Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
388d03f
1
Parent(s):
917a889
update
Browse files- .gitignore +0 -1
- README.md +2 -2
- requirements.txt +10 -5
- trellis2/modules/image_feature_extractor.py +118 -0
- trellis2/pipelines/trellis2_image_to_3d.py +25 -25
.gitignore
CHANGED
|
@@ -19,7 +19,6 @@ lib64/
|
|
| 19 |
parts/
|
| 20 |
sdist/
|
| 21 |
var/
|
| 22 |
-
wheels/
|
| 23 |
share/python-wheels/
|
| 24 |
*.egg-info/
|
| 25 |
.installed.cfg
|
|
|
|
| 19 |
parts/
|
| 20 |
sdist/
|
| 21 |
var/
|
|
|
|
| 22 |
share/python-wheels/
|
| 23 |
*.egg-info/
|
| 24 |
.installed.cfg
|
README.md
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
---
|
| 2 |
title: TRELLIS.2
|
| 3 |
emoji: 🏢
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 6.1.0
|
| 8 |
app_file: app.py
|
|
|
|
| 1 |
---
|
| 2 |
title: TRELLIS.2
|
| 3 |
emoji: 🏢
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 6.1.0
|
| 8 |
app_file: app.py
|
requirements.txt
CHANGED
|
@@ -13,8 +13,13 @@ trimesh==4.10.1
|
|
| 13 |
transformers==4.46.3
|
| 14 |
git+https://github.com/EasternJournalist/utils3d.git@9a4eb15e4021b67b12c460c7057d642626897ec8
|
| 15 |
https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu12torch2.6cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
|
| 16 |
-
https://
|
| 17 |
-
https://
|
| 18 |
-
https://
|
| 19 |
-
https://
|
| 20 |
-
https://
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
transformers==4.46.3
|
| 14 |
git+https://github.com/EasternJournalist/utils3d.git@9a4eb15e4021b67b12c460c7057d642626897ec8
|
| 15 |
https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu12torch2.6cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
|
| 16 |
+
https://github.com/JeffreyXiang/Storages/releases/download/Space_Wheels_251210/cumesh-0.0.1-cp310-cp310-linux_x86_64.whl
|
| 17 |
+
https://github.com/JeffreyXiang/Storages/releases/download/Space_Wheels_251210/flex_gemm-0.0.1-cp310-cp310-linux_x86_64.whl
|
| 18 |
+
https://github.com/JeffreyXiang/Storages/releases/download/Space_Wheels_251210/o_voxel-0.0.1-cp310-cp310-linux_x86_64.whl
|
| 19 |
+
https://github.com/JeffreyXiang/Storages/releases/download/Space_Wheels_251210/nvdiffrast-0.3.5-cp310-cp310-linux_x86_64.whl
|
| 20 |
+
https://github.com/JeffreyXiang/Storages/releases/download/Space_Wheels_251210/nvdiffrec_render-0.0.0-cp310-cp310-linux_x86_64.whl
|
| 21 |
+
# https://huggingface.co/spaces/JeffreyXiang/TRELLIS.2/resolve/main/wheels/cumesh-0.0.1-cp310-cp310-linux_x86_64.whl?download=true
|
| 22 |
+
# https://huggingface.co/spaces/JeffreyXiang/TRELLIS.2/resolve/main/wheels/flex_gemm-0.0.1-cp310-cp310-linux_x86_64.whl?download=true
|
| 23 |
+
# https://huggingface.co/spaces/JeffreyXiang/TRELLIS.2/resolve/main/wheels/o_voxel-0.0.1-cp310-cp310-linux_x86_64.whl?download=true
|
| 24 |
+
# https://huggingface.co/spaces/JeffreyXiang/TRELLIS.2/resolve/main/wheels/nvdiffrast-0.3.5-cp310-cp310-linux_x86_64?download=true
|
| 25 |
+
# https://huggingface.co/spaces/JeffreyXiang/TRELLIS.2/resolve/main/wheels/nvdiffrec_render-0.0.0-cp310-cp310-linux_x86_64.whl?download=true
|
trellis2/modules/image_feature_extractor.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from torchvision import transforms
|
| 5 |
+
from transformers import DINOv3ViTModel
|
| 6 |
+
import numpy as np
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class DinoV2FeatureExtractor:
|
| 11 |
+
"""
|
| 12 |
+
Feature extractor for DINOv2 models.
