steps": ss_sampling_steps, | |
| "guidance_strength": ss_guidance_strength, | |
| "guidance_rescale": ss_guidance_rescale, | |
| "rescale_t": ss_rescale_t, | |
| }, | |
| shape_slat_sampler_params={ | |
| "steps": shape_slat_sampling_steps, | |
| "guidance_strength": shape_slat_guidance_strength, | |
| "guidance_rescale": shape_slat_guidance_rescale, | |
| "rescale_t": shape_slat_rescale_t, | |
| }, | |
| tex_slat_sampler_params={ | |
| "steps": tex_slat_sampling_steps, | |
| "guidance_strength": tex_slat_guidance_strength, | |
| "guidance_rescale": tex_slat_guidance_rescale, | |
| "rescale_t": tex_slat_rescale_t, | |
| }, | |
| pipeline_type={ | |
| "512": "512", | |
| "1024": "1024_cascade", | |
| "1536": "1536_cascade", | |
| }[resolution], | |
| return_latent=True, | |
| ) | |
| mesh = outputs[0] | |
| mesh.simplify(16777216) # nvdiffrast limit | |
| images = render_utils.render_snapshot(mesh, resolution=1024, r=2, fov=36, nviews=STEPS, envmap=envmap) | |
| state = pack_state(latents) | |
| torch.cuda.empty_cache() | |
| # --- HTML Construction --- | |
| # The Stack of 48 Images | |
| images_html = "" | |
| for m_idx, mode in enumerate(MODES): | |
| for s_idx in range(STEPS): | |
| # ID Naming Convention: view-m{mode}-s{step} | |
| unique_id = f"view-m{m_idx}-s{s_idx}" | |
| # Logic: Only Mode 0, Step 0 is visible initially | |
| is_visible = (m_idx == DEFAULT_MODE and s_idx == DEFAULT_STEP) | |
| vis_class = "visible" if is_visible else "" | |
| # Image Source | |
| img_base64 = image_to_base64(Image.fromarray(images[mode['render_key']][s_idx])) | |
| # Render the Tag | |
| images_html += f""" | |
| <img id="{unique_id}" | |
| class="previewer-main-image {vis_class}" | |
| src="{img_base64}" | |
| loading="eager"> | |
| """ | |
| # Button Row HTML | |
| btns_html = "" | |
| for idx, mode in enumerate(MODES): | |
| active_class = "active" if idx == DEFAULT_MODE else "" | |
| # Note: onclick calls the JS function defined in Head | |
| btns_html += f""" | |
| <img src="{mode['icon_base64']}" | |
| class="mode-btn {active_class}" | |
| onclick="selectMode({idx})" | |
| title="{mode['name']}"> | |
| """ | |
| # Assemble the full component | |
| full_html = f""" | |
| <div class="previewer-container"> | |
| <div class="tips-wrapper"> | |
| <div class="tips-icon">💡Tips</div> | |
| <div class="tips-text"> | |
| <p>● <b>Render Mode</b> - Click on the circular buttons to switch between different render modes.</p> | |
| <p>● <b>View Angle</b> - Drag the slider to change the view angle.</p> | |
| </div> | |
| </div> | |
| <!-- Row 1: Viewport containing 48 static <img> tags --> | |
| <div class="display-row"> | |
| {images_html} | |
| </div> | |
| <!-- Row 2 --> | |
| <div class="mode-row" id="btn-group"> | |
| {btns_html} | |
| </div> | |
| <!-- Row 3: Slider --> | |
| <div class="slider-row"> | |
| <input type="range" id="custom-slider" min="0" max="{STEPS - 1}" value="{DEFAULT_STEP}" step="1" oninput="onSliderChange(this.value)"> | |
| </div> | |
| </div> | |
| """ | |
| return state, full_html | |
| def extract_glb( | |
| state: dict, | |
| decimation_target: int, | |
| texture_size: int, | |
| req: gr.Request, | |
| progress=gr.Progress(track_tqdm=True), | |
| ) -> Tuple[str, str]: | |
| """ | |
| Extract a GLB file from the 3D model. | |
| Args: | |
| state (dict): The state of the generated 3D model. | |
| decimation_target (int): The target face count for decimation. | |
| texture_size (int): The texture resolution. | |
| Returns: | |
| str: The path to the extracted GLB file. | |
| """ | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| shape_slat, tex_slat, res = unpack_state(state) | |
| mesh = pipeline.decode_latent(shape_slat, tex_slat, res)[0] | |
| mesh.simplify(16777216) | |
| glb = o_voxel.postprocess.to_glb( | |
| vertices=mesh.vertices, | |
| faces=mesh.faces, | |
| attr_volume=mesh.attrs, | |
| coords=mesh.coords, | |
| attr_layout=pipeline.pbr_attr_layout, | |
| grid_size=res, | |
| aabb=[[-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]], | |
| decimation_target=decimation_target, | |
| texture_size=texture_size, | |
| remesh=True, | |
| remesh_band=1, | |
| remesh_project=0, | |
| use_tqdm=True, | |
| ) | |
| now = datetime.now() | |
| timestamp = now.strftime("%Y-%m-%dT%H%M%S") + f".{now.microsecond // 1000:03d}" | |
| os.makedirs(user_dir, exist_ok=True) | |
| glb_path = os.path.join(user_dir, f'sample_{timestamp}.glb') | |
| glb.export(glb_path, extension_webp=True) | |
| torch.cuda.empty_cache() | |
| return glb_path, glb_path | |
| with gr.Blocks(delete_cache=(600, 600)) as demo: | |
| gr.Markdown(""" | |
| ## Image to 3D Asset with [TRELLIS.2](https://microsoft.github.io/TRELLIS.2) | |
| * Upload an image (preferably with an alpha-masked foreground object) and click Generate to create a 3D asset. | |
| * Click Extract GLB to export and download the generated GLB file if you're satisfied with the result. Otherwise, try another time. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=1, min_width=360): | |
