File size: 27,458 Bytes
973a330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
#!/usr/bin/env python3
"""
Cidadão.AI Backend - Expanded Version with Multiple Data Sources
Supports: Contracts, Servants, Expenses, Biddings, and more
"""

import asyncio
import logging
import os
import sys
import time
import traceback
import hashlib
from contextlib import asynccontextmanager
from typing import Any, Dict, List, Optional, Union
from datetime import datetime, timedelta
from enum import Enum

import uvicorn
from fastapi import FastAPI, HTTPException, status, Query
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from pydantic import BaseModel, Field
from prometheus_client import Counter, Histogram, generate_latest, CONTENT_TYPE_LATEST

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)

# ==================== DATA MODELS ====================

class DataSourceType(str, Enum):
    """Types of data sources available."""
    CONTRACTS = "contratos"
    SERVANTS = "servidores"
    EXPENSES = "despesas"
    BIDDINGS = "licitacoes"
    AGREEMENTS = "convenios"
    SANCTIONS = "empresas-sancionadas"

class HealthResponse(BaseModel):
    """Health check response model."""
    status: str = "healthy"
    version: str = "2.0.0"
    agents: Dict[str, str] = Field(default_factory=lambda: {"zumbi": "active"})
    data_sources: List[str] = Field(default_factory=lambda: [e.value for e in DataSourceType])
    uptime: str = "operational"

class UniversalSearchRequest(BaseModel):
    """Universal search request for any data type."""
    query: str = Field(..., description="Search query")
    data_source: DataSourceType = Field(..., description="Type of data to search")
    filters: Dict[str, Any] = Field(default_factory=dict, description="Additional filters")
    max_results: int = Field(default=100, ge=1, le=500, description="Maximum results")
    
class ServantData(BaseModel):
    """Servant/Employee data model."""
    nome: str
    cpf_masked: str
    matricula: str
    orgao: str
    cargo: str
    funcao: Optional[str] = None
    remuneracao: Dict[str, float]
    mes_ano_referencia: str

class ContractData(BaseModel):
    """Contract data model."""
    id: str
    numero: str
    objeto: str
    valor: float
    fornecedor: Dict[str, str]
    orgao: str
    data_assinatura: str
    vigencia: Dict[str, str]
    modalidade: Optional[str] = None

class ExpenseData(BaseModel):
    """Expense data model."""
    id: str
    descricao: str
    valor: float
    favorecido: Dict[str, str]
    orgao: str
    data: str
    programa: Optional[str] = None
    acao: Optional[str] = None

class UniversalSearchResponse(BaseModel):
    """Universal search response."""
    status: str
    data_source: str
    query: str
    results: List[Union[ServantData, ContractData, ExpenseData, Dict[str, Any]]]
    total_found: int
    anomalies_detected: int
    confidence_score: float
    processing_time_ms: int
    metadata: Dict[str, Any] = Field(default_factory=dict)

# ==================== CACHE ====================

class SimpleCache:
    """In-memory cache for API responses with TTL."""
    
    def __init__(self):
        self._cache: Dict[str, Dict] = {}
        self._ttl_cache: Dict[str, datetime] = {}
        self.default_ttl = 3600  # 1 hour
    
    def _generate_key(self, **kwargs) -> str:
        """Generate cache key from parameters."""
        key_string = "&".join([f"{k}={v}" for k, v in sorted(kwargs.items())])
        return hashlib.md5(key_string.encode()).hexdigest()
    
    def get(self, **kwargs) -> Optional[Dict]:
        """Get cached value if not expired."""
        key = self._generate_key(**kwargs)
        
        if key not in self._cache:
            return None
        
        if key in self._ttl_cache:
            if datetime.now() > self._ttl_cache[key]:
                del self._cache[key]
                del self._ttl_cache[key]
                return None
        
        return self._cache[key]
    
    def set(self, value: Dict, ttl_seconds: int = None, **kwargs) -> None:
        """Set cached value with TTL."""
        key = self._generate_key(**kwargs)
        self._cache[key] = value
        
        ttl = ttl_seconds or self.default_ttl
        self._ttl_cache[key] = datetime.now() + timedelta(seconds=ttl)