|
| 13 |
+
"""
|
| 14 |
+
def __init__(self, model_name: str):
|
| 15 |
+
self.model_name = model_name
|
| 16 |
+
self.model = torch.hub.load('facebookresearch/dinov2', model_name, pretrained=True)
|
| 17 |
+
self.model.eval()
|
| 18 |
+
self.transform = transforms.Compose([
|
| 19 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 20 |
+
])
|
| 21 |
+
|
| 22 |
+
def to(self, device):
|
| 23 |
+
self.model.to(device)
|
| 24 |
+
|
| 25 |
+
def cuda(self):
|
| 26 |
+
self.model.cuda()
|
| 27 |
+
|
| 28 |
+
def cpu(self):
|
| 29 |
+
self.model.cpu()
|
| 30 |
+
|
| 31 |
+
@torch.no_grad()
|
| 32 |
+
def __call__(self, image: Union[torch.Tensor, List[Image.Image]]) -> torch.Tensor:
|
| 33 |
+
"""
|
| 34 |
+
Extract features from the image.
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
image: A batch of images as a tensor of shape (B, C, H, W) or a list of PIL images.
|
| 38 |
+
|
| 39 |
+
Returns:
|
| 40 |
+
A tensor of shape (B, N, D) where N is the number of patches and D is the feature dimension.
|
| 41 |
+
"""
|
| 42 |
+
if isinstance(image, torch.Tensor):
|
| 43 |
+
assert image.ndim == 4, "Image tensor should be batched (B, C, H, W)"
|
| 44 |
+
elif isinstance(image, list):
|
| 45 |
+
assert all(isinstance(i, Image.Image) for i in image), "Image list should be list of PIL images"
|
| 46 |
+
image = [i.resize((518, 518), Image.LANCZOS) for i in image]
|
| 47 |
+
image = [np.array(i.convert('RGB')).astype(np.float32) / 255 for i in image]
|
| 48 |
+
image = [torch.from_numpy(i).permute(2, 0, 1).float() for i in image]
|
| 49 |
+
image = torch.stack(image).cuda()
|
| 50 |
+
else:
|
| 51 |
+
raise ValueError(f"Unsupported type of image: {type(image)}")
|
| 52 |
+
|
| 53 |
+
image = self.transform(image).cuda()
|
| 54 |
+
features = self.model(image, is_training=True)['x_prenorm']
|
| 55 |
+
patchtokens = F.layer_norm(features, features.shape[-1:])
|
| 56 |
+
return patchtokens
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class DinoV3FeatureExtractor:
|
| 60 |
+
"""
|
| 61 |
+
Feature extractor for DINOv3 models.
|
| 62 |
+
"""
|
| 63 |
+
def __init__(self, model_name: str, image_size=512):
|
| 64 |
+
self.model_name = model_name
|
| 65 |
+
self.model = DINOv3ViTModel.from_pretrained(model_name)
|
| 66 |
+
self.model.eval()
|
| 67 |
+
self.image_size = image_size
|
| 68 |
+
self.transform = transforms.Compose([
|
| 69 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 70 |
+
])
|
| 71 |
+
|
| 72 |
+
def to(self, device):
|
| 73 |
+
self.model.to(device)
|
| 74 |
+
|
| 75 |
+
def cuda(self):
|
| 76 |
+
self.model.cuda()
|
| 77 |
+
|
| 78 |
+
def cpu(self):
|
| 79 |
+
self.model.cpu()
|
| 80 |
+
|
| 81 |
+
def extract_features(self, image: torch.Tensor) -> torch.Tensor:
|
| 82 |
+
image = image.to(self.model.embeddings.patch_embeddings.weight.dtype)
|
| 83 |
+
hidden_states = self.model.embeddings(image, bool_masked_pos=None)
|
| 84 |
+
position_embeddings = self.model.rope_embeddings(image)
|
| 85 |
+
|
| 86 |
+
for i, layer_module in enumerate(self.model.layer):
|
| 87 |
+
hidden_states = layer_module(
|
| 88 |
+
hidden_states,
|
| 89 |
+
position_embeddings=position_embeddings,
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
return F.layer_norm(hidden_states, hidden_states.shape[-1:])
|
| 93 |
+
|
| 94 |
+
@torch.no_grad()
|
| 95 |
+
def __call__(self, image: Union[torch.Tensor, List[Image.Image]]) -> torch.Tensor:
|
| 96 |
+
"""
|
| 97 |
+
Extract features from the image.