| image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=400) | |
| resolution = gr.Radio(["512", "1024", "1536"], label="Resolution", value="1024") | |
| seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| decimation_target = gr.Slider(100000, 500000, label="Decimation Target", value=300000, step=10000) | |
| texture_size = gr.Slider(1024, 4096, label="Texture Size", value=2048, step=1024) | |
| generate_btn = gr.Button("Generate") | |
| with gr.Accordion(label="Advanced Settings", open=False): | |
| gr.Markdown("Stage 1: Sparse Structure Generation") | |
| with gr.Row(): | |
| ss_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
| ss_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.7, step=0.01) | |
| ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
| ss_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=5.0, step=0.1) | |
| gr.Markdown("Stage 2: Shape Generation") | |
| with gr.Row(): | |
| shape_slat_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
| shape_slat_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.5, step=0.01) | |
| shape_slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
| shape_slat_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=3.0, step=0.1) | |
| gr.Markdown("Stage 3: Material Generation") | |
| with gr.Row(): | |
| tex_slat_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=1.0, step=0.1) | |
| tex_slat_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.0, step=0.01) | |
| tex_slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
| tex_slat_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=3.0, step=0.1) | |
| with gr.Column(scale=10): | |
| with gr.Walkthrough(selected=0) as walkthrough: | |
| with gr.Step("Preview", id=0): | |
| preview_output = gr.HTML(empty_html, label="3D Asset Preview", show_label=True, container=True) | |
| extract_btn = gr.Button("Extract GLB") | |
| with gr.Step("Extract", id=1): | |
| glb_output = gr.Model3D(label="Extracted GLB", height=724, show_label=True, display_mode="solid", clear_color=(0.25, 0.25, 0.25, 1.0)) | |
| download_btn = gr.DownloadButton(label="Download GLB") | |
| gr.Markdown("*We are actively working on improving the speed of GLB extraction. Currently, it may take half a minute or more and face count is limited.*") | |
| with gr.Column(scale=1, min_width=172): | |
| examples = gr.Examples( | |
| examples=[ | |
| f'assets/example_image/{image}' | |
| for image in os.listdir("assets/example_image") | |
| ], | |
| inputs=[image_prompt], | |
| fn=preprocess_image, | |
| outputs=[image_prompt], | |
| run_on_click=True, | |
| examples_per_page=18, | |
| ) | |
| output_buf = gr.State() | |
| # Handlers | |
| demo.load(start_session) | |
| demo.unload(end_session) | |
| image_prompt.upload( | |
| preprocess_image, | |
| inputs=[image_prompt], | |
| outputs=[image_prompt], | |
| ) | |
| generate_btn.click( | |
| get_seed, | |
| inputs=[randomize_seed, seed], | |
| outputs=[seed], | |
| ).then( | |
| lambda: gr.Walkthrough(selected=0), outputs=walkthrough | |
| ).then( | |
| image_to_3d, | |
| inputs=[ | |
| image_prompt, seed, resolution, | |
| ss_guidance_strength, ss_guidance_rescale, ss_sampling_steps, ss_rescale_t, | |
| shape_slat_guidance_strength, shape_slat_guidance_rescale, shape_slat_sampling_steps, shape_slat_rescale_t, | |
| tex_slat_guidance_strength, tex_slat_guidance_rescale, tex_slat_sampling_steps, tex_slat_rescale_t, | |
| ], | |
| outputs=[output_buf, preview_output], | |
| ) | |
| extract_btn.click( | |
| lambda: gr.Walkthrough(selected=1), outputs=walkthrough | |
| ).then( | |
| extract_glb, | |
| inputs=[output_buf, decimation_target, texture_size], | |
| outputs=[glb_output, download_btn], | |
| ) | |
| # Launch the Gradio app | |
| if __name__ == "__main__": | |
| os.makedirs(TMP_DIR, exist_ok=True) | |
| # Construct ui components | |
| btn_img_base64_strs = {} | |
| for i in range(len(MODES)): | |
| icon = Image.open(MODES[i]['icon']) | |
| MODES[i]['icon_base64'] = image_to_base64(icon) | |
| rmbg_client = Client("briaai/BRIA-RMBG-2.0") | |
| pipeline = Trellis2ImageTo3DPipeline.from_pretrained('microsoft/TRELLIS.2-4B') | |
| pipeline.rembg_model = None | |
| pipeline.low_vram = False | |
| pipeline.cuda() | |
| envmap = { | |
| 'forest': EnvMap(torch.tensor( | |
| cv2.cvtColor(cv2.imread('assets/hdri/forest.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB), | |
| dtype=torch.float32, device='cuda' | |
| )), | |
| 'sunset': EnvMap(torch.tensor( | |
| cv2.cvtColor(cv2.imread('assets/hdri/sunset.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB), | |
| dtype=torch.float32, device='cuda' | |
| )), | |
| 'courtyard': EnvMap(torch.tensor( | |
| cv2.cvtColor(cv2.imread('assets/hdri/courtyard.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB), | |
| dtype=torch.float32, device='cuda' | |
| )), | |
| } | |
| demo.launch(css=css, head=head) | |