# Global cache instance
api_cache = SimpleCache()

# ==================== ENHANCED ZUMBI AGENT ====================

class EnhancedZumbiAgent:
    """Enhanced Zumbi agent that can investigate multiple data sources."""
    
    def __init__(self):
        self.name = "Zumbi dos Palmares"
        self.role = "Universal Investigator"
        self.specialty = "Multi-source anomaly detection"
        logger.info(f"🏹 {self.name} - Enhanced {self.role} initialized")
    
    async def investigate_universal(self, request: UniversalSearchRequest) -> UniversalSearchResponse:
        """Investigate any data source."""
        import os
        import numpy as np
        from collections import defaultdict
        start_time = time.time()
        
        try:
            # Get API key
            api_key = os.getenv("TRANSPARENCY_API_KEY")
            if not api_key:
                logger.warning("⚠️ No API key, using demo data")
                return await self._get_demo_data(request, start_time)
            
            # Route to appropriate handler
            if request.data_source == DataSourceType.SERVANTS:
                return await self._search_servants(request, api_key, start_time)
            elif request.data_source == DataSourceType.CONTRACTS:
                return await self._search_contracts(request, api_key, start_time)
            elif request.data_source == DataSourceType.EXPENSES:
                return await self._search_expenses(request, api_key, start_time)
            elif request.data_source == DataSourceType.BIDDINGS:
                return await self._search_biddings(request, api_key, start_time)
            else:
                return await self._search_generic(request, api_key, start_time)
                
        except Exception as e:
            logger.error(f"Investigation error: {str(e)}")
            return UniversalSearchResponse(
                status="error",
                data_source=request.data_source.value,
                query=request.query,
                results=[],
                total_found=0,
                anomalies_detected=0,
                confidence_score=0.0,
                processing_time_ms=int((time.time() - start_time) * 1000),
                metadata={"error": str(e)}
            )
    
    async def _search_servants(self, request: UniversalSearchRequest, api_key: str, start_time: float) -> UniversalSearchResponse:
        """Search for government servants."""
        import httpx
        
        # Check cache first
        cache_key = f"servants_{request.query}_{request.max_results}"
        cached = api_cache.get(source=cache_key)
        if cached:
            logger.info("📦 Using cached servants data")
            return cached
        
        results = []
        anomalies = 0
        
        async with httpx.AsyncClient(timeout=30.0) as client:
            url = "https://api.portaldatransparencia.gov.br/api-de-dados/servidores"
            headers = {
                "chave-api-dados": api_key,
                "Accept": "application/json"
            }
            params = {
                "nome": request.query.upper(),
                "pagina": 1,
                "tamanhoPagina": min(request.max_results, 50)
            }
            
            # Add filters from request
            if "orgao" in request.filters:
                params["orgao"] = request.filters["orgao"]
            if "funcao" in request.filters:
                params["funcao"] = request.filters["funcao"]
            
            response = await client.get(url, headers=headers, params=params)
            
            if response.status_code == 200:
                data = response.json()
                
                # Process servants
                for item in data:
                    servant_info = item.get("servidor", {})
                    org_info = item.get("unidadeOrganizacional", {})
                    
                    # Extract salary info
                    salary = item.get("remuneracaoBasicaBruta", 0)
                    total = item.get("remuneracaoAposDeducoes", 0)
                    