|
| 98 |
+
|
| 99 |
+
Args:
|
| 100 |
+
image: A batch of images as a tensor of shape (B, C, H, W) or a list of PIL images.
|
| 101 |
+
|
| 102 |
+
Returns:
|
| 103 |
+
A tensor of shape (B, N, D) where N is the number of patches and D is the feature dimension.
|
| 104 |
+
"""
|
| 105 |
+
if isinstance(image, torch.Tensor):
|
| 106 |
+
assert image.ndim == 4, "Image tensor should be batched (B, C, H, W)"
|
| 107 |
+
elif isinstance(image, list):
|
| 108 |
+
assert all(isinstance(i, Image.Image) for i in image), "Image list should be list of PIL images"
|
| 109 |
+
image = [i.resize((self.image_size, self.image_size), Image.LANCZOS) for i in image]
|
| 110 |
+
image = [np.array(i.convert('RGB')).astype(np.float32) / 255 for i in image]
|
| 111 |
+
image = [torch.from_numpy(i).permute(2, 0, 1).float() for i in image]
|
| 112 |
+
image = torch.stack(image).cuda()
|
| 113 |
+
else:
|
| 114 |
+
raise ValueError(f"Unsupported type of image: {type(image)}")
|
| 115 |
+
|
| 116 |
+
image = self.transform(image).cuda()
|
| 117 |
+
features = self.extract_features(image)
|
| 118 |
+
return features
|
trellis2/pipelines/trellis2_image_to_3d.py
CHANGED
|
@@ -5,8 +5,8 @@ import numpy as np
|
|
| 5 |
from PIL import Image
|
| 6 |
from .base import Pipeline
|
| 7 |
from . import samplers, rembg
|
| 8 |
-
from .. import
|
| 9 |
-
from ..modules import
|
| 10 |
from ..representations import Mesh, MeshWithVoxel
|
| 11 |
|
| 12 |
|
|
@@ -24,7 +24,7 @@ class Trellis2ImageTo3DPipeline(Pipeline):
|
|
| 24 |
tex_slat_sampler_params (dict): The parameters for the texture latent sampler.
|
| 25 |
shape_slat_normalization (dict): The normalization parameters for the structured latent.
|
| 26 |
tex_slat_normalization (dict): The normalization parameters for the texture latent.
|
| 27 |
-
image_cond_model (
|
| 28 |
rembg_model (Callable): The model for removing background.
|
| 29 |
low_vram (bool): Whether to use low-VRAM mode.
|
| 30 |
"""
|
|
@@ -92,7 +92,7 @@ class Trellis2ImageTo3DPipeline(Pipeline):
|
|
| 92 |
new_pipeline.shape_slat_normalization = args['shape_slat_normalization']
|
| 93 |
new_pipeline.tex_slat_normalization = args['tex_slat_normalization']
|
| 94 |
|
| 95 |
-
new_pipeline.image_cond_model = getattr(
|
| 96 |
new_pipeline.rembg_model = getattr(rembg, args['rembg_model']['name'])(**args['rembg_model']['args'])
|
| 97 |
|
| 98 |
new_pipeline.low_vram = args.get('low_vram', True)
|
|
@@ -230,7 +230,7 @@ class Trellis2ImageTo3DPipeline(Pipeline):
|
|
| 230 |
flow_model,
|
| 231 |
coords: torch.Tensor,
|
| 232 |
sampler_params: dict = {},
|
| 233 |
-
) ->
|
| 234 |
"""
|
| 235 |
Sample structured latent with the given conditioning.