                    # Detect anomalies (e.g., very high salaries)
                    if salary > 40000:  # Above R$ 40k is unusual
                        anomalies += 1
                    
                    servant = ServantData(
                        nome=servant_info.get("nome", "N/A"),
                        cpf_masked=servant_info.get("cpf", "***.***.***-**"),
                        matricula=servant_info.get("matricula", "N/A"),
                        orgao=org_info.get("nomeUnidade", "N/A"),
                        cargo=item.get("cargo", {}).get("descricao", "N/A"),
                        funcao=item.get("funcao", {}).get("descricao"),
                        remuneracao={
                            "basica": salary,
                            "total_liquido": total,
                            "gratificacoes": item.get("gratificacoes", 0),
                            "auxilios": item.get("auxilios", 0)
                        },
                        mes_ano_referencia=f"{item.get('mesReferencia', 'N/A')}/{item.get('anoReferencia', 'N/A')}"
                    )
                    results.append(servant.dict())
                
                response_data = UniversalSearchResponse(
                    status="success",
                    data_source=request.data_source.value,
                    query=request.query,
                    results=results,
                    total_found=len(results),
                    anomalies_detected=anomalies,
                    confidence_score=0.95,
                    processing_time_ms=int((time.time() - start_time) * 1000),
                    metadata={"source": "real_api", "anomaly_threshold": 40000}
                )
                
                # Cache the response
                api_cache.set(response_data.dict(), source=cache_key)
                
                return response_data
            else:
                raise HTTPException(status_code=response.status_code, detail="API request failed")
    
    async def _search_contracts(self, request: UniversalSearchRequest, api_key: str, start_time: float) -> UniversalSearchResponse:
        """Search for contracts with anomaly detection."""
        import httpx
        import numpy as np
        
        results = []
        anomalies = 0
        
        async with httpx.AsyncClient(timeout=30.0) as client:
            # Search multiple organizations
            org_codes = request.filters.get("orgaos", ["26000", "25000", "44000"])
            
            all_contracts = []
            for org_code in org_codes[:3]:  # Limit to 3 orgs
                url = "https://api.portaldatransparencia.gov.br/api-de-dados/contratos"
                headers = {
                    "chave-api-dados": api_key,
                    "Accept": "application/json"
                }
                params = {
                    "codigoOrgao": org_code,
                    "ano": request.filters.get("ano", 2024),
                    "tamanhoPagina": 50
                }
                
                # Add search term if provided
                if request.query and request.query.lower() != "todos":
                    params["descricao"] = request.query
                
                response = await client.get(url, headers=headers, params=params)
                
                if response.status_code == 200:
                    contracts = response.json()
                    all_contracts.extend(contracts)
            
            # Analyze contracts for anomalies
            if all_contracts:
                values = [c.get("valorInicial", 0) for c in all_contracts if c.get("valorInicial", 0) > 0]
                
                if len(values) > 3:
                    mean_val = np.mean(values)
                    std_val = np.std(values)
                    
                    for contract in all_contracts[:request.max_results]:
                        valor = contract.get("valorInicial", 0)
                        z_score = abs((valor - mean_val) / std_val) if std_val > 0 else 0
                        
                        # Flag as anomaly if z-score > 1.5
                        is_anomaly = z_score > 1.5
                        if is_anomaly:
                            anomalies += 1
                        
                        contract_data = {
                            "id": contract.get("id", "N/A"),
                            "numero": contract.get("numero", "N/A"),
                            "objeto": contract.get("objeto", "N/A")[:200],
                            "valor": valor,
                            "fornecedor": {
                                "nome": contract.get("nomeFornecedor", "N/A"),
                                "cnpj": contract.get("cnpjFornecedor", "N/A")
                            },
                            "orgao": contract.get("nomeOrgao", org_code),
                            "data_assinatura": contract.get("dataAssinatura", "N/A"),
                            "vigencia": {
                                "inicio": contract.get("dataInicioVigencia", "N/A"),
                                "fim": contract.get("dataFimVigencia", "N/A")
                            },
                            "modalidade": contract.get("modalidadeCompra", "N/A"),
                            "_anomaly": is_anomaly,
                            "_z_score": z_score
                        }
                        results.append(contract_data)
            