|
| 236 |
|
|
@@ -240,7 +240,7 @@ class Trellis2ImageTo3DPipeline(Pipeline):
|
|
| 240 |
sampler_params (dict): Additional parameters for the sampler.
|
| 241 |
"""
|
| 242 |
# Sample structured latent
|
| 243 |
-
noise =
|
| 244 |
feats=torch.randn(coords.shape[0], flow_model.in_channels).to(self.device),
|
| 245 |
coords=coords,
|
| 246 |
)
|
|
@@ -275,7 +275,7 @@ class Trellis2ImageTo3DPipeline(Pipeline):
|
|
| 275 |
coords: torch.Tensor,
|
| 276 |
sampler_params: dict = {},
|
| 277 |
max_num_tokens: int = 49152,
|
| 278 |
-
) ->
|
| 279 |
"""
|
| 280 |
Sample structured latent with the given conditioning.
|
| 281 |
|
|
@@ -285,7 +285,7 @@ class Trellis2ImageTo3DPipeline(Pipeline):
|
|
| 285 |
sampler_params (dict): Additional parameters for the sampler.
|
| 286 |
"""
|
| 287 |
# LR
|
| 288 |
-
noise =
|
| 289 |
feats=torch.randn(coords.shape[0], flow_model_lr.in_channels).to(self.device),
|
| 290 |
coords=coords,
|
| 291 |
)
|
|
@@ -329,7 +329,7 @@ class Trellis2ImageTo3DPipeline(Pipeline):
|
|
| 329 |
hr_resolution -= 128
|
| 330 |
|
| 331 |
# Sample structured latent
|
| 332 |
-
noise =
|
| 333 |
feats=torch.randn(coords.shape[0], flow_model.in_channels).to(self.device),
|
| 334 |
coords=coords,
|
| 335 |
)
|
|
@@ -355,19 +355,19 @@ class Trellis2ImageTo3DPipeline(Pipeline):
|
|
| 355 |
|
| 356 |
def decode_shape_slat(
|
| 357 |
self,
|
| 358 |
-
slat:
|
| 359 |
resolution: int,
|
| 360 |
-
) -> Tuple[List[Mesh], List[
|
| 361 |
"""
|
| 362 |
Decode the structured latent.
|
| 363 |
|
| 364 |
Args:
|
| 365 |
-
slat (
|
| 366 |
formats (List[str]): The formats to decode the structured latent to.
|
| 367 |
|
| 368 |
Returns:
|
| 369 |
List[Mesh]: The decoded meshes.
|
| 370 |
-
List[
|
| 371 |
"""
|
| 372 |
self.models['shape_slat_decoder'].set_resolution(resolution)
|
| 373 |
if self.low_vram:
|
|
@@ -383,15 +383,15 @@ class Trellis2ImageTo3DPipeline(Pipeline):
|
|
| 383 |
self,
|
| 384 |
cond: dict,
|
| 385 |
flow_model,
|
| 386 |
-
shape_slat:
|
| 387 |
sampler_params: dict = {},
|
| 388 |
-
) ->
|
| 389 |
"""
|
| 390 |
Sample structured latent with the given conditioning.
|
| 391 |
|
| 392 |
Args:
|
| 393 |
cond (dict): The conditioning information.
|
| 394 |
-
shape_slat (
|
| 395 |
sampler_params (dict): Additional parameters for the sampler.
|
| 396 |
"""
|
| 397 |
# Sample structured latent
|
|
@@ -424,18 +424,18 @@ class Trellis2ImageTo3DPipeline(Pipeline):
|
|
| 424 |
|
| 425 |
def decode_tex_slat(
|
| 426 |
self,
|
| 427 |
-
slat:
|
| 428 |
-
subs: List[
|
| 429 |
-
) ->
|
| 430 |
"""
|
| 431 |
Decode the structured latent.
|
| 432 |
|
| 433 |
Args:
|
| 434 |
-
slat (
|
| 435 |
formats (List[str]): The formats to decode the structured latent to.
|
| 436 |
|
| 437 |
Returns:
|
| 438 |
-
List[
|
| 439 |
"""
|
| 440 |
if self.low_vram:
|
| 441 |
self.models['tex_slat_decoder'].to(self.device)
|
|
@@ -447,16 +447,16 @@ class Trellis2ImageTo3DPipeline(Pipeline):
|
|
| 447 |
@torch.no_grad()
|
| 448 |
def decode_latent(
|
| 449 |
self,
|
| 450 |
-
shape_slat:
|
| 451 |
-
tex_slat:
|
| 452 |
resolution: int,
|
| 453 |
) -> List[MeshWithVoxel]:
|
| 454 |
"""
|
| 455 |
Decode the latent codes.
|
| 456 |
|
| 457 |
Args:
|
| 458 |
-
shape_slat (
|
| 459 |
-
tex_slat (
|
| 460 |
resolution (int): The resolution of the output.
|
| 461 |
"""
|
| 462 |
meshes, subs = self.decode_shape_slat(shape_slat, resolution)
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
from .base import Pipeline
|
| 7 |
from . import samplers, rembg
|
| 8 |
+
from ..modules.sparse import SparseTensor
|
| 9 |
+
from ..modules import image_feature_extractor
|
| 10 |
from ..representations import Mesh, MeshWithVoxel
|
| 11 |
|
| 12 |
|
|
|
|
| 24 |
tex_slat_sampler_params (dict): The parameters for the texture latent sampler.
|
| 25 |
shape_slat_normalization (dict): The normalization parameters for the structured latent.
|
| 26 |
tex_slat_normalization (dict): The normalization parameters for the texture latent.
|
| 27 |
+
image_cond_model (Callable): The image conditioning model.
|
| 28 |
rembg_model (Callable): The model for removing background.
|
| 29 |
low_vram (bool): Whether to use low-VRAM mode.
|
| 30 |
"""
|
|
|
|
| 92 |
new_pipeline.shape_slat_normalization = args['shape_slat_normalization']
|
| 93 |
new_pipeline.tex_slat_normalization = args['tex_slat_normalization']
|
| 94 |
|
| 95 |
+
new_pipeline.image_cond_model = getattr(image_feature_extractor, args['image_cond_model']['name'])(**args['image_cond_model']['args'])
|
| 96 |
new_pipeline.rembg_model = getattr(rembg, args['rembg_model']['name'])(**args['rembg_model']['args'])
|
| 97 |
|
| 98 |
new_pipeline.low_vram = args.get('low_vram', True)
|
|
|
|
| 230 |
flow_model,
|
| 231 |
coords: torch.Tensor,
|
| 232 |
sampler_params: dict = {},
|
| 233 |
+
) -> SparseTensor:
|
| 234 |
"""
|
| 235 |
Sample structured latent with the given conditioning.
|
| 236 |
|
|
|
|
| 240 |
sampler_params (dict): Additional parameters for the sampler.
|
| 241 |
"""
|
| 242 |
# Sample structured latent
|
| 243 |
+
noise = SparseTensor(
|
| 244 |
feats=torch.randn(coords.shape[0], flow_model.in_channels).to(self.device),
|
| 245 |
coords=coords,
|
| 246 |
)
|
|
|
|
| 275 |
coords: torch.Tensor,
|
| 276 |
sampler_params: dict = {},
|
| 277 |
max_num_tokens: int = 49152,
|
| 278 |
+
) -> SparseTensor:
|
| 279 |
"""
|
| 280 |
Sample structured latent with the given conditioning.