            return UniversalSearchResponse(
                status="success",
                data_source=request.data_source.value,
                query=request.query,
                results=results,
                total_found=len(results),
                anomalies_detected=anomalies,
                confidence_score=0.87,
                processing_time_ms=int((time.time() - start_time) * 1000),
                metadata={
                    "organizations_searched": org_codes[:3],
                    "anomaly_method": "z_score",
                    "threshold": 1.5
                }
            )
    
    async def _search_expenses(self, request: UniversalSearchRequest, api_key: str, start_time: float) -> UniversalSearchResponse:
        """Search for government expenses."""
        import httpx
        
        results = []
        anomalies = 0
        
        async with httpx.AsyncClient(timeout=30.0) as client:
            url = "https://api.portaldatransparencia.gov.br/api-de-dados/despesas"
            headers = {
                "chave-api-dados": api_key,
                "Accept": "application/json"
            }
            params = {
                "ano": request.filters.get("ano", 2024),
                "mes": request.filters.get("mes", 12),
                "pagina": 1,
                "tamanhoPagina": min(request.max_results, 50)
            }
            
            if "orgao" in request.filters:
                params["orgao"] = request.filters["orgao"]
            
            response = await client.get(url, headers=headers, params=params)
            
            if response.status_code == 200:
                data = response.json()
                
                for expense in data:
                    valor = expense.get("valor", 0)
                    
                    # Simple anomaly detection for high values
                    if valor > 1000000:  # Above 1M
                        anomalies += 1
                    
                    expense_data = ExpenseData(
                        id=expense.get("id", "N/A"),
                        descricao=expense.get("descricao", "N/A"),
                        valor=valor,
                        favorecido={
                            "nome": expense.get("nomeFavorecido", "N/A"),
                            "codigo": expense.get("codigoFavorecido", "N/A")
                        },
                        orgao=expense.get("nomeOrgao", "N/A"),
                        data=expense.get("data", "N/A"),
                        programa=expense.get("nomePrograma"),
                        acao=expense.get("nomeAcao")
                    )
                    results.append(expense_data.dict())
                
                return UniversalSearchResponse(
                    status="success",
                    data_source=request.data_source.value,
                    query=request.query,
                    results=results,
                    total_found=len(results),
                    anomalies_detected=anomalies,
                    confidence_score=0.85,
                    processing_time_ms=int((time.time() - start_time) * 1000),
                    metadata={"high_value_threshold": 1000000}
                )
            else:
                raise HTTPException(status_code=response.status_code, detail="API request failed")
    
    async def _search_biddings(self, request: UniversalSearchRequest, api_key: str, start_time: float) -> UniversalSearchResponse:
        """Search for biddings/licitações."""
        # Implementation similar to contracts
        # For brevity, returning a simplified response
        return UniversalSearchResponse(
            status="success",
            data_source=request.data_source.value,
            query=request.query,
            results=[],
            total_found=0,
            anomalies_detected=0,
            confidence_score=0.8,
            processing_time_ms=int((time.time() - start_time) * 1000),
            metadata={"note": "Biddings endpoint to be implemented"}
        )
    
    async def _search_generic(self, request: UniversalSearchRequest, api_key: str, start_time: float) -> UniversalSearchResponse:
        """Generic search for other data types."""
        return UniversalSearchResponse(
            status="success",
            data_source=request.data_source.value,
            query=request.query,
            results=[],
            total_found=0,
            anomalies_detected=0,
            confidence_score=0.7,
            processing_time_ms=int((time.time() - start_time) * 1000),
            metadata={"note": f"Generic handler for {request.data_source.value}"}
        )
    
    async def _get_demo_data(self, request: UniversalSearchRequest, start_time: float) -> UniversalSearchResponse:
        """Return demo data when no API key is available."""
        demo_results = []
        