|
| 281 |
|
|
|
|
| 285 |
sampler_params (dict): Additional parameters for the sampler.
|
| 286 |
"""
|
| 287 |
# LR
|
| 288 |
+
noise = SparseTensor(
|
| 289 |
feats=torch.randn(coords.shape[0], flow_model_lr.in_channels).to(self.device),
|
| 290 |
coords=coords,
|
| 291 |
)
|
|
|
|
| 329 |
hr_resolution -= 128
|
| 330 |
|
| 331 |
# Sample structured latent
|
| 332 |
+
noise = SparseTensor(
|
| 333 |
feats=torch.randn(coords.shape[0], flow_model.in_channels).to(self.device),
|
| 334 |
coords=coords,
|
| 335 |
)
|
|
|
|
| 355 |
|
| 356 |
def decode_shape_slat(
|
| 357 |
self,
|
| 358 |
+
slat: SparseTensor,
|
| 359 |
resolution: int,
|
| 360 |
+
) -> Tuple[List[Mesh], List[SparseTensor]]:
|
| 361 |
"""
|
| 362 |
Decode the structured latent.
|
| 363 |
|
| 364 |
Args:
|
| 365 |
+
slat (SparseTensor): The structured latent.
|
| 366 |
formats (List[str]): The formats to decode the structured latent to.
|
| 367 |
|
| 368 |
Returns:
|
| 369 |
List[Mesh]: The decoded meshes.
|
| 370 |
+
List[SparseTensor]: The decoded substructures.
|
| 371 |
"""
|
| 372 |
self.models['shape_slat_decoder'].set_resolution(resolution)
|
| 373 |
if self.low_vram:
|
|
|
|
| 383 |
self,
|
| 384 |
cond: dict,
|
| 385 |
flow_model,
|
| 386 |
+
shape_slat: SparseTensor,
|
| 387 |
sampler_params: dict = {},
|
| 388 |
+
) -> SparseTensor:
|
| 389 |
"""
|
| 390 |
Sample structured latent with the given conditioning.
|
| 391 |
|
| 392 |
Args:
|
| 393 |
cond (dict): The conditioning information.
|
| 394 |
+
shape_slat (SparseTensor): The structured latent for shape
|
| 395 |
sampler_params (dict): Additional parameters for the sampler.
|
| 396 |
"""
|
| 397 |
# Sample structured latent
|
|
|
|
| 424 |
|
| 425 |
def decode_tex_slat(
|
| 426 |
self,
|
| 427 |
+
slat: SparseTensor,
|
| 428 |
+
subs: List[SparseTensor],
|
| 429 |
+
) -> SparseTensor:
|
| 430 |
"""
|
| 431 |
Decode the structured latent.
|
| 432 |
|
| 433 |
Args:
|
| 434 |
+
slat (SparseTensor): The structured latent.
|
| 435 |
formats (List[str]): The formats to decode the structured latent to.
|
| 436 |
|
| 437 |
Returns:
|
| 438 |
+
List[SparseTensor]: The decoded texture voxels
|
| 439 |
"""
|
| 440 |
if self.low_vram:
|
| 441 |
self.models['tex_slat_decoder'].to(self.device)
|
|
|
|
| 447 |
@torch.no_grad()
|
| 448 |
def decode_latent(
|
| 449 |
self,
|
| 450 |
+
shape_slat: SparseTensor,
|
| 451 |
+
tex_slat: SparseTensor,
|
| 452 |
resolution: int,
|
| 453 |
) -> List[MeshWithVoxel]:
|
| 454 |
"""
|
| 455 |
Decode the latent codes.
|
| 456 |
|
| 457 |
Args:
|
| 458 |
+
shape_slat (SparseTensor): The structured latent for shape.
|
| 459 |
+
tex_slat (SparseTensor): The structured latent for texture.
|
| 460 |
resolution (int): The resolution of the output.
|
| 461 |
"""
|
| 462 |
meshes, subs = self.decode_shape_slat(shape_slat, resolution)
|