        if request.data_source == DataSourceType.SERVANTS:
            demo_results = [{
                "nome": "MARIA DA SILVA",
                "cpf_masked": "***.***.***-**",
                "matricula": "1234567",
                "orgao": "MINISTERIO DA SAUDE",
                "cargo": "ANALISTA",
                "funcao": "ANALISTA TECNICO",
                "remuneracao": {
                    "basica": 8500.00,
                    "total_liquido": 9876.54,
                    "gratificacoes": 2000.00,
                    "auxilios": 458.00
                },
                "mes_ano_referencia": "12/2024"
            }]
        elif request.data_source == DataSourceType.CONTRACTS:
            demo_results = [{
                "id": "demo-001",
                "numero": "2024/001",
                "objeto": "Contrato demonstrativo para testes",
                "valor": 150000.00,
                "fornecedor": {
                    "nome": "EMPRESA DEMO LTDA",
                    "cnpj": "00.000.000/0001-00"
                },
                "orgao": "ORGAO DEMONSTRATIVO",
                "data_assinatura": "01/01/2024",
                "vigencia": {
                    "inicio": "01/01/2024",
                    "fim": "31/12/2024"
                },
                "modalidade": "Pregão Eletrônico",
                "_anomaly": False,
                "_z_score": 0.5
            }]
        
        return UniversalSearchResponse(
            status="demo",
            data_source=request.data_source.value,
            query=request.query,
            results=demo_results,
            total_found=len(demo_results),
            anomalies_detected=0,
            confidence_score=0.5,
            processing_time_ms=int((time.time() - start_time) * 1000),
            metadata={"mode": "demo", "message": "Configure TRANSPARENCY_API_KEY for real data"}
        )

# ==================== FASTAPI APP ====================

# Create agent instance
enhanced_zumbi = EnhancedZumbiAgent()

# Lifespan context manager
@asynccontextmanager
async def lifespan(app: FastAPI):
    logger.info("🏛️ Cidadão.AI Enhanced Backend starting up...")
    logger.info("🏹 Enhanced Zumbi agent ready for multi-source investigations")
    yield
    logger.info("👋 Cidadão.AI Enhanced Backend shutting down...")

# Create FastAPI app
app = FastAPI(
    title="Cidadão.AI Enhanced Backend",
    description="Multi-source government transparency analysis with AI",
    version="2.0.0",
    docs_url="/docs",
    redoc_url="/redoc",
    lifespan=lifespan
)

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Add compression middleware for better performance
from src.api.middleware.compression import add_compression_middleware
add_compression_middleware(
    app,
    minimum_size=1024,  # Compress responses larger than 1KB
    gzip_level=6,       # Good balance of speed vs compression
    brotli_quality=4,   # Fast brotli compression
    exclude_paths={"/health", "/metrics", "/health/metrics"}
)

# ==================== ENDPOINTS ====================

@app.get("/", response_model=HealthResponse)
async def root():
    """Root endpoint with system status."""
    return HealthResponse()

@app.get("/health", response_model=HealthResponse)
async def health_check():
    """Health check endpoint."""
    return HealthResponse()

@app.post("/api/investigate", response_model=UniversalSearchResponse)
async def investigate_universal(request: UniversalSearchRequest):
    """
    Universal investigation endpoint for any data source.
    
    Example queries:
    - Servants: {"query": "João Silva", "data_source": "servidores"}
    - Contracts: {"query": "informática", "data_source": "contratos"}
    - Expenses: {"query": "todos", "data_source": "despesas", "filters": {"mes": 12}}
    """
    try:
        result = await enhanced_zumbi.investigate_universal(request)
        return result
    except Exception as e:
        logger.error(f"Investigation error: {str(e)}")
        raise HTTPException(
            status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
            detail=f"Investigation failed: {str(e)}"
        )

@app.get("/api/data-sources")
async def list_data_sources():
    """List all available data sources."""
    return {
        "sources": [
            {
                "id": ds.value,
                "name": ds.name,
                "description": {
                    DataSourceType.CONTRACTS: "Government contracts and procurements",
                    DataSourceType.SERVANTS: "Public servants and their salaries",
                    DataSourceType.EXPENSES: "Government expenses and payments",
                    DataSourceType.BIDDINGS: "Public biddings and auctions",
                    DataSourceType.AGREEMENTS: "Government agreements and partnerships",
                    DataSourceType.SANCTIONS: "Sanctioned companies"
                }.get(ds, "Data source")
            }
            for ds in DataSourceType
        ]
    }

@app.get("/api/search/servants")
async def search_servants_quick(
    nome: str = Query(..., description="Nome do servidor"),
    orgao: Optional[str] = Query(None, description="Código do órgão"),
    limit: int = Query(10, ge=1, le=50, description="Limite de resultados")
):
    """Quick endpoint to search servants by name."""
    request = UniversalSearchRequest(
        query=nome,
        data_source=DataSourceType.SERVANTS,
        filters={"orgao": orgao} if orgao else {},
        max_results=limit
    )
    return await investigate_universal(request)

@app.get("/api/search/contracts")
async def search_contracts_quick(
    query: str = Query("todos", description="Termo de busca"),
    orgao: Optional[str] = Query(None, description="Código do órgão"),
    ano: int = Query(2024, description="Ano"),
    limit: int = Query(50, ge=1, le=100, description="Limite de resultados")
):
    """Quick endpoint to search contracts."""
    request = UniversalSearchRequest(
        query=query,
        data_source=DataSourceType.CONTRACTS,
        filters={"orgaos": [orgao] if orgao else ["26000", "25000"], "ano": ano},
        max_results=limit
    )
    return await investigate_universal(request)

@app.get("/api/cache/stats")
async def cache_stats():
    """Get cache statistics."""
    return {
        "cache_size": len(api_cache._cache),
        "active_entries": len([k for k, v in api_cache._ttl_cache.items() if v > datetime.now()]),
        "ttl_seconds": api_cache.default_ttl
    }

# Debug endpoint for Drummond issue
@app.get("/debug/drummond-status")
async def debug_drummond_status():
    """Debug endpoint to check Drummond agent status."""
    import traceback
    
    result = {
        "python_version": sys.version,
        "checks": {}
    }
    
    # Check if we can import CommunicationAgent
    try:
        from src.agents.drummond import CommunicationAgent
        abstract_methods = getattr(CommunicationAgent, '__abstractmethods__', set())
        result["checks"]["import"] = {
            "status": "success",
            "abstract_methods": list(abstract_methods) if abstract_methods else "none",
            "has_shutdown": hasattr(CommunicationAgent, 'shutdown'),
            "has_initialize": hasattr(CommunicationAgent, 'initialize'),
            "has_process": hasattr(CommunicationAgent, 'process')
        }
        
        # Try to instantiate
        try:
            agent = CommunicationAgent()
            result["checks"]["instantiation"] = {"status": "success", "agent_name": agent.name}
        except Exception as e:
            result["checks"]["instantiation"] = {
                "status": "failed",
                "error": str(e),
                "error_type": type(e).__name__
            }
    except Exception as e:
        result["checks"]["import"] = {
            "status": "failed",
            "error": str(e),
            "traceback": traceback.format_exc()[:500]  # Limit traceback size
        }
    
    return result

if __name__ == "__main__":
    port = int(os.getenv("PORT", 7860))
    logger.info(f"🚀 Starting Enhanced Cidadão.AI Backend on port {port}")
    # Disable host header validation for HuggingFace Spaces
    uvicorn.run(
        app, 
        host="0.0.0.0", 
        port=port,
        forwarded_allow_ips="*",  # Allow all proxy IPs
        proxy_headers=True  # Trust proxy headers
    )